aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRenc/src/ton_corr.cpp
blob: 1c050e2aeb216577ac56fd5a1fe43aeb84da2f09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** SBR encoder library ******************************

   Author(s):

   Description:

*******************************************************************************/

#include "ton_corr.h"

#include "sbrenc_ram.h"
#include "sbr_misc.h"
#include "genericStds.h"
#include "autocorr2nd.h"

#define BAND_V_SIZE 32
#define NUM_V_COMBINE \
  8 /* Must be a divisor of 64 and fulfill the ASSERTs below */

/**************************************************************************/
/*!
  \brief Calculates the tonal to noise ration for different frequency bands
   and time segments.

   The ratio between the predicted energy (tonal energy A) and the total
   energy (A + B) is calculated. This is converted to the ratio between
   the predicted energy (tonal energy A) and the non-predictable energy
   (noise energy B). Hence the quota-matrix contains A/B = q/(1-q).

   The samples in nrgVector are scaled by 1.0/16.0
   The samples in pNrgVectorFreq  are scaled by 1.0/2.0
   The samples in quotaMatrix are scaled by RELAXATION

  \return none.

*/
/**************************************************************************/

void FDKsbrEnc_CalculateTonalityQuotas(
    HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
    FIXP_DBL **RESTRICT
        sourceBufferReal, /*!< The real part of the QMF-matrix.  */
    FIXP_DBL **RESTRICT
        sourceBufferImag, /*!< The imaginary part of the QMF-matrix. */
    INT usb,     /*!< upper side band, highest + 1 QMF band in the SBR range. */
    INT qmfScale /*!< sclefactor of QMF subsamples */
) {
  INT i, k, r, r2, timeIndex, autoCorrScaling;

  INT startIndexMatrix = hTonCorr->startIndexMatrix;
  INT totNoEst = hTonCorr->numberOfEstimates;
  INT noEstPerFrame = hTonCorr->numberOfEstimatesPerFrame;
  INT move = hTonCorr->move;
  INT noQmfChannels = hTonCorr->noQmfChannels; /* Number of Bands */
  INT buffLen = hTonCorr->bufferLength;        /* Number of Slots */
  INT stepSize = hTonCorr->stepSize;
  INT *pBlockLength = hTonCorr->lpcLength;
  INT **RESTRICT signMatrix = hTonCorr->signMatrix;
  FIXP_DBL *RESTRICT nrgVector = hTonCorr->nrgVector;
  FIXP_DBL **RESTRICT quotaMatrix = hTonCorr->quotaMatrix;
  FIXP_DBL *RESTRICT pNrgVectorFreq = hTonCorr->nrgVectorFreq;

  FIXP_DBL *realBuf;
  FIXP_DBL *imagBuf;

  FIXP_DBL alphar[2], alphai[2], fac;

  C_ALLOC_SCRATCH_START(ac, ACORR_COEFS, 1)
  C_ALLOC_SCRATCH_START(realBufRef, FIXP_DBL, 2 * BAND_V_SIZE * NUM_V_COMBINE)
  realBuf = realBufRef;
  imagBuf = realBuf + BAND_V_SIZE * NUM_V_COMBINE;

  FDK_ASSERT(buffLen <= BAND_V_SIZE);
  FDK_ASSERT(sizeof(FIXP_DBL) * NUM_V_COMBINE * BAND_V_SIZE * 2 <
             (1024 * sizeof(FIXP_DBL) - sizeof(ACORR_COEFS)));

  /*
   * Buffering of the quotaMatrix and the quotaMatrixTransp.
   *********************************************************/
  for (i = 0; i < move; i++) {
    FDKmemcpy(quotaMatrix[i], quotaMatrix[i + noEstPerFrame],
              noQmfChannels * sizeof(FIXP_DBL));
    FDKmemcpy(signMatrix[i], signMatrix[i + noEstPerFrame],
              noQmfChannels * sizeof(INT));
  }

