aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRenc/src/tran_det.cpp
blob: 3b6765a64f245ed7b34e1747f082209b9f4c450e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** SBR encoder library ******************************

   Author(s):   Tobias Chalupka

   Description: SBR encoder transient detector

*******************************************************************************/

#include "tran_det.h"

#include "fram_gen.h"
#include "sbrenc_ram.h"
#include "sbr_misc.h"

#include "genericStds.h"

#define NORM_QMF_ENERGY 9.31322574615479E-10 /* 2^-30 */

/* static FIXP_DBL ABS_THRES = fixMax( FL2FXCONST_DBL(1.28e5 *
 * NORM_QMF_ENERGY), (FIXP_DBL)1)  Minimum threshold for detecting changes */
#define ABS_THRES ((FIXP_DBL)16)

/*******************************************************************************
 Functionname:  spectralChange
 *******************************************************************************
 \brief   Calculates a measure for the spectral change within the frame

 The function says how good it would be to split the frame at the given border
 position into 2 envelopes.

 The return value delta_sum is scaled with the factor 1/64

 \return  calculated value
*******************************************************************************/
#define NRG_SHIFT 3 /* for energy summation */

static FIXP_DBL spectralChange(
    FIXP_DBL Energies[NUMBER_TIME_SLOTS_2304][MAX_FREQ_COEFFS],
    INT *scaleEnergies, FIXP_DBL EnergyTotal, INT nSfb, INT start, INT border,
    INT YBufferWriteOffset, INT stop, INT *result_e) {
  INT i, j;
  INT len1, len2;
  SCHAR energies_e_diff[NUMBER_TIME_SLOTS_2304], energies_e, energyTotal_e = 19,
                                                             energies_e_add;
  SCHAR prevEnergies_e_diff, newEnergies_e_diff;
  FIXP_DBL tmp0, tmp1;
  FIXP_DBL delta, delta_sum;
  INT accu_e, tmp_e;

  delta_sum = FL2FXCONST_DBL(0.0f);
  *result_e = 0;

  len1 = border - start;
  len2 = stop - border;

  /* prefer borders near the middle of the frame */
  FIXP_DBL pos_weight;
  pos_weight = FL2FXCONST_DBL(0.5f) - (len1 * GetInvInt(len1 + len2));
  pos_weight = /*FL2FXCONST_DBL(1.0)*/ (FIXP_DBL)MAXVAL_DBL -
               (fMult(pos_weight, pos_weight) << 2);

  /*** Calc scaling for energies ***/
  FDK_ASSERT(scaleEnergies[0] >= 0);
  FDK_ASSERT(scaleEnergies[1] >= 0);

  energies_e = 19 - fMin(scaleEnergies[0], scaleEnergies[1]);

  /* limit shift for energy accumulation, energies_e can be -10 min. */
  if (energies_e < -10) {
    energies_e_add = -10 - energies_e;
    energies_e = -10;
  } else if (energies_e > 17) {
    energies_e_add = energies_e - 17;
    energies_e = 17;
  } else {
    energies_e_add = 0;
  }

  /* compensate scaling differences between scaleEnergies[0] and
   * scaleEnergies[1]  */
  prevEnergies_e_diff = scaleEnergies[0] -
                        fMin(scaleEnergies[0], scaleEnergies[1]) +
                        energies_e_add + NRG_SHIFT;
  newEnergies_e_diff = scaleEnergies[1] -
                       fMin(scaleEnergies[0], scaleEnergies[1]) +
                       energies_e_add + NRG_SHIFT;

  prevEnergies_e_diff = fMin(prevEnergies_e_diff, DFRACT_BITS - 1);
  newEnergies_e_diff = fMin(newEnergies_e_diff, DFRACT_BITS - 1);

  for (i = start; i < YBufferWriteOffset; i++) {
    energies_e_diff[i] = prevEnergies_e_diff;
  }
  for (i = YBufferWriteOffset; i < stop; i++) {
    energies_e_diff[i] = newEnergies_e_diff;
  }

  /* Sum up energies of all QMF-timeslots for both halfs */
  FDK_ASSERT(len1 <= 8); /* otherwise an overflow is possible */
  FDK_ASSERT(len2 <= 8); /* otherwise an overflow is possible */

  for (j = 0; j < nSfb; j++) {
    FIXP_DBL accu1 = FL2FXCONST_DBL(0.f);
    FIXP_DBL accu2 = FL2FXCONST_DBL(0.f);
    accu_e = energies_e + 3;

    /* Sum up energies in first half */
    for (i = start; i < border; i++) {
      accu1 += scaleValue(Energies[i][j], -energies_e_diff[i]);
    }

    /* Sum up energies in second half */
    for (i = border; i < stop; i++) {
      accu2 += scaleValue(Energies[i][j], -energies_e_diff[i]);
    }

    /* Ensure certain energy to prevent division by zero and to prevent
     * splitting for very low levels */
    accu1 = fMax(accu1, (FIXP_DBL)len1);
    accu2 = fMax(accu2, (FIXP_DBL)len2);

/* Energy change in current band */
#define LN2 FL2FXCONST_DBL(0.6931471806f) /* ln(2) */
    tmp0 = fLog2(accu2, accu_e) - fLog2(accu1, accu_e);
    tmp1 = fLog2((FIXP_DBL)len1, 31) - fLog2((FIXP_DBL)len2, 31);
    delta = fMult(LN2, (tmp0 + tmp1));
    delta = (FIXP_DBL)fAbs(delta);

