1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/**************************** SBR encoder library ******************************
Author(s): Andreas Ehret, Tobias Chalupka
Description: SBR encoder top level processing.
*******************************************************************************/
#include "sbr_encoder.h"
#include "sbrenc_ram.h"
#include "sbrenc_rom.h"
#include "sbrenc_freq_sca.h"
#include "env_bit.h"
#include "cmondata.h"
#include "sbr_misc.h"
#include "sbr.h"
#include "qmf.h"
#include "ps_main.h"
#define SBRENCODER_LIB_VL0 4
#define SBRENCODER_LIB_VL1 0
#define SBRENCODER_LIB_VL2 0
/***************************************************************************/
/*
* SBR Delay balancing definitions.
*/
/*
input buffer (1ch)
|------------ 1537 -------------|-----|---------- 2048 -------------|
(core2sbr delay ) ds (read, core and ds area)
*/
#define SFB(dwnsmp) \
(32 << (dwnsmp - \
1)) /* SBR Frequency bands: 64 for dual-rate, 32 for single-rate */
#define STS(fl) \
(((fl) == 1024) ? 32 \
: 30) /* SBR Time Slots: 32 for core frame length 1024, 30 \
for core frame length 960 */
#define DELAY_QMF_ANA(dwnsmp) \
((320 << ((dwnsmp)-1)) - (32 << ((dwnsmp)-1))) /* Full bandwidth */
#define DELAY_HYB_ANA (10 * 64) /* + 0.5 */ /* */
#define DELAY_HYB_SYN (6 * 64 - 32) /* */
#define DELAY_QMF_POSTPROC(dwnsmp) \
(32 * (dwnsmp)) /* QMF postprocessing delay */
#define DELAY_DEC_QMF(dwnsmp) (6 * SFB(dwnsmp)) /* Decoder QMF overlap */
#define DELAY_QMF_SYN(dwnsmp) \
(1 << (dwnsmp - \
1)) /* QMF_NO_POLY/2=2.5, rounded down to 2, half for single-rate */
#define DELAY_QMF_DS (32) /* QMF synthesis for downsampled time signal */
/* Delay in QMF paths */
#define DELAY_SBR(fl, dwnsmp) \
(DELAY_QMF_ANA(dwnsmp) + (SFB(dwnsmp) * STS(fl) - 1) + DELAY_QMF_SYN(dwnsmp))
#define DELAY_PS(fl, dwnsmp) \
(DELAY_QMF_ANA(dwnsmp) + DELAY_HYB_ANA + DELAY_DEC_QMF(dwnsmp) + \
(SFB(dwnsmp) * STS(fl) - 1) + DELAY_HYB_SYN + DELAY_QMF_SYN(dwnsmp))
#define DELAY_ELDSBR(fl, dwnsmp) \
((((fl) / 2) * (dwnsmp)) - 1 + DELAY_QMF_POSTPROC(dwnsmp))
#define DELAY_ELDv2SBR(fl, dwnsmp) \
((((fl) / 2) * (dwnsmp)) - 1 + 80 * (dwnsmp)) /* 80 is the delay caused \
by the sum of the CLD \
analysis and the MPSLD \
synthesis filterbank */
/* Delay in core path (core and downsampler not taken into account) */
#define DELAY_COREPATH_SBR(fl, dwnsmp) \
((DELAY_QMF_ANA(dwnsmp) + DELAY_DEC_QMF(dwnsmp) + DELAY_QMF_SYN(dwnsmp)))
#define DELAY_COREPATH_ELDSBR(fl, dwnsmp) ((DELAY_QMF_POSTPROC(dwnsmp)))
#define DELAY_COREPATH_ELDv2SBR(fl, dwnsmp) (128 * (dwnsmp)) /* 4 slots */
#define DELAY_COREPATH_PS(fl, dwnsmp) \
((DELAY_QMF_ANA(dwnsmp) + DELAY_QMF_DS + \
/*(DELAY_AAC(fl)*2) + */ DELAY_QMF_ANA(dwnsmp) + DELAY_DEC_QMF(dwnsmp) + \
DELAY_HYB_SYN + DELAY_QMF_SYN(dwnsmp))) /* 2048 - 463*2 */
/* Delay differences between SBR- and downsampled path for SBR and SBR+PS */
#define DELAY_AAC2SBR(fl, dwnsmp) \
((DELAY_COREPATH_SBR(fl, dwnsmp)) - DELAY_SBR((fl), (dwnsmp)))
#define DELAY_ELD2SBR(fl, dwnsmp) \
((DELAY_COREPATH_ELDSBR(fl, dwnsmp)) - DELAY_ELDSBR(fl, dwnsmp))
#define DELAY_AAC2PS(fl, dwnsmp) \
((DELAY_COREPATH_PS(fl, dwnsmp)) - DELAY_PS(fl, dwnsmp)) /* 2048 - 463*2 */
/* Assumption: The sample delay resulting of of DELAY_AAC2PS is always smaller
* than the sample delay implied by DELAY_AAC2SBR */
#define MAX_DS_FILTER_DELAY \
(5) /* the additional max downsampler filter delay (source fs) */