  FDKmemmove(nrgVector, nrgVector + noEstPerFrame, move * sizeof(FIXP_DBL));
  FDKmemclear(nrgVector + startIndexMatrix,
              (totNoEst - startIndexMatrix) * sizeof(FIXP_DBL));
  FDKmemclear(pNrgVectorFreq, noQmfChannels * sizeof(FIXP_DBL));

  /*
   * Calculate the quotas for the current time steps.
   **************************************************/

  for (r = 0; r < usb; r++) {
    int blockLength;

    k = hTonCorr->nextSample; /* startSample */
    timeIndex = startIndexMatrix;
    /* Copy as many as possible Band across all Slots at once */
    if (realBuf != realBufRef) {
      realBuf -= BAND_V_SIZE;
      imagBuf -= BAND_V_SIZE;
    } else {
      realBuf += BAND_V_SIZE * (NUM_V_COMBINE - 1);
      imagBuf += BAND_V_SIZE * (NUM_V_COMBINE - 1);

      for (i = 0; i < buffLen; i++) {
        int v;
        FIXP_DBL *ptr;
        ptr = realBuf + i;
        for (v = 0; v < NUM_V_COMBINE; v++) {
          ptr[0] = sourceBufferReal[i][r + v];
          ptr[0 + BAND_V_SIZE * NUM_V_COMBINE] = sourceBufferImag[i][r + v];
          ptr -= BAND_V_SIZE;
        }
      }
    }

    blockLength = pBlockLength[0];

    while (k <= buffLen - blockLength) {
      autoCorrScaling = fixMin(
          getScalefactor(&realBuf[k - LPC_ORDER], LPC_ORDER + blockLength),
          getScalefactor(&imagBuf[k - LPC_ORDER], LPC_ORDER + blockLength));
      autoCorrScaling = fixMax(0, autoCorrScaling - 1);

      scaleValues(&realBuf[k - LPC_ORDER], LPC_ORDER + blockLength,
                  autoCorrScaling);
      scaleValues(&imagBuf[k - LPC_ORDER], LPC_ORDER + blockLength,
                  autoCorrScaling);

      autoCorrScaling <<= 1; /* consider qmf buffer scaling twice */
      autoCorrScaling +=
          autoCorr2nd_cplx(ac, realBuf + k, imagBuf + k, blockLength);

      if (ac->det == FL2FXCONST_DBL(0.0f)) {
        alphar[1] = alphai[1] = FL2FXCONST_DBL(0.0f);

        alphar[0] = (ac->r01r) >> 2;
        alphai[0] = (ac->r01i) >> 2;

        fac = fMultDiv2(ac->r00r, ac->r11r) >> 1;
      } else {
        alphar[1] = (fMultDiv2(ac->r01r, ac->r12r) >> 1) -
                    (fMultDiv2(ac->r01i, ac->r12i) >> 1) -
                    (fMultDiv2(ac->r02r, ac->r11r) >> 1);
        alphai[1] = (fMultDiv2(ac->r01i, ac->r12r) >> 1) +
                    (fMultDiv2(ac->r01r, ac->r12i) >> 1) -
                    (fMultDiv2(ac->r02i, ac->r11r) >> 1);

        alphar[0] = (fMultDiv2(ac->r01r, ac->det) >> (ac->det_scale + 1)) +
                    fMult(alphar[1], ac->r12r) + fMult(alphai[1], ac->r12i);
        alphai[0] = (fMultDiv2(ac->r01i, ac->det) >> (ac->det_scale + 1)) +
                    fMult(alphai[1], ac->r12r) - fMult(alphar[1], ac->r12i);

        fac = fMultDiv2(ac->r00r, fMult(ac->det, ac->r11r)) >>
              (ac->det_scale + 1);
      }

      if (fac == FL2FXCONST_DBL(0.0f)) {
        quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
        signMatrix[timeIndex][r] = 0;
      } else {
        /* quotaMatrix is scaled with the factor RELAXATION
           parse RELAXATION in fractional part and shift factor: 1/(1/0.524288 *
           2^RELAXATION_SHIFT) */
        FIXP_DBL tmp, num, denom;
        INT numShift, denomShift, commonShift;
        INT sign;