    /* Weighting with amplitude ratio of this band */
    accu_e++; /* scale at least one bit due to (accu1+accu2) */
    accu1 >>= 1;
    accu2 >>= 1;

    if (accu_e & 1) {
      accu_e++; /* for a defined square result exponent, the exponent has to be
                   even */
      accu1 >>= 1;
      accu2 >>= 1;
    }

    delta_sum += fMult(sqrtFixp(accu1 + accu2), delta);
    *result_e = ((accu_e >> 1) + LD_DATA_SHIFT);
  }

  if (energyTotal_e & 1) {
    energyTotal_e += 1; /* for a defined square result exponent, the exponent
                           has to be even */
    EnergyTotal >>= 1;
  }

  delta_sum = fMult(delta_sum, invSqrtNorm2(EnergyTotal, &tmp_e));
  *result_e = *result_e + (tmp_e - (energyTotal_e >> 1));

  return fMult(delta_sum, pos_weight);
}

/*******************************************************************************
 Functionname:  addLowbandEnergies
 *******************************************************************************
 \brief   Calculates total lowband energy

 The input values Energies[0] (low-band) are scaled by the factor
 2^(14-*scaleEnergies[0])
 The input values Energies[1] (high-band) are scaled by the factor
 2^(14-*scaleEnergies[1])

 \return  total energy in the lowband, scaled by the factor 2^19
*******************************************************************************/
static FIXP_DBL addLowbandEnergies(FIXP_DBL **Energies, int *scaleEnergies,
                                   int YBufferWriteOffset, int nrgSzShift,
                                   int tran_off, UCHAR *freqBandTable,
                                   int slots) {
  INT nrgTotal_e;
  FIXP_DBL nrgTotal_m;
  FIXP_DBL accu1 = FL2FXCONST_DBL(0.0f);
  FIXP_DBL accu2 = FL2FXCONST_DBL(0.0f);
  int tran_offdiv2 = tran_off >> nrgSzShift;
  const int sc1 =
      DFRACT_BITS -
      fNormz((FIXP_DBL)fMax(
          1, (freqBandTable[0] * (YBufferWriteOffset - tran_offdiv2) - 1)));
  const int sc2 =
      DFRACT_BITS -
      fNormz((FIXP_DBL)fMax(
          1, (freqBandTable[0] *
                  (tran_offdiv2 + (slots >> nrgSzShift) - YBufferWriteOffset) -
              1)));
  int ts, k;

  /* Sum up lowband energy from one frame at offset tran_off */
  /* freqBandTable[LORES] has MAX_FREQ_COEFFS/2 +1 coeefs max. */
  for (ts = tran_offdiv2; ts < YBufferWriteOffset; ts++) {
    for (k = 0; k < freqBandTable[0]; k++) {
      accu1 += Energies[ts][k] >> sc1;
    }
  }
  for (; ts < tran_offdiv2 + (slots >> nrgSzShift); ts++) {
    for (k = 0; k < freqBandTable[0]; k++) {
      accu2 += Energies[ts][k] >> sc2;
    }
  }

  nrgTotal_m = fAddNorm(accu1, (sc1 - 5) - scaleEnergies[0], accu2,
                        (sc2 - 5) - scaleEnergies[1], &nrgTotal_e);
  nrgTotal_m = scaleValueSaturate(nrgTotal_m, nrgTotal_e);

  return (nrgTotal_m);
}

/*******************************************************************************
 Functionname:  addHighbandEnergies
 *******************************************************************************
 \brief   Add highband energies

 Highband energies are mapped to an array with smaller dimension:
 Its time resolution is only 1 SBR-timeslot and its frequency resolution
 is 1 SBR-band. Therefore the data to be fed into the spectralChange
 function is reduced.

 The values EnergiesM are scaled by the factor (2^19-scaleEnergies[0]) for
 slots<YBufferWriteOffset and by the factor (2^19-scaleEnergies[1]) for
 slots>=YBufferWriteOffset.

 \return  total energy in the highband, scaled by factor 2^19
*******************************************************************************/

static FIXP_DBL addHighbandEnergies(
    FIXP_DBL **RESTRICT Energies, /*!< input */
    INT *scaleEnergies, INT YBufferWriteOffset,
    FIXP_DBL EnergiesM[NUMBER_TIME_SLOTS_2304]
                      [MAX_FREQ_COEFFS], /*!< Combined output */
    UCHAR *RESTRICT freqBandTable, INT nSfb, INT sbrSlots, INT timeStep) {
  INT i, j, k, slotIn, slotOut, scale[2];
  INT li, ui;
  FIXP_DBL nrgTotal;
  FIXP_DBL accu = FL2FXCONST_DBL(0.0f);

  /* Combine QMF-timeslots to SBR-timeslots,
     combine QMF-bands to SBR-bands,
     combine Left and Right channel */
  for (slotOut = 0; slotOut < sbrSlots; slotOut++) {
    /* Note: Below slotIn = slotOut and not slotIn = timeStep*slotOut
       because the Energies[] time resolution is always the SBR slot resolution
       regardless of the timeStep. */
    slotIn = slotOut;

    for (j = 0; j < nSfb; j++) {
      accu = FL2FXCONST_DBL(0.0f);

      li = freqBandTable[j];
      ui = freqBandTable[j + 1];

      for (k = li; k < ui; k++) {
        for (i = 0; i < timeStep; i++) {
          accu += Energies[slotIn][k] >> 5;
        }
      }
      EnergiesM[slotOut][j] = accu;
    }
  }