#define MAX_SAMPLE_DELAY \
(DELAY_AAC2SBR(1024, 2) + MAX_DS_FILTER_DELAY) /* maximum delay: frame \
length of 1024 and \
dual-rate sbr */
/***************************************************************************/
/*************** Delay parameters for sbrEncoder_Init_delay() **************/
typedef struct {
int dsDelay; /* the delay of the (time-domain) downsampler itself */
int delay; /* overall delay / samples */
int sbrDecDelay; /* SBR decoder's delay */
int corePathOffset; /* core path offset / samples; added by
sbrEncoder_Init_delay() */
int sbrPathOffset; /* SBR path offset / samples; added by
sbrEncoder_Init_delay() */
int bitstrDelay; /* bitstream delay / frames; added by sbrEncoder_Init_delay()
*/
int delayInput2Core; /* delay of the input to the core / samples */
} DELAY_PARAM;
/***************************************************************************/
#define INVALID_TABLE_IDX -1
/***************************************************************************/
/*!
\brief Selects the SBR tuning settings to use dependent on number of
channels, bitrate, sample rate and core coder
\return Index to the appropriate table
****************************************************************************/
#define DISTANCE_CEIL_VALUE 5000000
static INT getSbrTuningTableIndex(
UINT bitrate, /*! the total bitrate in bits/sec */
UINT numChannels, /*! the number of channels for the core coder */
UINT sampleRate, /*! the sampling rate of the core coder */
AUDIO_OBJECT_TYPE core, UINT *pBitRateClosest) {
int i, bitRateClosestLowerIndex = -1, bitRateClosestUpperIndex = -1,
found = 0;
UINT bitRateClosestUpper = 0, bitRateClosestLower = DISTANCE_CEIL_VALUE;
#define isForThisCore(i) \
((sbrTuningTable[i].coreCoder == CODEC_AACLD && core == AOT_ER_AAC_ELD) || \
(sbrTuningTable[i].coreCoder == CODEC_AAC && core != AOT_ER_AAC_ELD))
for (i = 0; i < sbrTuningTableSize; i++) {
if (isForThisCore(i)) /* tuning table is for this core codec */
{
if (numChannels == sbrTuningTable[i].numChannels &&
sampleRate == sbrTuningTable[i].sampleRate) {
found = 1;
if ((bitrate >= sbrTuningTable[i].bitrateFrom) &&
(bitrate < sbrTuningTable[i].bitrateTo)) {
return i;
} else {
if (sbrTuningTable[i].bitrateFrom > bitrate) {
if (sbrTuningTable[i].bitrateFrom < bitRateClosestLower) {
bitRateClosestLower = sbrTuningTable[i].bitrateFrom;
bitRateClosestLowerIndex = i;
}
}
if (sbrTuningTable[i].bitrateTo <= bitrate) {
if (sbrTuningTable[i].bitrateTo > bitRateClosestUpper) {
bitRateClosestUpper = sbrTuningTable[i].bitrateTo - 1;
bitRateClosestUpperIndex = i;
}
}
}
}
}
}
if (bitRateClosestUpperIndex >= 0) {
return bitRateClosestUpperIndex;
}
if (pBitRateClosest != NULL) {
/* If there was at least one matching tuning entry pick the least distance
* bit rate */
if (found) {
int distanceUpper = DISTANCE_CEIL_VALUE,
distanceLower = DISTANCE_CEIL_VALUE;
if (bitRateClosestLowerIndex >= 0) {
distanceLower =
sbrTuningTable[bitRateClosestLowerIndex].bitrateFrom - bitrate;
}
if (bitRateClosestUpperIndex >= 0) {
distanceUpper =
bitrate - sbrTuningTable[bitRateClosestUpperIndex].bitrateTo;
}
if (distanceUpper < distanceLower) {
*pBitRateClosest = bitRateClosestUpper;
} else {
*pBitRateClosest = bitRateClosestLower;
}
} else {
*pBitRateClosest = 0;
}
}
return INVALID_TABLE_IDX;
}
/***************************************************************************/
/*!