        num = fMultDiv2(alphar[0], ac->r01r) + fMultDiv2(alphai[0], ac->r01i) -
              fMultDiv2(alphar[1], fMult(ac->r02r, ac->r11r)) -
              fMultDiv2(alphai[1], fMult(ac->r02i, ac->r11r));
        num = fixp_abs(num);

        denom = (fac >> 1) +
                (fMultDiv2(fac, RELAXATION_FRACT) >> RELAXATION_SHIFT) - num;
        denom = fixp_abs(denom);

        num = fMult(num, RELAXATION_FRACT);

        numShift = CountLeadingBits(num) - 2;
        num = scaleValue(num, numShift);

        denomShift = CountLeadingBits(denom);
        denom = (FIXP_DBL)denom << denomShift;

        if ((num > FL2FXCONST_DBL(0.0f)) && (denom != FL2FXCONST_DBL(0.0f))) {
          commonShift =
              fixMin(numShift - denomShift + RELAXATION_SHIFT, DFRACT_BITS - 1);
          if (commonShift < 0) {
            commonShift = -commonShift;
            tmp = schur_div(num, denom, 16);
            commonShift = fixMin(commonShift, CountLeadingBits(tmp));
            quotaMatrix[timeIndex][r] = tmp << commonShift;
          } else {
            quotaMatrix[timeIndex][r] =
                schur_div(num, denom, 16) >> commonShift;
          }
        } else {
          quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
        }

        if (ac->r11r != FL2FXCONST_DBL(0.0f)) {
          if (((ac->r01r >= FL2FXCONST_DBL(0.0f)) &&
               (ac->r11r >= FL2FXCONST_DBL(0.0f))) ||
              ((ac->r01r < FL2FXCONST_DBL(0.0f)) &&
               (ac->r11r < FL2FXCONST_DBL(0.0f)))) {
            sign = 1;
          } else {
            sign = -1;
          }
        } else {
          sign = 1;
        }

        if (sign < 0) {
          r2 = r; /* (INT) pow(-1, band); */
        } else {
          r2 = r + 1; /* (INT) pow(-1, band+1); */
        }
        signMatrix[timeIndex][r] = 1 - 2 * (r2 & 0x1);
      }

      nrgVector[timeIndex] +=
          ((ac->r00r) >>
           fixMin(DFRACT_BITS - 1,
                  (2 * qmfScale + autoCorrScaling + SCALE_NRGVEC)));
      /* pNrgVectorFreq[r] finally has to be divided by noEstPerFrame, replaced
       * division by shifting with one */
      pNrgVectorFreq[r] =
          pNrgVectorFreq[r] +
          ((ac->r00r) >>
           fixMin(DFRACT_BITS - 1,
                  (2 * qmfScale + autoCorrScaling + SCALE_NRGVEC)));

      blockLength = pBlockLength[1];
      k += stepSize;
      timeIndex++;
    }
  }

  C_ALLOC_SCRATCH_END(realBufRef, FIXP_DBL, 2 * BAND_V_SIZE * NUM_V_COMBINE)
  C_ALLOC_SCRATCH_END(ac, ACORR_COEFS, 1)
}

/**************************************************************************/
/*!
  \brief Extracts the parameters required in the decoder to obtain the
  correct tonal to noise ratio after SBR.

  Estimates the tonal to noise ratio of the original signal (using LPC).
  Predicts the tonal to noise ration of the SBR signal (in the decoder) by
  patching the tonal to noise ratio values similar to the patching of the
  lowband in the decoder. Given the tonal to noise ratio of the original
  and the SBR signal, it estimates the required amount of inverse filtering,
  additional noise as well as any additional sines.

  \return none.

