/* * Copyright (C) 2022 by Matthias P. Braendli * * Based on previous work by * Copyright (C) 2022 by Felix Erckenbrecht * Copyright (C) 2016-2018 by Steve Markgraf * Copyright (C) 2009 by Bartek Kania * * SPDX-License-Identifier: GPL-2.0+ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ use std::sync::atomic::{AtomicBool, Ordering}; use std::{env, thread}; use std::io::{prelude::*, BufReader, BufWriter}; use std::fs::File; use std::sync::{mpsc, Arc}; use getopts::Options; mod fl2k; const TRIG_TABLE_ORDER: usize = 8; const TRIG_TABLE_SHIFT: usize = 32 - TRIG_TABLE_ORDER; const TRIG_TABLE_LEN: usize = 1 << TRIG_TABLE_ORDER; const PI: f32 = std::f32::consts::PI; const INT32_MAX_AS_FLOAT: f32 = 0x1_0000_0000u64 as f32; const ANG_INCR: f32 = INT32_MAX_AS_FLOAT / (2.0 * PI); enum Waveform { Sine, Rect } enum Output { Debug, FL2K } struct DDS { trig_table_quadrature: Vec, trig_table_inphase: Vec, /* instantaneous phase */ phase: u32, /* phase increment */ phase_step: u32, /* for phase modulation */ phase_delta: i32, phase_slope: i32, amplitude: f32, } impl DDS { fn init(samp_rate: f32, freq: f32, phase: f32, amp: f32, waveform: Waveform) -> Self { let mut trig_table_inphase = Vec::with_capacity(TRIG_TABLE_LEN); let mut trig_table_quadrature = Vec::with_capacity(TRIG_TABLE_LEN); let incr = 1.0f32 / TRIG_TABLE_LEN as f32; for i in 0..TRIG_TABLE_LEN { let i = f32::cos(incr * i as f32 * 2.0 * PI) * 32767.0; let q = f32::sin(incr * i as f32 * 2.0 * PI) * 32767.8; match waveform { Waveform::Sine => { trig_table_inphase.push(f32::round(i) as i16); trig_table_quadrature.push(f32::round(q) as i16); } Waveform::Rect => { trig_table_inphase.push(if i >= 0.0 { 32767 } else { -32767 }); trig_table_quadrature.push(if q >= 0.0 { 32767 } else { -32767 }); } } } let phase_step = (freq / samp_rate) * 2.0 * PI * ANG_INCR; DDS { trig_table_quadrature, trig_table_inphase, phase: f32::round(phase * ANG_INCR) as u32, phase_step: f32::round(phase_step) as u32, phase_delta: 0, phase_slope: 0, amplitude: amp, } } fn set_phase(&mut self, phase_delta: i32, phase_slope: i32) { self.phase_delta = phase_delta; self.phase_slope = phase_slope; } fn generate_iq(&mut self, len: usize) -> (Vec, Vec) { let mut out_i = Vec::with_capacity(len); let mut out_q = Vec::with_capacity(len); for _ in 0..len { let phase = self.phase as i32; // get current carrier phase, add phase mod, calculate table index let phase_idx_i = (phase - self.phase_delta) >> TRIG_TABLE_SHIFT; let phase_idx_q = (phase + self.phase_delta) >> TRIG_TABLE_SHIFT; if phase_idx_q > 255 || phase_idx_i > 255 { panic!("Phase IDX out of bounds"); } self.phase = phase as u32 + self.phase_step; let amp = (self.amplitude * 32767.0) as i32; // 0..15 let amp_i = amp * self.trig_table_inphase[phase_idx_i as usize] as i32; // 0..31 let amp_q = amp * self.trig_table_quadrature[phase_idx_q as usize] as i32; // 0..31 let i = (amp_i >> 24) as i8; // 0..31 >> 24 => 0..8 let q = (amp_q >> 24) as i8; // 0..31 >> 24 => 0..8 out_i.push(i); out_q.push(q); self.phase_delta += self.phase_slope; } (out_i, out_q) } } fn print_usage(program: &str, opts: Options) { let brief = format!("Usage: {} FILE [options]", program); eprint!