\brief Selects the PS tuning settings to use dependent on bitrate
and core coder
\return Index to the appropriate table
****************************************************************************/
static INT getPsTuningTableIndex(UINT bitrate, UINT *pBitRateClosest) {
INT i, paramSets = sizeof(psTuningTable) / sizeof(psTuningTable[0]);
int bitRateClosestLowerIndex = -1, bitRateClosestUpperIndex = -1;
UINT bitRateClosestUpper = 0, bitRateClosestLower = DISTANCE_CEIL_VALUE;
for (i = 0; i < paramSets; i++) {
if ((bitrate >= psTuningTable[i].bitrateFrom) &&
(bitrate < psTuningTable[i].bitrateTo)) {
return i;
} else {
if (psTuningTable[i].bitrateFrom > bitrate) {
if (psTuningTable[i].bitrateFrom < bitRateClosestLower) {
bitRateClosestLower = psTuningTable[i].bitrateFrom;
bitRateClosestLowerIndex = i;
}
}
if (psTuningTable[i].bitrateTo <= bitrate) {
if (psTuningTable[i].bitrateTo > bitRateClosestUpper) {
bitRateClosestUpper = psTuningTable[i].bitrateTo - 1;
bitRateClosestUpperIndex = i;
}
}
}
}
if (bitRateClosestUpperIndex >= 0) {
return bitRateClosestUpperIndex;
}
if (pBitRateClosest != NULL) {
int distanceUpper = DISTANCE_CEIL_VALUE,
distanceLower = DISTANCE_CEIL_VALUE;
if (bitRateClosestLowerIndex >= 0) {
distanceLower =
sbrTuningTable[bitRateClosestLowerIndex].bitrateFrom - bitrate;
}
if (bitRateClosestUpperIndex >= 0) {
distanceUpper =
bitrate - sbrTuningTable[bitRateClosestUpperIndex].bitrateTo;
}
if (distanceUpper < distanceLower) {
*pBitRateClosest = bitRateClosestUpper;
} else {
*pBitRateClosest = bitRateClosestLower;
}
}
return INVALID_TABLE_IDX;
}
/***************************************************************************/
/*!
\brief In case of downsampled SBR we may need to lower the stop freq
of a tuning setting to fit into the lower half of the
spectrum ( which is sampleRate/4 )
\return the adapted stop frequency index (-1 -> error)
\ingroup SbrEncCfg
****************************************************************************/
static INT FDKsbrEnc_GetDownsampledStopFreq(const INT sampleRateCore,
const INT startFreq, INT stopFreq,
const INT downSampleFactor) {
INT maxStopFreqRaw = sampleRateCore / 2;
INT startBand, stopBand;
HANDLE_ERROR_INFO err;
while (stopFreq > 0 && FDKsbrEnc_getSbrStopFreqRAW(stopFreq, sampleRateCore) >
maxStopFreqRaw) {
stopFreq--;
}
if (FDKsbrEnc_getSbrStopFreqRAW(stopFreq, sampleRateCore) > maxStopFreqRaw)
return -1;
err = FDKsbrEnc_FindStartAndStopBand(
sampleRateCore << (downSampleFactor - 1), sampleRateCore,
32 << (downSampleFactor - 1), startFreq, stopFreq, &startBand, &stopBand);
if (err) return -1;
return stopFreq;
}
/***************************************************************************/
/*!