*/
/**************************************************************************/
void FDKsbrEnc_TonCorrParamExtr(
    HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
    INVF_MODE *infVec, /*!< Vector where the inverse filtering levels will be
                          stored. */
    FIXP_DBL *noiseLevels, /*!< Vector where the noise levels will be stored. */
    INT *missingHarmonicFlag, /*!< Flag set to one or zero, dependent on if any
                                 strong sines are missing.*/
    UCHAR *missingHarmonicsIndex, /*!< Vector indicating where sines are
                                     missing. */
    UCHAR *envelopeCompensation,  /*!< Vector to store compensation values for
                                     the energies in. */
    const SBR_FRAME_INFO *frameInfo, /*!< Frame info struct, contains the time
                                        and frequency grid of the current
                                        frame.*/
    UCHAR *transientInfo,            /*!< Transient info.*/
    UCHAR *freqBandTable,            /*!< Frequency band tables for high-res.*/
    INT nSfb,           /*!< Number of scalefactor bands for high-res. */
    XPOS_MODE xposType, /*!< Type of transposer used in the decoder.*/
    UINT sbrSyntaxFlags) {
  INT band;
  INT transientFlag = transientInfo[1]; /*!< Flag indicating if a transient is
                                           present in the current frame. */
  INT transientPos = transientInfo[0];  /*!< Position of the transient.*/
  INT transientFrame, transientFrameInvfEst;
  INVF_MODE *infVecPtr;

  /* Determine if this is a frame where a transient starts...

  The detection of noise-floor, missing harmonics and invf_est, is not in sync
  for the non-buf-opt decoder such as AAC. Hence we need to keep track on the
  transient in the present frame as well as in the next.
  */
  transientFrame = 0;
  if (hTonCorr->transientNextFrame) { /* The transient was detected in the
                                         previous frame, but is actually */
    transientFrame = 1;
    hTonCorr->transientNextFrame = 0;

    if (transientFlag) {
      if (transientPos + hTonCorr->transientPosOffset >=
          frameInfo->borders[frameInfo->nEnvelopes]) {
        hTonCorr->transientNextFrame = 1;
      }
    }
  } else {
    if (transientFlag) {
      if (transientPos + hTonCorr->transientPosOffset <
          frameInfo->borders[frameInfo->nEnvelopes]) {
        transientFrame = 1;
        hTonCorr->transientNextFrame = 0;
      } else {
        hTonCorr->transientNextFrame = 1;
      }
    }
  }
  transientFrameInvfEst = transientFrame;

  /*
    Estimate the required invese filtereing level.
  */
  if (hTonCorr->switchInverseFilt)
    FDKsbrEnc_qmfInverseFilteringDetector(
        &hTonCorr->sbrInvFilt, hTonCorr->quotaMatrix, hTonCorr->nrgVector,
        hTonCorr->indexVector, hTonCorr->frameStartIndexInvfEst,
        hTonCorr->numberOfEstimatesPerFrame + hTonCorr->frameStartIndexInvfEst,
        transientFrameInvfEst, infVec);

  /*
      Detect what tones will be missing.
   */
  if (xposType == XPOS_LC) {
    FDKsbrEnc_SbrMissingHarmonicsDetectorQmf(
        &hTonCorr->sbrMissingHarmonicsDetector, hTonCorr->quotaMatrix,
        hTonCorr->signMatrix, hTonCorr->indexVector, frameInfo, transientInfo,
        missingHarmonicFlag, missingHarmonicsIndex, freqBandTable, nSfb,
        envelopeCompensation, hTonCorr->nrgVectorFreq);
  } else {
    *missingHarmonicFlag = 0;
    FDKmemclear(missingHarmonicsIndex, nSfb * sizeof(UCHAR));
  }

  /*
    Noise floor estimation
  */

  infVecPtr = hTonCorr->sbrInvFilt.prevInvfMode;

  FDKsbrEnc_sbrNoiseFloorEstimateQmf(
      &hTonCorr->sbrNoiseFloorEstimate, frameInfo, noiseLevels,
      hTonCorr->quotaMatrix, hTonCorr->indexVector, *missingHarmonicFlag,
      hTonCorr->frameStartIndex, hTonCorr->numberOfEstimatesPerFrame,
      transientFrame, infVecPtr, sbrSyntaxFlags);

  /* Store the invfVec data for the next frame...*/
  for (band = 0; band < hTonCorr->sbrInvFilt.noDetectorBands; band++) {
    hTonCorr->sbrInvFilt.prevInvfMode[band] = infVec[band];
  }
}

/**************************************************************************/
/*!
  \brief     Searches for the closest match in the frequency master table.