  /* scale energies down before add up */
  scale[0] = fixMin(8, scaleEnergies[0]);
  scale[1] = fixMin(8, scaleEnergies[1]);

  if ((scaleEnergies[0] - scale[0]) > (DFRACT_BITS - 1) ||
      (scaleEnergies[1] - scale[1]) > (DFRACT_BITS - 1))
    nrgTotal = FL2FXCONST_DBL(0.0f);
  else {
    /* Now add all energies */
    accu = FL2FXCONST_DBL(0.0f);

    for (slotOut = 0; slotOut < YBufferWriteOffset; slotOut++) {
      for (j = 0; j < nSfb; j++) {
        accu += (EnergiesM[slotOut][j] >> scale[0]);
      }
    }
    nrgTotal = accu >> (scaleEnergies[0] - scale[0]);

    for (slotOut = YBufferWriteOffset; slotOut < sbrSlots; slotOut++) {
      for (j = 0; j < nSfb; j++) {
        accu += (EnergiesM[slotOut][j] >> scale[0]);
      }
    }
    nrgTotal = fAddSaturate(nrgTotal, accu >> (scaleEnergies[1] - scale[1]));
  }

  return (nrgTotal);
}

/*******************************************************************************
 Functionname:  FDKsbrEnc_frameSplitter
 *******************************************************************************
 \brief   Decides if a FIXFIX-frame shall be splitted into 2 envelopes

 If no transient has been detected before, the frame can still be splitted
 into 2 envelopes.
*******************************************************************************/
void FDKsbrEnc_frameSplitter(
    FIXP_DBL **Energies, INT *scaleEnergies,
    HANDLE_SBR_TRANSIENT_DETECTOR h_sbrTransientDetector, UCHAR *freqBandTable,
    UCHAR *tran_vector, int YBufferWriteOffset, int YBufferSzShift, int nSfb,
    int timeStep, int no_cols, FIXP_DBL *tonality) {
  if (tran_vector[1] == 0) /* no transient was detected */
  {
    FIXP_DBL delta;
    INT delta_e;
    FIXP_DBL(*EnergiesM)[MAX_FREQ_COEFFS];
    FIXP_DBL EnergyTotal, newLowbandEnergy, newHighbandEnergy;
    INT border;
    INT sbrSlots = fMultI(GetInvInt(timeStep), no_cols);
    C_ALLOC_SCRATCH_START(_EnergiesM, FIXP_DBL,
                          NUMBER_TIME_SLOTS_2304 * MAX_FREQ_COEFFS)

    FDK_ASSERT(sbrSlots * timeStep == no_cols);

    EnergiesM = (FIXP_DBL(*)[MAX_FREQ_COEFFS])_EnergiesM;

    /*
      Get Lowband-energy over a range of 2 frames (Look half a frame back and
      ahead).
    */
    newLowbandEnergy = addLowbandEnergies(
        Energies, scaleEnergies, YBufferWriteOffset, YBufferSzShift,
        h_sbrTransientDetector->tran_off, freqBandTable, no_cols);

    newHighbandEnergy =
        addHighbandEnergies(Energies, scaleEnergies, YBufferWriteOffset,
                            EnergiesM, freqBandTable, nSfb, sbrSlots, timeStep);

    {
      /* prevLowBandEnergy: Corresponds to 1 frame, starting with half a frame
         look-behind newLowbandEnergy:  Corresponds to 1 frame, starting in the
         middle of the current frame */
      EnergyTotal = (newLowbandEnergy >> 1) +
                    (h_sbrTransientDetector->prevLowBandEnergy >>
                     1); /* mean of new and prev LB NRG */
      EnergyTotal =
          fAddSaturate(EnergyTotal, newHighbandEnergy); /* Add HB NRG */
      /* The below border should specify the same position as the middle border
         of a FIXFIX-frame with 2 envelopes. */
      border = (sbrSlots + 1) >> 1;

      if ((INT)EnergyTotal & 0xffffffe0 &&
          (scaleEnergies[0] < 32 || scaleEnergies[1] < 32)) /* i.e. > 31 */ {
        delta = spectralChange(EnergiesM, scaleEnergies, EnergyTotal, nSfb, 0,
                               border, YBufferWriteOffset, sbrSlots, &delta_e);
      } else {
        delta = FL2FXCONST_DBL(0.0f);
        delta_e = 0;

        /* set tonality to 0 when energy is very low, since the amplitude
           resolution should then be low as well                          */
        *tonality = FL2FXCONST_DBL(0.0f);
      }

      if (fIsLessThan(h_sbrTransientDetector->split_thr_m,
                      h_sbrTransientDetector->split_thr_e, delta, delta_e)) {
        tran_vector[0] = 1; /* Set flag for splitting */
      } else {
        tran_vector[0] = 0;
      }
    }

    /* Update prevLowBandEnergy */
    h_sbrTransientDetector->prevLowBandEnergy = newLowbandEnergy;
    h_sbrTransientDetector->prevHighBandEnergy = newHighbandEnergy;
    C_ALLOC_SCRATCH_END(_EnergiesM, FIXP_DBL,
                        NUMBER_TIME_SLOTS_2304 * MAX_FREQ_COEFFS)
  }
}

/*
 * Calculate transient energy threshold for each QMF band
 */
static void calculateThresholds(FIXP_DBL **RESTRICT Energies,
                                INT *RESTRICT scaleEnergies,
                                FIXP_DBL *RESTRICT thresholds,
                                int YBufferWriteOffset, int YBufferSzShift,
                                int noCols, int noRows, int tran_off) {
  FIXP_DBL mean_val, std_val, temp;
  FIXP_DBL i_noCols;
  FIXP_DBL i_noCols1;
  FIXP_DBL accu, accu0, accu1;
  int scaleFactor0, scaleFactor1, commonScale;
  int i, j;

  i_noCols = GetInvInt(noCols + tran_off) << YBufferSzShift;
  i_noCols1 = GetInvInt(noCols + tran_off - 1) << YBufferSzShift;