\brief tells us, if for the given coreCoder, bitrate, number of channels
and input sampling rate an SBR setting is available. If yes, it
tells us also the core sampling rate we would need to run with
\return a flag indicating success: yes (1) or no (0)
****************************************************************************/
static UINT FDKsbrEnc_IsSbrSettingAvail(
UINT bitrate, /*! the total bitrate in bits/sec */
UINT vbrMode, /*! the vbr paramter, 0 means constant bitrate */
UINT numOutputChannels, /*! the number of channels for the core coder */
UINT sampleRateInput, /*! the input sample rate [in Hz] */
UINT sampleRateCore, /*! the core's sampling rate */
AUDIO_OBJECT_TYPE core) {
INT idx = INVALID_TABLE_IDX;
if (sampleRateInput < 16000) return 0;
if (bitrate == 0) {
/* map vbr quality to bitrate */
if (vbrMode < 30)
bitrate = 24000;
else if (vbrMode < 40)
bitrate = 28000;
else if (vbrMode < 60)
bitrate = 32000;
else if (vbrMode < 75)
bitrate = 40000;
else
bitrate = 48000;
bitrate *= numOutputChannels;
}
idx = getSbrTuningTableIndex(bitrate, numOutputChannels, sampleRateCore, core,
NULL);
return (idx == INVALID_TABLE_IDX ? 0 : 1);
}
/***************************************************************************/
/*!
\brief Adjusts the SBR settings according to the chosen core coder
settings which are accessible via config->codecSettings
\return A flag indicating success: yes (1) or no (0)
****************************************************************************/
static UINT FDKsbrEnc_AdjustSbrSettings(
const sbrConfigurationPtr config, /*! output, modified */
UINT bitRate, /*! the total bitrate in bits/sec */
UINT numChannels, /*! the core coder number of channels */
UINT sampleRateCore, /*! the core coder sampling rate in Hz */
UINT sampleRateSbr, /*! the sbr coder sampling rate in Hz */
UINT transFac, /*! the short block to long block ratio */
UINT standardBitrate, /*! the standard bitrate per channel in bits/sec */
UINT vbrMode, /*! the vbr paramter, 0 poor quality .. 100 high quality*/
UINT useSpeechConfig, /*!< adapt tuning parameters for speech ? */
UINT lcsMode, /*! the low complexity stereo mode */
UINT bParametricStereo, /*!< use parametric stereo */
AUDIO_OBJECT_TYPE core) /* Core audio codec object type */
{
INT idx = INVALID_TABLE_IDX;
/* set the core codec settings */
config->codecSettings.bitRate = bitRate;
config->codecSettings.nChannels = numChannels;
config->codecSettings.sampleFreq = sampleRateCore;
config->codecSettings.transFac = transFac;
config->codecSettings.standardBitrate = standardBitrate;
if (bitRate < 28000) {
config->threshold_AmpRes_FF_m = (FIXP_DBL)MAXVAL_DBL;
config->threshold_AmpRes_FF_e = 7;
} else if (bitRate >= 28000 && bitRate <= 48000) {
/* The float threshold is 75
0.524288f is fractional part of RELAXATION, the quotaMatrix and therefore
tonality are scaled by this 2/3 is because the original implementation
divides the tonality values by 3, here it's divided by 2 128 compensates
the necessary shiftfactor of 7 */
config->threshold_AmpRes_FF_m =
FL2FXCONST_DBL(75.0f * 0.524288f / (2.0f / 3.0f) / 128.0f);
config->threshold_AmpRes_FF_e = 7;
} else if (bitRate > 48000) {
config->threshold_AmpRes_FF_m = FL2FXCONST_DBL(0);
config->threshold_AmpRes_FF_e = 0;
}
if (bitRate == 0) {
/* map vbr quality to bitrate */
if (vbrMode < 30)
bitRate = 24000;
else if (vbrMode < 40)
bitRate = 28000;
else if (vbrMode < 60)
bitRate = 32000;
else if (vbrMode < 75)