  \return   closest entry.

*/
/**************************************************************************/
static INT findClosestEntry(INT goalSb, UCHAR *v_k_master, INT numMaster,
                            INT direction) {
  INT index;

  if (goalSb <= v_k_master[0]) return v_k_master[0];

  if (goalSb >= v_k_master[numMaster]) return v_k_master[numMaster];

  if (direction) {
    index = 0;
    while (v_k_master[index] < goalSb) {
      index++;
    }
  } else {
    index = numMaster;
    while (v_k_master[index] > goalSb) {
      index--;
    }
  }

  return v_k_master[index];
}

/**************************************************************************/
/*!
  \brief     resets the patch



  \return   errorCode, noError if successful.

*/
/**************************************************************************/
static INT resetPatch(
    HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
    INT xposctrl,                     /*!< Different patch modes. */
    INT highBandStartSb,              /*!< Start band of the SBR range. */
    UCHAR *v_k_master, /*!< Master frequency table from which all other table
                          are derived.*/
    INT numMaster,     /*!< Number of elements in the master table. */
    INT fs,            /*!< Sampling frequency. */
    INT noChannels)    /*!< Number of QMF-channels. */
{
  INT patch, k, i;
  INT targetStopBand;

  PATCH_PARAM *patchParam = hTonCorr->patchParam;

  INT sbGuard = hTonCorr->guard;
  INT sourceStartBand;
  INT patchDistance;
  INT numBandsInPatch;

  INT lsb =
      v_k_master[0]; /* Lowest subband related to the synthesis filterbank */
  INT usb = v_k_master[numMaster]; /* Stop subband related to the synthesis
                                      filterbank */
  INT xoverOffset =
      highBandStartSb -
      v_k_master[0]; /* Calculate distance in subbands between k0 and kx */

  INT goalSb;

  /*
   * Initialize the patching parameter
   */

  if (xposctrl == 1) {
    lsb += xoverOffset;
    xoverOffset = 0;
  }

  goalSb = (INT)((2 * noChannels * 16000 + (fs >> 1)) / fs); /* 16 kHz band */
  goalSb = findClosestEntry(goalSb, v_k_master, numMaster,
                            1); /* Adapt region to master-table */

  /* First patch */
  sourceStartBand = hTonCorr->shiftStartSb + xoverOffset;
  targetStopBand = lsb + xoverOffset;

  /* even (odd) numbered channel must be patched to even (odd) numbered channel
   */
  patch = 0;
  while (targetStopBand < usb) {
    /* To many patches */
    if (patch >= MAX_NUM_PATCHES) return (1); /*Number of patches to high */

    patchParam[patch].guardStartBand = targetStopBand;
    targetStopBand += sbGuard;
    patchParam[patch].targetStartBand = targetStopBand;

    numBandsInPatch =
        goalSb - targetStopBand; /* get the desired range of the patch */

    if (numBandsInPatch >= lsb - sourceStartBand) {
      /* desired number bands are not available -> patch whole source range */
      patchDistance =
          targetStopBand - sourceStartBand; /* get the targetOffset */
      patchDistance =
          patchDistance & ~1; /* rounding off odd numbers and make all even */
      numBandsInPatch = lsb - (targetStopBand - patchDistance);
      numBandsInPatch = findClosestEntry(targetStopBand + numBandsInPatch,
                                         v_k_master, numMaster, 0) -
                        targetStopBand; /* Adapt region to master-table */
    }