  /* calc minimum scale of energies of previous and current frame */
  commonScale = fixMin(scaleEnergies[0], scaleEnergies[1]);

  /* calc scalefactors to adapt energies to common scale */
  scaleFactor0 = fixMin((scaleEnergies[0] - commonScale), (DFRACT_BITS - 1));
  scaleFactor1 = fixMin((scaleEnergies[1] - commonScale), (DFRACT_BITS - 1));

  FDK_ASSERT((scaleFactor0 >= 0) && (scaleFactor1 >= 0));

  /* calculate standard deviation in every subband */
  for (i = 0; i < noRows; i++) {
    int startEnergy = (tran_off >> YBufferSzShift);
    int endEnergy = ((noCols >> YBufferSzShift) + tran_off);
    int shift;

    /* calculate mean value over decimated energy values (downsampled by 2). */
    accu0 = accu1 = FL2FXCONST_DBL(0.0f);

    for (j = startEnergy; j < YBufferWriteOffset; j++)
      accu0 = fMultAddDiv2(accu0, Energies[j][i], i_noCols);
    for (; j < endEnergy; j++)
      accu1 = fMultAddDiv2(accu1, Energies[j][i], i_noCols);

    mean_val = ((accu0 << 1) >> scaleFactor0) +
               ((accu1 << 1) >> scaleFactor1); /* average */
    shift = fixMax(
        0, CountLeadingBits(mean_val) -
               6); /* -6 to keep room for accumulating upto N = 24 values */

    /* calculate standard deviation */
    accu = FL2FXCONST_DBL(0.0f);

    /* summe { ((mean_val-nrg)^2) * i_noCols1 } */
    for (j = startEnergy; j < YBufferWriteOffset; j++) {
      temp = ((FIXP_DBL)mean_val - ((FIXP_DBL)Energies[j][i] >> scaleFactor0))
             << shift;
      temp = fPow2Div2(temp);
      accu = fMultAddDiv2(accu, temp, i_noCols1);
    }
    for (; j < endEnergy; j++) {
      temp = ((FIXP_DBL)mean_val - ((FIXP_DBL)Energies[j][i] >> scaleFactor1))
             << shift;
      temp = fPow2Div2(temp);
      accu = fMultAddDiv2(accu, temp, i_noCols1);
    }
    accu <<= 2;
    std_val = sqrtFixp(accu) >> shift; /* standard deviation */

    /*
    Take new threshold as average of calculated standard deviation ratio
    and old threshold if greater than absolute threshold
    */
    temp = (commonScale <= (DFRACT_BITS - 1))
               ? fMult(FL2FXCONST_DBL(0.66f), thresholds[i]) +
                     (fMult(FL2FXCONST_DBL(0.34f), std_val) >> commonScale)
               : (FIXP_DBL)0;

    thresholds[i] = fixMax(ABS_THRES, temp);

    FDK_ASSERT(commonScale >= 0);
  }
}

/*
 * Calculate transient levels for each QMF time slot.
 */
static void extractTransientCandidates(
    FIXP_DBL **RESTRICT Energies, INT *RESTRICT scaleEnergies,
    FIXP_DBL *RESTRICT thresholds, FIXP_DBL *RESTRICT transients,
    int YBufferWriteOffset, int YBufferSzShift, int noCols, int start_band,
    int stop_band, int tran_off, int addPrevSamples) {
  FIXP_DBL i_thres;
  C_ALLOC_SCRATCH_START(EnergiesTemp, FIXP_DBL, 2 * 32)
  int tmpScaleEnergies0, tmpScaleEnergies1;
  int endCond;
  int startEnerg, endEnerg;
  int i, j, jIndex, jpBM;

  tmpScaleEnergies0 = scaleEnergies[0];
  tmpScaleEnergies1 = scaleEnergies[1];

  /* Scale value for first energies, upto YBufferWriteOffset */
  tmpScaleEnergies0 = fixMin(tmpScaleEnergies0, MAX_SHIFT_DBL);
  /* Scale value for first energies, from YBufferWriteOffset upwards */
  tmpScaleEnergies1 = fixMin(tmpScaleEnergies1, MAX_SHIFT_DBL);

  FDK_ASSERT((tmpScaleEnergies0 >= 0) && (tmpScaleEnergies1 >= 0));

  /* Keep addPrevSamples extra previous transient candidates. */
  FDKmemmove(transients, transients + noCols - addPrevSamples,
             (tran_off + addPrevSamples) * sizeof(FIXP_DBL));
  FDKmemclear(transients + tran_off + addPrevSamples,
              noCols * sizeof(FIXP_DBL));

  endCond = noCols; /* Amount of new transient values to be calculated. */
  startEnerg = (tran_off - 3) >> YBufferSzShift; /* >>YBufferSzShift because of
                                                    amount of energy values. -3
                                                    because of neighbors being
                                                    watched. */
  endEnerg =
      ((noCols + (YBufferWriteOffset << YBufferSzShift)) - 1) >>
      YBufferSzShift; /* YBufferSzShift shifts because of half energy values. */

  /* Compute differential values with two different weightings in every subband
   */
  for (i = start_band; i < stop_band; i++) {
    FIXP_DBL thres = thresholds[i];

    if ((LONG)thresholds[i] >= 256)
      i_thres = (LONG)((LONG)MAXVAL_DBL / ((((LONG)thresholds[i])) + 1))
                << (32 - 24);
    else
      i_thres = (LONG)MAXVAL_DBL;