bitRate = 40000;
else
bitRate = 48000;
bitRate *= numChannels;
/* fix to enable mono vbrMode<40 @ 44.1 of 48kHz */
if (numChannels == 1) {
if (sampleRateSbr == 44100 || sampleRateSbr == 48000) {
if (vbrMode < 40) bitRate = 32000;
}
}
}
idx =
getSbrTuningTableIndex(bitRate, numChannels, sampleRateCore, core, NULL);
if (idx != INVALID_TABLE_IDX) {
config->startFreq = sbrTuningTable[idx].startFreq;
config->stopFreq = sbrTuningTable[idx].stopFreq;
if (useSpeechConfig) {
config->startFreq = sbrTuningTable[idx].startFreqSpeech;
config->stopFreq = sbrTuningTable[idx].stopFreqSpeech;
}
/* Adapt stop frequency in case of downsampled SBR - only 32 bands then */
if (1 == config->downSampleFactor) {
INT dsStopFreq = FDKsbrEnc_GetDownsampledStopFreq(
sampleRateCore, config->startFreq, config->stopFreq,
config->downSampleFactor);
if (dsStopFreq < 0) {
return 0;
}
config->stopFreq = dsStopFreq;
}
config->sbr_noise_bands = sbrTuningTable[idx].numNoiseBands;
if (core == AOT_ER_AAC_ELD) config->init_amp_res_FF = SBR_AMP_RES_1_5;
config->noiseFloorOffset = sbrTuningTable[idx].noiseFloorOffset;
config->ana_max_level = sbrTuningTable[idx].noiseMaxLevel;
config->stereoMode = sbrTuningTable[idx].stereoMode;
config->freqScale = sbrTuningTable[idx].freqScale;
if (numChannels == 1) {
/* stereo case */
switch (core) {
case AOT_AAC_LC:
if (bitRate <= (useSpeechConfig ? 24000U : 20000U)) {
config->freq_res_fixfix[0] = FREQ_RES_LOW; /* set low frequency
resolution for
non-split frames */
config->freq_res_fixfix[1] = FREQ_RES_LOW; /* set low frequency
resolution for split
frames */
}
break;
case AOT_ER_AAC_ELD:
if (bitRate < 36000)
config->freq_res_fixfix[1] = FREQ_RES_LOW; /* set low frequency
resolution for split
frames */
if (bitRate < 26000) {
config->freq_res_fixfix[0] = FREQ_RES_LOW; /* set low frequency
resolution for
non-split frames */
config->fResTransIsLow =
1; /* for transient frames, set low frequency resolution */
}
break;
default:
break;
}
} else {
/* stereo case */
switch (core) {
case AOT_AAC_LC:
if (bitRate <= 28000) {
config->freq_res_fixfix[0] = FREQ_RES_LOW; /* set low frequency
resolution for
non-split frames */
config->freq_res_fixfix[1] = FREQ_RES_LOW; /* set low frequency
resolution for split
frames */
}
break;
case AOT_ER_AAC_ELD:
if (bitRate < 72000) {
config->freq_res_fixfix[1] = FREQ_RES_LOW; /* set low frequency
resolution for split
frames */
}
if (bitRate < 52000) {
config->freq_res_fixfix[0] = FREQ_RES_LOW; /* set low frequency
resolution for
non-split frames */
config->fResTransIsLow =
1; /* for transient frames, set low frequency resolution */
}
break;
default:
break;
}
if (bitRate <= 28000) {
/*
additionally restrict frequency resolution in FIXFIX frames
to further reduce SBR payload size */
config->freq_res_fixfix[0] = FREQ_RES_LOW;
config->freq_res_fixfix[1] = FREQ_RES_LOW;
}
}
/* adjust usage of parametric coding dependent on bitrate and speech config
* flag */
if (useSpeechConfig) config->parametricCoding = 0;
if (core == AOT_ER_AAC_ELD) {
if (bitRate < 28000) config->init_amp_res_FF = SBR_AMP_RES_3_0;
config->SendHeaderDataTime = -1;
}
if (numChannels == 1) {
if (bitRate < 16000) {
config->parametricCoding = 0;
}
} else {
if (bitRate < 20000) {
config->parametricCoding = 0;
}
}
config->useSpeechConfig = useSpeechConfig;
/* PS settings */
config->bParametricStereo = bParametricStereo;
return 1;
} else {
return 0;
}
}
/*****************************************************************************