    /* desired number bands are available -> get the minimal even patching
     * distance */
    patchDistance =
        numBandsInPatch + targetStopBand - lsb; /* get minimal distance */
    patchDistance = (patchDistance + 1) &
                    ~1; /* rounding up odd numbers and make all even */

    if (numBandsInPatch <= 0) {
      patch--;
    } else {
      patchParam[patch].sourceStartBand = targetStopBand - patchDistance;
      patchParam[patch].targetBandOffs = patchDistance;
      patchParam[patch].numBandsInPatch = numBandsInPatch;
      patchParam[patch].sourceStopBand =
          patchParam[patch].sourceStartBand + numBandsInPatch;

      targetStopBand += patchParam[patch].numBandsInPatch;
    }

    /* All patches but first */
    sourceStartBand = hTonCorr->shiftStartSb;

    /* Check if we are close to goalSb */
    if (fixp_abs(targetStopBand - goalSb) < 3) {
      goalSb = usb;
    }

    patch++;
  }

  patch--;

  /* if highest patch contains less than three subband: skip it */
  if (patchParam[patch].numBandsInPatch < 3 && patch > 0) {
    patch--;
  }

  hTonCorr->noOfPatches = patch + 1;

  /* Assign the index-vector, so we know where to look for the high-band.
     -1 represents a guard-band. */
  for (k = 0; k < hTonCorr->patchParam[0].guardStartBand; k++)
    hTonCorr->indexVector[k] = k;

  for (i = 0; i < hTonCorr->noOfPatches; i++) {
    INT sourceStart = hTonCorr->patchParam[i].sourceStartBand;
    INT targetStart = hTonCorr->patchParam[i].targetStartBand;
    INT numberOfBands = hTonCorr->patchParam[i].numBandsInPatch;
    INT startGuardBand = hTonCorr->patchParam[i].guardStartBand;

    for (k = 0; k < (targetStart - startGuardBand); k++)
      hTonCorr->indexVector[startGuardBand + k] = -1;

    for (k = 0; k < numberOfBands; k++)
      hTonCorr->indexVector[targetStart + k] = sourceStart + k;
  }

  return (0);
}

/**************************************************************************/
/*!
  \brief     Creates an instance of the tonality correction parameter module.

  The module includes modules for inverse filtering level estimation,
  missing harmonics detection and noise floor level estimation.

  \return   errorCode, noError if successful.
*/
/**************************************************************************/
INT FDKsbrEnc_CreateTonCorrParamExtr(
    HANDLE_SBR_TON_CORR_EST
        hTonCorr, /*!< Pointer to handle to SBR_TON_CORR struct. */
    INT chan)     /*!< Channel index, needed for mem allocation */
{
  INT i;
  FIXP_DBL *quotaMatrix = GetRam_Sbr_quotaMatrix(chan);
  INT *signMatrix = GetRam_Sbr_signMatrix(chan);

  if ((NULL == quotaMatrix) || (NULL == signMatrix)) {
    goto bail;
  }

  FDKmemclear(hTonCorr, sizeof(SBR_TON_CORR_EST));

  for (i = 0; i < MAX_NO_OF_ESTIMATES; i++) {
    hTonCorr->quotaMatrix[i] = quotaMatrix + (i * 64);
    hTonCorr->signMatrix[i] = signMatrix + (i * 64);
  }

  if (0 != FDKsbrEnc_CreateSbrMissingHarmonicsDetector(
               &hTonCorr->sbrMissingHarmonicsDetector, chan)) {
    goto bail;
  }

  return 0;

bail:
  hTonCorr->quotaMatrix[0] = quotaMatrix;
  hTonCorr->signMatrix[0] = signMatrix;

  FDKsbrEnc_DeleteTonCorrParamExtr(hTonCorr);

  return -1;
}

/**************************************************************************/
/*!
  \brief     Initialize an instance of the tonality correction parameter module.

  The module includes modules for inverse filtering level estimation,
  missing harmonics detection and noise floor level estimation.