    /* Copy one timeslot and de-scale and de-squish */
    if (YBufferSzShift == 1) {
      for (j = startEnerg; j < YBufferWriteOffset; j++) {
        FIXP_DBL tmp = Energies[j][i];
        EnergiesTemp[(j << 1) + 1] = EnergiesTemp[j << 1] =
            tmp >> tmpScaleEnergies0;
      }
      for (; j <= endEnerg; j++) {
        FIXP_DBL tmp = Energies[j][i];
        EnergiesTemp[(j << 1) + 1] = EnergiesTemp[j << 1] =
            tmp >> tmpScaleEnergies1;
      }
    } else {
      for (j = startEnerg; j < YBufferWriteOffset; j++) {
        FIXP_DBL tmp = Energies[j][i];
        EnergiesTemp[j] = tmp >> tmpScaleEnergies0;
      }
      for (; j <= endEnerg; j++) {
        FIXP_DBL tmp = Energies[j][i];
        EnergiesTemp[j] = tmp >> tmpScaleEnergies1;
      }
    }

    /* Detect peaks in energy values. */

    jIndex = tran_off;
    jpBM = jIndex + addPrevSamples;

    for (j = endCond; j--; jIndex++, jpBM++) {
      FIXP_DBL delta, tran;
      int d;

      delta = (FIXP_DBL)0;
      tran = (FIXP_DBL)0;

      for (d = 1; d < 4; d++) {
        delta += EnergiesTemp[jIndex + d]; /* R */
        delta -= EnergiesTemp[jIndex - d]; /* L */
        delta -= thres;

        if (delta > (FIXP_DBL)0) {
          tran = fMultAddDiv2(tran, i_thres, delta);
        }
      }
      transients[jpBM] += (tran << 1);
    }
  }
  C_ALLOC_SCRATCH_END(EnergiesTemp, FIXP_DBL, 2 * 32)
}

void FDKsbrEnc_transientDetect(HANDLE_SBR_TRANSIENT_DETECTOR h_sbrTran,
                               FIXP_DBL **Energies, INT *scaleEnergies,
                               UCHAR *transient_info, int YBufferWriteOffset,
                               int YBufferSzShift, int timeStep,
                               int frameMiddleBorder) {
  int no_cols = h_sbrTran->no_cols;
  int qmfStartSample;
  int addPrevSamples;
  int timeStepShift = 0;
  int i, cond;

  /* Where to start looking for transients in the transient candidate buffer */
  qmfStartSample = timeStep * frameMiddleBorder;
  /* We need to look one value backwards in the transients, so we might need one
   * more previous value. */
  addPrevSamples = (qmfStartSample > 0) ? 0 : 1;

  switch (timeStep) {
    case 1:
      timeStepShift = 0;
      break;
    case 2:
      timeStepShift = 1;
      break;
    case 4:
      timeStepShift = 2;
      break;
  }

  calculateThresholds(Energies, scaleEnergies, h_sbrTran->thresholds,
                      YBufferWriteOffset, YBufferSzShift, h_sbrTran->no_cols,
                      h_sbrTran->no_rows, h_sbrTran->tran_off);

  extractTransientCandidates(
      Energies, scaleEnergies, h_sbrTran->thresholds, h_sbrTran->transients,
      YBufferWriteOffset, YBufferSzShift, h_sbrTran->no_cols, 0,
      h_sbrTran->no_rows, h_sbrTran->tran_off, addPrevSamples);

  transient_info[0] = 0;
  transient_info[1] = 0;
  transient_info[2] = 0;

  /* Offset by the amount of additional previous transient candidates being
   * kept. */
  qmfStartSample += addPrevSamples;

  /* Check for transients in second granule (pick the last value of subsequent
   * values)  */
  for (i = qmfStartSample; i < qmfStartSample + no_cols; i++) {
    cond = (h_sbrTran->transients[i] <
            fMult(FL2FXCONST_DBL(0.9f), h_sbrTran->transients[i - 1])) &&
           (h_sbrTran->transients[i - 1] > h_sbrTran->tran_thr);

    if (cond) {
      transient_info[0] = (i - qmfStartSample) >> timeStepShift;
      transient_info[1] = 1;
      break;
    }
  }

  if (h_sbrTran->frameShift != 0) {
    /* transient prediction for LDSBR */
    /* Check for transients in first <frameShift> qmf-slots of second frame */
    for (i = qmfStartSample + no_cols;
         i < qmfStartSample + no_cols + h_sbrTran->frameShift; i++) {
      cond = (h_sbrTran->transients[i] <
              fMult(FL2FXCONST_DBL(0.9f), h_sbrTran->transients[i - 1])) &&
             (h_sbrTran->transients[i - 1] > h_sbrTran->tran_thr);

      if (cond) {
        int pos = (int)((i - qmfStartSample - no_cols) >> timeStepShift);
        if ((pos < 3) && (transient_info[1] == 0)) {
          transient_info[2] = 1;
        }
        break;
      }
    }
  }
}

int FDKsbrEnc_InitSbrTransientDetector(
    HANDLE_SBR_TRANSIENT_DETECTOR h_sbrTransientDetector,
    UINT sbrSyntaxFlags, /* SBR syntax flags derived from AOT. */
    INT frameSize, INT sampleFreq, sbrConfigurationPtr params, int tran_fc,
    int no_cols, int no_rows, int YBufferWriteOffset, int YBufferSzShift,
    int frameShift, int tran_off) {
  INT totalBitrate =
      params->codecSettings.standardBitrate * params->codecSettings.nChannels;
  INT codecBitrate = params->codecSettings.bitRate;
  FIXP_DBL bitrateFactor_m, framedur_fix;
  INT bitrateFactor_e, tmp_e;