functionname: FDKsbrEnc_InitializeSbrDefaults
description: initializes the SBR configuration
returns: error status
input: - core codec type,
- factor of SBR to core frame length,
- core frame length
output: initialized SBR configuration
*****************************************************************************/
static UINT FDKsbrEnc_InitializeSbrDefaults(sbrConfigurationPtr config,
INT downSampleFactor,
UINT codecGranuleLen,
const INT isLowDelay) {
if ((downSampleFactor < 1 || downSampleFactor > 2) ||
(codecGranuleLen * downSampleFactor > 64 * 32))
return (0); /* error */
config->SendHeaderDataTime = 1000;
config->useWaveCoding = 0;
config->crcSbr = 0;
config->dynBwSupported = 1;
if (isLowDelay)
config->tran_thr = 6000;
else
config->tran_thr = 13000;
config->parametricCoding = 1;
config->sbrFrameSize = codecGranuleLen * downSampleFactor;
config->downSampleFactor = downSampleFactor;
/* sbr default parameters */
config->sbr_data_extra = 0;
config->amp_res = SBR_AMP_RES_3_0;
config->tran_fc = 0;
config->tran_det_mode = 1;
config->spread = 1;
config->stat = 0;
config->e = 1;
config->deltaTAcrossFrames = 1;
config->dF_edge_1stEnv = FL2FXCONST_DBL(0.3f);
config->dF_edge_incr = FL2FXCONST_DBL(0.3f);
config->sbr_invf_mode = INVF_SWITCHED;
config->sbr_xpos_mode = XPOS_LC;
config->sbr_xpos_ctrl = SBR_XPOS_CTRL_DEFAULT;
config->sbr_xpos_level = 0;
config->useSaPan = 0;
config->dynBwEnabled = 0;
/* the following parameters are overwritten by the
FDKsbrEnc_AdjustSbrSettings() function since they are included in the
tuning table */
config->stereoMode = SBR_SWITCH_LRC;
config->ana_max_level = 6;
config->noiseFloorOffset = 0;
config->startFreq = 5; /* 5.9 respectively 6.0 kHz at fs = 44.1/48 kHz */
config->stopFreq = 9; /* 16.2 respectively 16.8 kHz at fs = 44.1/48 kHz */
config->freq_res_fixfix[0] = FREQ_RES_HIGH; /* non-split case */
config->freq_res_fixfix[1] = FREQ_RES_HIGH; /* split case */
config->fResTransIsLow = 0; /* for transient frames, set variable frequency
resolution according to freqResTable */
/* header_extra_1 */
config->freqScale = SBR_FREQ_SCALE_DEFAULT;
config->alterScale = SBR_ALTER_SCALE_DEFAULT;
config->sbr_noise_bands = SBR_NOISE_BANDS_DEFAULT;
/* header_extra_2 */
config->sbr_limiter_bands = SBR_LIMITER_BANDS_DEFAULT;
config->sbr_limiter_gains = SBR_LIMITER_GAINS_DEFAULT;
config->sbr_interpol_freq = SBR_INTERPOL_FREQ_DEFAULT;
config->sbr_smoothing_length = SBR_SMOOTHING_LENGTH_DEFAULT;
return 1;
}
/*****************************************************************************
functionname: DeleteEnvChannel
description: frees memory of one SBR channel
returns: -
input: handle of channel
output: released handle
*****************************************************************************/
static void deleteEnvChannel(HANDLE_ENV_CHANNEL hEnvCut) {
if (hEnvCut) {
FDKsbrEnc_DeleteTonCorrParamExtr(&hEnvCut->TonCorr);
FDKsbrEnc_deleteExtractSbrEnvelope(&hEnvCut->sbrExtractEnvelope);
}
}
/*****************************************************************************
functionname: sbrEncoder_ChannelClose
description: close the channel coding handle
returns:
input: phSbrChannel
output:
*****************************************************************************/
static void sbrEncoder_ChannelClose(HANDLE_SBR_CHANNEL hSbrChannel) {
if (hSbrChannel != NULL) {
deleteEnvChannel(&hSbrChannel->hEnvChannel);
}
}
/*****************************************************************************