  \return   errorCode, noError if successful.
*/
/**************************************************************************/
INT FDKsbrEnc_InitTonCorrParamExtr(
    INT frameSize, /*!< Current SBR frame size. */
    HANDLE_SBR_TON_CORR_EST
        hTonCorr, /*!< Pointer to handle to SBR_TON_CORR struct. */
    HANDLE_SBR_CONFIG_DATA
        sbrCfg,           /*!< Pointer to SBR configuration parameters. */
    INT timeSlots,        /*!< Number of time-slots per frame */
    INT xposCtrl,         /*!< Different patch modes. */
    INT ana_max_level,    /*!< Maximum level of the adaptive noise. */
    INT noiseBands,       /*!< Number of noise bands per octave. */
    INT noiseFloorOffset, /*!< Noise floor offset. */
    UINT useSpeechConfig) /*!< Speech or music tuning. */
{
  INT nCols = sbrCfg->noQmfSlots;
  INT fs = sbrCfg->sampleFreq;
  INT noQmfChannels = sbrCfg->noQmfBands;

  INT highBandStartSb = sbrCfg->freqBandTable[LOW_RES][0];
  UCHAR *v_k_master = sbrCfg->v_k_master;
  INT numMaster = sbrCfg->num_Master;

  UCHAR **freqBandTable = sbrCfg->freqBandTable;
  INT *nSfb = sbrCfg->nSfb;

  INT i;

  /*
  Reset the patching and allocate memory for the quota matrix.
  Assuming parameters for the LPC analysis.
  */
  if (sbrCfg->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
    switch (timeSlots) {
      case NUMBER_TIME_SLOTS_1920:
        hTonCorr->lpcLength[0] = 8 - LPC_ORDER;
        hTonCorr->lpcLength[1] = 7 - LPC_ORDER;
        hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LD;
        hTonCorr->numberOfEstimatesPerFrame = 2; /* sbrCfg->noQmfSlots / 7 */
        hTonCorr->frameStartIndexInvfEst = 0;
        hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_512LD;
        break;
      case NUMBER_TIME_SLOTS_2048:
        hTonCorr->lpcLength[0] = 8 - LPC_ORDER;
        hTonCorr->lpcLength[1] = 8 - LPC_ORDER;
        hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LD;
        hTonCorr->numberOfEstimatesPerFrame = 2; /* sbrCfg->noQmfSlots / 8 */
        hTonCorr->frameStartIndexInvfEst = 0;
        hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_512LD;
        break;
    }
  } else
    switch (timeSlots) {
      case NUMBER_TIME_SLOTS_2048:
        hTonCorr->lpcLength[0] = 16 - LPC_ORDER; /* blockLength[0] */
        hTonCorr->lpcLength[1] = 16 - LPC_ORDER; /* blockLength[0] */
        hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LC;
        hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 16;
        hTonCorr->frameStartIndexInvfEst = 0;
        hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_2048;
        break;
      case NUMBER_TIME_SLOTS_1920:
        hTonCorr->lpcLength[0] = 15 - LPC_ORDER; /* blockLength[0] */
        hTonCorr->lpcLength[1] = 15 - LPC_ORDER; /* blockLength[0] */
        hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LC;
        hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 15;
        hTonCorr->frameStartIndexInvfEst = 0;
        hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_1920;
        break;
      default:
        return -1;
    }

  hTonCorr->bufferLength = nCols;
  hTonCorr->stepSize =
      hTonCorr->lpcLength[0] + LPC_ORDER; /* stepSize[0] implicitly 0. */

  hTonCorr->nextSample = LPC_ORDER; /* firstSample */
  hTonCorr->move = hTonCorr->numberOfEstimates -
                   hTonCorr->numberOfEstimatesPerFrame; /* Number of estimates
                                                           to move when
                                                           buffering.*/
  if (hTonCorr->move < 0) {
    return -1;
  }
  hTonCorr->startIndexMatrix =
      hTonCorr->numberOfEstimates -
      hTonCorr->numberOfEstimatesPerFrame; /* Where to store the latest
                                              estimations in the tonality
                                              Matrix.*/
  hTonCorr->frameStartIndex = 0; /* Where in the tonality matrix the current
                                    frame (to be sent to the decoder) starts. */
  hTonCorr->prevTransientFlag = 0;
  hTonCorr->transientNextFrame = 0;

  hTonCorr->noQmfChannels = noQmfChannels;

  for (i = 0; i < hTonCorr->numberOfEstimates; i++) {
    FDKmemclear(hTonCorr->quotaMatrix[i], sizeof(FIXP_DBL) * noQmfChannels);
    FDKmemclear(hTonCorr->signMatrix[i], sizeof(INT) * noQmfChannels);
  }