  FDKmemclear(h_sbrTransientDetector, sizeof(SBR_TRANSIENT_DETECTOR));

  h_sbrTransientDetector->frameShift = frameShift;
  h_sbrTransientDetector->tran_off = tran_off;

  if (codecBitrate) {
    bitrateFactor_m = fDivNorm((FIXP_DBL)totalBitrate,
                               (FIXP_DBL)(codecBitrate << 2), &bitrateFactor_e);
    bitrateFactor_e += 2;
  } else {
    bitrateFactor_m = FL2FXCONST_DBL(1.0 / 4.0);
    bitrateFactor_e = 2;
  }

  framedur_fix = fDivNorm(frameSize, sampleFreq);

  /* The longer the frames, the more often should the FIXFIX-
  case transmit 2 envelopes instead of 1.
  Frame durations below 10 ms produce the highest threshold
  so that practically always only 1 env is transmitted. */
  FIXP_DBL tmp = framedur_fix - FL2FXCONST_DBL(0.010);

  tmp = fixMax(tmp, FL2FXCONST_DBL(0.0001));
  tmp = fDivNorm(FL2FXCONST_DBL(0.000075), fPow2(tmp), &tmp_e);

  bitrateFactor_e = (tmp_e + bitrateFactor_e);

  if (sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
    bitrateFactor_e--; /* divide by 2 */
  }

  FDK_ASSERT(no_cols <= 32);
  FDK_ASSERT(no_rows <= 64);

  h_sbrTransientDetector->no_cols = no_cols;
  h_sbrTransientDetector->tran_thr =
      (FIXP_DBL)((params->tran_thr << (32 - 24 - 1)) / no_rows);
  h_sbrTransientDetector->tran_fc = tran_fc;
  h_sbrTransientDetector->split_thr_m = fMult(tmp, bitrateFactor_m);
  h_sbrTransientDetector->split_thr_e = bitrateFactor_e;
  h_sbrTransientDetector->no_rows = no_rows;
  h_sbrTransientDetector->mode = params->tran_det_mode;
  h_sbrTransientDetector->prevLowBandEnergy = FL2FXCONST_DBL(0.0f);

  return (0);
}

#define ENERGY_SCALING_SIZE 32

INT FDKsbrEnc_InitSbrFastTransientDetector(
    HANDLE_FAST_TRAN_DET h_sbrFastTransientDetector,
    const INT time_slots_per_frame, const INT bandwidth_qmf_slot,
    const INT no_qmf_channels, const INT sbr_qmf_1st_band) {
  int i;
  int buff_size;
  FIXP_DBL myExp;
  FIXP_DBL myExpSlot;

  h_sbrFastTransientDetector->lookahead = TRAN_DET_LOOKAHEAD;
  h_sbrFastTransientDetector->nTimeSlots = time_slots_per_frame;

  buff_size = h_sbrFastTransientDetector->nTimeSlots +
              h_sbrFastTransientDetector->lookahead;

  for (i = 0; i < buff_size; i++) {
    h_sbrFastTransientDetector->delta_energy[i] = FL2FXCONST_DBL(0.0f);
    h_sbrFastTransientDetector->energy_timeSlots[i] = FL2FXCONST_DBL(0.0f);
    h_sbrFastTransientDetector->lowpass_energy[i] = FL2FXCONST_DBL(0.0f);
    h_sbrFastTransientDetector->transientCandidates[i] = 0;
  }

  FDK_ASSERT(bandwidth_qmf_slot > 0.f);
  h_sbrFastTransientDetector->stopBand =
      fMin(TRAN_DET_STOP_FREQ / bandwidth_qmf_slot, no_qmf_channels);
  h_sbrFastTransientDetector->startBand =
      fMin(sbr_qmf_1st_band,
           h_sbrFastTransientDetector->stopBand - TRAN_DET_MIN_QMFBANDS);

  FDK_ASSERT(h_sbrFastTransientDetector->startBand < no_qmf_channels);
  FDK_ASSERT(h_sbrFastTransientDetector->startBand <
             h_sbrFastTransientDetector->stopBand);
  FDK_ASSERT(h_sbrFastTransientDetector->startBand > 1);
  FDK_ASSERT(h_sbrFastTransientDetector->stopBand > 1);

  /* the energy weighting and adding up has a headroom of 6 Bits,
     so up to 64 bands can be added without potential overflow. */
  FDK_ASSERT(h_sbrFastTransientDetector->stopBand -
                 h_sbrFastTransientDetector->startBand <=
             64);

/* QMF_HP_dB_SLOPE_FIX says that we want a 20 dB per 16 kHz HP filter.
   The following lines map this to the QMF bandwidth. */
#define EXP_E 7 /* 64 (=64) multiplications max, max. allowed sum is 0.5 */
  myExp = fMultNorm(QMF_HP_dBd_SLOPE_FIX, 0, (FIXP_DBL)bandwidth_qmf_slot,
                    DFRACT_BITS - 1, EXP_E);
  myExpSlot = myExp;

  for (i = 0; i < 64; i++) {
    /* Calculate dBf over all qmf bands:
       dBf = (10^(0.002266f/10*bw(slot)))^(band) =
           = 2^(log2(10)*0.002266f/10*bw(slot)*band) =
           = 2^(0.00075275f*bw(slot)*band)                                   */

    FIXP_DBL dBf_m; /* dBf mantissa        */
    INT dBf_e;      /* dBf exponent        */
    INT tmp;

    INT dBf_int;        /* dBf integer part    */
    FIXP_DBL dBf_fract; /* dBf fractional part */