("{}", opts.usage(&brief)); } fn main() { let args: Vec = env::args().collect(); let program = args[0].clone(); let mut opts = Options::new(); opts.optopt("f", "file", "Input file, containing signed 16-bit samples.", "FILE"); opts.optopt("d", "device-index", "Select device index", "DEVINDEX"); opts.optopt("c", "center-freq", "Center frequency in Hz (default: 1440 kHz)", "FREQ"); opts.optopt("s", "samplerate", "Samplerate in Hz (default: 96 MS/s)", "RATE"); opts.optopt("m", "mod-index", "Modulation index (default: 0.25)]", "FACTOR"); opts.optopt("i", "input-rate", "Input baseband sample rate (default: 48000 Hz)", "RATE"); opts.optopt("w", "waveform", "(sine|rect) default: rect", "WAVEFORM"); opts.optflag("C", "device-count", "Return FL2K device count and quit"); opts.optflag("D", "debug", "Write to debug files instead of FL2K"); opts.optflag("h", "help", "print this help menu"); let cli_args = match opts.parse(&args[1..]) { Ok(m) => { m } Err(f) => { panic!("{}", f.to_string()) } }; if cli_args.opt_present("h") { print_usage(&program, opts); std::process::exit(1); } if cli_args.opt_present("C") { eprintln!("FL2K device count {}", fl2k::get_device_count()); return; } let output = if cli_args.opt_present("D") { Output::Debug } else { Output::FL2K }; let device_index: u32 = match cli_args.opt_str("d") { Some(s) => s.parse().expect("integer value"), None => 0, }; let samp_rate: u32 = match cli_args.opt_str("s") { Some(s) => s.parse().expect("integer value"), None => 96_000_000, }; let base_freq = match cli_args.opt_str("c") { Some(s) => s.parse().expect("floating point value"), None => 1_440_000.0, }; let input_freq: u32 = match cli_args.opt_str("i") { Some(s) => s.parse().expect("integer value"), None => 48_000, }; let modulation_index = match cli_args.opt_str("m") { Some(s) => s.parse().expect("floating point value"), None => 0.25, }; let waveform = match cli_args.opt_str("w") { None => Waveform::Rect, Some(w) if w == "sine" => Waveform::Sine, Some(w) if w == "rect" => Waveform::Rect, _ => { eprintln!("Waveform must be 'sine' or 'rect'"); print_usage(&program, opts); std::process::exit(1); } }; let source_file_name = match cli_args.opt_str("f") { Some(f) => f, None => { eprintln!("Specify input file!"); print_usage(&program, opts); std::process::exit(1); } }; if samp_rate % input_freq != 0 { eprintln!("WARNING: input freq does not divide sample rate."); } let rf_to_baseband_sample_ratio = samp_rate / input_freq; eprintln!("Samplerate: {} MHz", (samp_rate as f32)/1000000.0); eprintln!("Center frequency: {} kHz", base_freq/1000.0); let running = Arc::new(AtomicBool::new(true)); let r = running.clone(); ctrlc::set_handler(move || { r.store(false, Ordering::SeqCst); }).expect("Error setting Ctrl-C handler"); let (input_samples_tx, input_samples_rx) = mpsc::sync_channel::>(2); let (pd_tx, pd_rx) = mpsc::sync_channel(2); let (iq_tx, iq_rx) = mpsc::sync_channel(2); let source_file = File::open(source_file_name).expect("open file"); let mut source_file = BufReader::new(source_file); const BASEBAND_BUF_SAMPS: usize = 1024; // Read file and convert samples thread::spawn(move || { while running.load(Ordering::SeqCst) { let mut buf = Vec::with_capacity(BASEBAND_BUF_SAMPS); buf.resize(BASEBAND_BUF_SAMPS, 0i16); let mut buf_u8: &mut [u8] = unsafe { std::slice::from_raw_parts_mut( buf.as_mut_ptr() as *mut u8, buf.len() * std::mem::size_of::() ) }; source_file.read_exact(&mut buf_u8).expect("Read from source file"); let buf: Vec = buf .iter() .map(|v| (v/2 + i16::MAX/2) as f32 / 32768.0) .collect(); if let Err(_) = input_samples_tx.send(buf) { eprintln!