  /* Reset the patch.*/
  hTonCorr->guard = 0;
  hTonCorr->shiftStartSb = 1;

  if (resetPatch(hTonCorr, xposCtrl, highBandStartSb, v_k_master, numMaster, fs,
                 noQmfChannels))
    return (1);

  if (FDKsbrEnc_InitSbrNoiseFloorEstimate(
          &hTonCorr->sbrNoiseFloorEstimate, ana_max_level, freqBandTable[LO],
          nSfb[LO], noiseBands, noiseFloorOffset, timeSlots, useSpeechConfig))
    return (1);

  if (FDKsbrEnc_initInvFiltDetector(
          &hTonCorr->sbrInvFilt,
          hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
          hTonCorr->sbrNoiseFloorEstimate.noNoiseBands, useSpeechConfig))
    return (1);

  if (FDKsbrEnc_InitSbrMissingHarmonicsDetector(
          &hTonCorr->sbrMissingHarmonicsDetector, fs, frameSize, nSfb[HI],
          noQmfChannels, hTonCorr->numberOfEstimates, hTonCorr->move,
          hTonCorr->numberOfEstimatesPerFrame, sbrCfg->sbrSyntaxFlags))
    return (1);

  return (0);
}

/**************************************************************************/
/*!
  \brief     resets tonality correction parameter module.



  \return   errorCode, noError if successful.

*/
/**************************************************************************/
INT FDKsbrEnc_ResetTonCorrParamExtr(
    HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
    INT xposctrl,                     /*!< Different patch modes. */
    INT highBandStartSb,              /*!< Start band of the SBR range. */
    UCHAR *v_k_master, /*!< Master frequency table from which all other table
                          are derived.*/
    INT numMaster,     /*!< Number of elements in the master table. */
    INT fs,            /*!< Sampling frequency (of the SBR part). */
    UCHAR *
        *freqBandTable, /*!< Frequency band table for low-res and high-res. */
    INT *nSfb,          /*!< Number of frequency bands (hig-res and low-res). */
    INT noQmfChannels   /*!< Number of QMF channels. */
) {
  /* Reset the patch.*/
  hTonCorr->guard = 0;
  hTonCorr->shiftStartSb = 1;

  if (resetPatch(hTonCorr, xposctrl, highBandStartSb, v_k_master, numMaster, fs,
                 noQmfChannels))
    return (1);

  /* Reset the noise floor estimate.*/
  if (FDKsbrEnc_resetSbrNoiseFloorEstimate(&hTonCorr->sbrNoiseFloorEstimate,
                                           freqBandTable[LO], nSfb[LO]))
    return (1);

  /*
  Reset the inveerse filtereing detector.
  */
  if (FDKsbrEnc_resetInvFiltDetector(
          &hTonCorr->sbrInvFilt,
          hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
          hTonCorr->sbrNoiseFloorEstimate.noNoiseBands))
    return (1);
  /* Reset the missing harmonics detector. */
  if (FDKsbrEnc_ResetSbrMissingHarmonicsDetector(
          &hTonCorr->sbrMissingHarmonicsDetector, nSfb[HI]))
    return (1);

  return (0);
}

/**************************************************************************/
/*!
  \brief  Deletes the tonality correction paramtere module.



  \return   none

*/
/**************************************************************************/
void FDKsbrEnc_DeleteTonCorrParamExtr(
    HANDLE_SBR_TON_CORR_EST hTonCorr) /*!< Handle to SBR_TON_CORR struct. */
{
  if (hTonCorr) {
    FreeRam_Sbr_quotaMatrix(hTonCorr->quotaMatrix);

    FreeRam_Sbr_signMatrix(hTonCorr->signMatrix);

    FDKsbrEnc_DeleteSbrMissingHarmonicsDetector(
        &hTonCorr->sbrMissingHarmonicsDetector);
  }
}