    /* myExp*(i+1) = myExp_int - myExp_fract
       myExp*(i+1) is split up here for better accuracy of CalcInvLdData(),
       for its result can be split up into an integer and a fractional part */

    /* Round up to next integer */
    FIXP_DBL myExp_int =
        (myExpSlot & (FIXP_DBL)0xfe000000) + (FIXP_DBL)0x02000000;

    /* This is the fractional part that needs to be substracted */
    FIXP_DBL myExp_fract = myExp_int - myExpSlot;

    /* Calc integer part */
    dBf_int = CalcInvLdData(myExp_int);
    /* The result needs to be re-scaled. The ld(myExp_int) had been scaled by
       EXP_E, the CalcInvLdData expects the operand to be scaled by
       LD_DATA_SHIFT. Therefore, the correctly scaled result is
       dBf_int^(2^(EXP_E-LD_DATA_SHIFT)), which is dBf_int^2 */

    if (dBf_int <=
        46340) { /* compare with maximum allowed value for signed integer
                    multiplication, 46340 =
                    (INT)floor(sqrt((double)(((UINT)1<<(DFRACT_BITS-1))-1))) */
      dBf_int *= dBf_int;

      /* Calc fractional part */
      dBf_fract = CalcInvLdData(-myExp_fract);
      /* The result needs to be re-scaled. The ld(myExp_fract) had been scaled
         by EXP_E, the CalcInvLdData expects the operand to be scaled by
         LD_DATA_SHIFT. Therefore, the correctly scaled result is
         dBf_fract^(2^(EXP_E-LD_DATA_SHIFT)), which is dBf_fract^2 */
      dBf_fract = fMultNorm(dBf_fract, dBf_fract, &tmp);

      /* Get worst case scaling of multiplication result */
      dBf_e = (DFRACT_BITS - 1 - tmp) - CountLeadingBits(dBf_int);

      /* Now multiply integer with fractional part of the result, thus resulting
         in the overall accurate fractional result */
      dBf_m = fMultNorm(dBf_int, DFRACT_BITS - 1, dBf_fract, tmp, dBf_e);

      myExpSlot += myExp;
    } else {
      dBf_m = (FIXP_DBL)0;
      dBf_e = 0;
    }

    /* Keep the results */
    h_sbrFastTransientDetector->dBf_m[i] = dBf_m;
    h_sbrFastTransientDetector->dBf_e[i] = dBf_e;
  }

  /* Make sure that dBf is greater than 1.0 (because it should be a highpass) */
  /* ... */

  return 0;
}

void FDKsbrEnc_fastTransientDetect(
    const HANDLE_FAST_TRAN_DET h_sbrFastTransientDetector,
    const FIXP_DBL *const *Energies, const int *const scaleEnergies,
    const INT YBufferWriteOffset, UCHAR *const tran_vector) {
  int timeSlot, band;

  FIXP_DBL max_delta_energy; /* helper to store maximum energy ratio          */
  int max_delta_energy_scale; /* helper to store scale of maximum energy ratio
                               */
  int ind_max = 0; /* helper to store index of maximum energy ratio */
  int isTransientInFrame = 0;

  const int nTimeSlots = h_sbrFastTransientDetector->nTimeSlots;
  const int lookahead = h_sbrFastTransientDetector->lookahead;
  const int startBand = h_sbrFastTransientDetector->startBand;
  const int stopBand = h_sbrFastTransientDetector->stopBand;

  int *transientCandidates = h_sbrFastTransientDetector->transientCandidates;

  FIXP_DBL *energy_timeSlots = h_sbrFastTransientDetector->energy_timeSlots;
  int *energy_timeSlots_scale =
      h_sbrFastTransientDetector->energy_timeSlots_scale;

  FIXP_DBL *delta_energy = h_sbrFastTransientDetector->delta_energy;
  int *delta_energy_scale = h_sbrFastTransientDetector->delta_energy_scale;

  const FIXP_DBL thr = TRAN_DET_THRSHLD;
  const INT thr_scale = TRAN_DET_THRSHLD_SCALE;

  /*reset transient info*/
  tran_vector[2] = 0;

  /* reset transient candidates */
  FDKmemclear(transientCandidates + lookahead, nTimeSlots * sizeof(int));

  for (timeSlot = lookahead; timeSlot < nTimeSlots + lookahead; timeSlot++) {
    int i, norm;
    FIXP_DBL tmpE = FL2FXCONST_DBL(0.0f);
    int headroomEnSlot = DFRACT_BITS - 1;

    FIXP_DBL smallNRG = FL2FXCONST_DBL(1e-2f);
    FIXP_DBL denominator;
    INT denominator_scale;

    /* determine minimum headroom of energy values for this timeslot */
    for (band = startBand; band < stopBand; band++) {
      int tmp_headroom = fNormz(Energies[timeSlot][band]) - 1;
      if (tmp_headroom < headroomEnSlot) {
        headroomEnSlot = tmp_headroom;
      }
    }

    for (i = 0, band = startBand; band < stopBand; band++, i++) {
      /* energy is weighted by weightingfactor stored in dBf_m array */
      /* dBf_m index runs from 0 to stopBand-startband               */
      /* energy shifted by calculated headroom for maximum precision */
      FIXP_DBL weightedEnergy =
          fMult(Energies[timeSlot][band] << headroomEnSlot,
                h_sbrFastTransientDetector->dBf_m[i]);

      /* energy is added up                                                */
      /* shift by 6 to have a headroom for maximum 64 additions            */
      /* shift by dBf_e to handle weighting factor dependent scale factors */
      tmpE +=
          weightedEnergy >> (6 + (10 - h_sbrFastTransientDetector->dBf_e[i]));
    }