("Quit read thread"); break; } } }); // Read samples, calculate PD and PDSLOPE thread::spawn(move || { let mut lastamp = 0f32; loop { let Ok(buf) = input_samples_rx.recv() else { break }; let mut pd_buf = Vec::with_capacity(buf.len()); /* What we do here is calculate a linear "slope" from the previous sample to this one. This is then used by the modulator to gently increase/decrease the phase with each sample without the need to recalculate the dds parameters. In fact this gives us a very efficient and pretty good interpolation filter. */ for sample in buf { let slope = sample - lastamp; let slope = slope / rf_to_baseband_sample_ratio as f32; let pd = lastamp * modulation_index * INT32_MAX_AS_FLOAT; const MIN_VAL: f32 = std::i32::MIN as f32; const MAX_VAL: f32 = std::i32::MAX as f32; if pd < MIN_VAL || pd > MAX_VAL { panic!("pd out of bounds {}", pd); } let pdslope = slope * modulation_index * INT32_MAX_AS_FLOAT; println!("Samp = {}, Slope {} = {} * {} * {}", sample, pdslope, slope, modulation_index, INT32_MAX_AS_FLOAT); if pdslope < MIN_VAL || pdslope > MAX_VAL { panic!("pdslope out of bounds {}", pdslope); } pd_buf.push((pd as i32, pdslope as i32)); lastamp = sample; } if let Err(_) = pd_tx.send(pd_buf) { eprintln!("Quit pd thread"); break; } } }); // Read PD and PDSLOPE, interpolate to higher rate thread::spawn(move || { let mut dds = DDS::init(samp_rate as f32, base_freq, 0.0, 1.0, waveform); loop { let Ok(pd_buf) = pd_rx.recv() else { break }; for (pd, pdslope) in pd_buf { dds.set_phase(pd, pdslope); let iq_bufs = dds.generate_iq(rf_to_baseband_sample_ratio as usize); if let Err(_) = iq_tx.send(iq_bufs) { eprintln!("Quit dds thread"); break; } } } }); // Main thread, output to file/device match output { Output::FL2K => { let mut fl2k = fl2k::FL2K::open(device_index).expect("fl2k open"); fl2k.start_tx().expect("fl2k start_tx"); fl2k.set_sample_rate(samp_rate).expect("set fl2k sample rate"); eprintln!("FL2K sample ret set to {}", fl2k.get_sample_rate().unwrap()); loop { let Ok((i, q)) = iq_rx.recv() else { break }; if fl2k.send(i, q) == false { break }; } fl2k.stop_tx().expect("stop tx"); } Output::Debug => { let out_file = File::create("debug-out.i8").expect("create file"); let mut out_file = BufWriter::new(out_file); loop { let Ok((i_buf, q_buf)) = iq_rx.recv() else { break }; if i_buf.len() != q_buf.len() { panic!("i_buf and q_buf must have same length"); } let mut buf = Vec::with_capacity(i_buf.len() * 2); for (i, q) in i_buf.iter().zip(q_buf) { buf.push(*i); buf.push(q); } let buf_u8: &[u8] = unsafe { std::slice::from_raw_parts( buf.as_ptr() as *const u8, buf.len() ) }; if let Err(e) = out_file.write_all(buf_u8) { eprintln!("Write output error: {}", e); break; } } } } eprintln!("Leaving main thread"); }