    /* store calculated energy for timeslot */
    energy_timeSlots[timeSlot] = tmpE;

    /* calculate overall scale factor for energy of this timeslot */
    /* =   original scale factor of energies
     * (-scaleEnergies[0]+2*QMF_SCALE_OFFSET or
     * -scaleEnergies[1]+2*QMF_SCALE_OFFSET    */
    /*     depending on YBufferWriteOffset) */
    /*   + weighting factor scale            (10) */
    /*   + adding up scale factor            ( 6) */
    /*   - headroom of energy value          (headroomEnSlot) */
    if (timeSlot < YBufferWriteOffset) {
      energy_timeSlots_scale[timeSlot] =
          (-scaleEnergies[0] + 2 * QMF_SCALE_OFFSET) + (10 + 6) -
          headroomEnSlot;
    } else {
      energy_timeSlots_scale[timeSlot] =
          (-scaleEnergies[1] + 2 * QMF_SCALE_OFFSET) + (10 + 6) -
          headroomEnSlot;
    }

    /* Add a small energy to the denominator, thus making the transient
       detection energy-dependent. Loud transients are being detected,
       silent ones not. */

    /* make sure that smallNRG does not overflow */
    if (-energy_timeSlots_scale[timeSlot - 1] + 1 > 5) {
      denominator = smallNRG;
      denominator_scale = 0;
    } else {
      /* Leave an additional headroom of 1 bit for this addition. */
      smallNRG =
          scaleValue(smallNRG, -(energy_timeSlots_scale[timeSlot - 1] + 1));
      denominator = (energy_timeSlots[timeSlot - 1] >> 1) + smallNRG;
      denominator_scale = energy_timeSlots_scale[timeSlot - 1] + 1;
    }

    delta_energy[timeSlot] =
        fDivNorm(energy_timeSlots[timeSlot], denominator, &norm);
    delta_energy_scale[timeSlot] =
        energy_timeSlots_scale[timeSlot] - denominator_scale + norm;
  }

  /*get transient candidates*/
  /* For every timeslot, check if delta(E) exceeds the threshold. If it did,
     it could potentially be marked as a transient candidate. However, the 2
     slots before the current one must not be transients with an energy higher
     than 1.4*E(current). If both aren't transients or if the energy of the
     current timesolot is more than 1.4 times higher than the energy in the
     last or the one before the last slot, it is marked as a transient.*/

  FDK_ASSERT(lookahead >= 2);
  for (timeSlot = lookahead; timeSlot < nTimeSlots + lookahead; timeSlot++) {
    FIXP_DBL energy_cur_slot_weighted =
        fMult(energy_timeSlots[timeSlot], FL2FXCONST_DBL(1.0f / 1.4f));
    if (!fIsLessThan(delta_energy[timeSlot], delta_energy_scale[timeSlot], thr,
                     thr_scale) &&
        (((transientCandidates[timeSlot - 2] == 0) &&
          (transientCandidates[timeSlot - 1] == 0)) ||
         !fIsLessThan(energy_cur_slot_weighted,
                      energy_timeSlots_scale[timeSlot],
                      energy_timeSlots[timeSlot - 1],
                      energy_timeSlots_scale[timeSlot - 1]) ||
         !fIsLessThan(energy_cur_slot_weighted,
                      energy_timeSlots_scale[timeSlot],
                      energy_timeSlots[timeSlot - 2],
                      energy_timeSlots_scale[timeSlot - 2]))) {
      /* in case of strong transients, subsequent
       * qmf slots might be recognized as transients. */
      transientCandidates[timeSlot] = 1;
    }
  }

  /*get transient with max energy*/
  max_delta_energy = FL2FXCONST_DBL(0.0f);
  max_delta_energy_scale = 0;
  ind_max = 0;
  isTransientInFrame = 0;
  for (timeSlot = 0; timeSlot < nTimeSlots; timeSlot++) {
    int scale = fMax(delta_energy_scale[timeSlot], max_delta_energy_scale);
    if (transientCandidates[timeSlot] &&
        ((delta_energy[timeSlot] >> (scale - delta_energy_scale[timeSlot])) >
         (max_delta_energy >> (scale - max_delta_energy_scale)))) {
      max_delta_energy = delta_energy[timeSlot];
      max_delta_energy_scale = scale;
      ind_max = timeSlot;
      isTransientInFrame = 1;
    }
  }

  /*from all transient candidates take the one with the biggest energy*/
  if (isTransientInFrame) {
    tran_vector[0] = ind_max;
    tran_vector[1] = 1;
  } else {
    /*reset transient info*/
    tran_vector[0] = tran_vector[1] = 0;
  }

  /*check for transients in lookahead*/
  for (timeSlot = nTimeSlots; timeSlot < nTimeSlots + lookahead; timeSlot++) {
    if (transientCandidates[timeSlot]) {
      tran_vector[2] = 1;
    }
  }

  /*update buffers*/
  for (timeSlot = 0; timeSlot < lookahead; timeSlot++) {
    transientCandidates[timeSlot] = transientCandidates[nTimeSlots + timeSlot];

    /* fixpoint stuff */
    energy_timeSlots[timeSlot] = energy_timeSlots[nTimeSlots + timeSlot];
    energy_timeSlots_scale[timeSlot] =
        energy_timeSlots_scale[nTimeSlots + timeSlot];

    delta_energy[timeSlot] = delta_energy[nTimeSlots + timeSlot];
    delta_energy_scale[timeSlot] = delta_energy_scale[nTimeSlots + timeSlot];
  }
}