functionname: sbrEncoder_ElementClose
description: close the channel coding handle
returns:
input: phSbrChannel
output:
*****************************************************************************/
static void sbrEncoder_ElementClose(HANDLE_SBR_ELEMENT *phSbrElement) {
HANDLE_SBR_ELEMENT hSbrElement = *phSbrElement;
if (hSbrElement != NULL) {
if (hSbrElement->sbrConfigData.v_k_master)
FreeRam_Sbr_v_k_master(&hSbrElement->sbrConfigData.v_k_master);
if (hSbrElement->sbrConfigData.freqBandTable[LO])
FreeRam_Sbr_freqBandTableLO(
&hSbrElement->sbrConfigData.freqBandTable[LO]);
if (hSbrElement->sbrConfigData.freqBandTable[HI])
FreeRam_Sbr_freqBandTableHI(
&hSbrElement->sbrConfigData.freqBandTable[HI]);
FreeRam_SbrElement(phSbrElement);
}
return;
}
void sbrEncoder_Close(HANDLE_SBR_ENCODER *phSbrEncoder) {
HANDLE_SBR_ENCODER hSbrEncoder = *phSbrEncoder;
if (hSbrEncoder != NULL) {
int el, ch;
for (el = 0; el < (8); el++) {
if (hSbrEncoder->sbrElement[el] != NULL) {
sbrEncoder_ElementClose(&hSbrEncoder->sbrElement[el]);
}
}
/* Close sbr Channels */
for (ch = 0; ch < (8); ch++) {
if (hSbrEncoder->pSbrChannel[ch]) {
sbrEncoder_ChannelClose(hSbrEncoder->pSbrChannel[ch]);
FreeRam_SbrChannel(&hSbrEncoder->pSbrChannel[ch]);
}
if (hSbrEncoder->QmfAnalysis[ch].FilterStates)
FreeRam_Sbr_QmfStatesAnalysis(
(FIXP_QAS **)&hSbrEncoder->QmfAnalysis[ch].FilterStates);
}
if (hSbrEncoder->hParametricStereo)
PSEnc_Destroy(&hSbrEncoder->hParametricStereo);
if (hSbrEncoder->qmfSynthesisPS.FilterStates)
FreeRam_PsQmfStatesSynthesis(
(FIXP_DBL **)&hSbrEncoder->qmfSynthesisPS.FilterStates);
/* Release Overlay */
if (hSbrEncoder->pSBRdynamic_RAM)
FreeRam_SbrDynamic_RAM((FIXP_DBL **)&hSbrEncoder->pSBRdynamic_RAM);
FreeRam_SbrEncoder(phSbrEncoder);
}
}
/*****************************************************************************
functionname: updateFreqBandTable
description: updates vk_master
returns: -
input: config handle
output: error info
*****************************************************************************/
static INT updateFreqBandTable(HANDLE_SBR_CONFIG_DATA sbrConfigData,
HANDLE_SBR_HEADER_DATA sbrHeaderData,
const INT downSampleFactor) {
INT k0, k2;
if (FDKsbrEnc_FindStartAndStopBand(
sbrConfigData->sampleFreq,
sbrConfigData->sampleFreq >> (downSampleFactor - 1),
sbrConfigData->noQmfBands, sbrHeaderData->sbr_start_frequency,
sbrHeaderData->sbr_stop_frequency, &k0, &k2))
return (1);
if (FDKsbrEnc_UpdateFreqScale(
sbrConfigData->v_k_master, &sbrConfigData->num_Master, k0, k2,
sbrHeaderData->freqScale, sbrHeaderData->alterScale))
return (1);
sbrHeaderData->sbr_xover_band = 0;
if (FDKsbrEnc_UpdateHiRes(sbrConfigData->freqBandTable[HI],
&sbrConfigData->nSfb[HI], sbrConfigData->v_k_master,
sbrConfigData->num_Master,
&sbrHeaderData->sbr_xover_band))
return (1);
FDKsbrEnc_UpdateLoRes(
sbrConfigData->freqBandTable[LO], &sbrConfigData->nSfb[LO],
sbrConfigData->freqBandTable[HI], sbrConfigData->nSfb[HI]);
sbrConfigData->xOverFreq =
(sbrConfigData->freqBandTable[LOW_RES][0] * sbrConfigData->sampleFreq /
sbrConfigData->noQmfBands +
1) >>
1;
return (0);
}
/*****************************************************************************
functionname: resetEnvChannel
description: resets parameters and allocates memory
returns: error status
input:
output: hEnv
*****************************************************************************/
static INT resetEnvChannel(HANDLE_SBR_CONFIG_DATA sbrConfigData,
HANDLE_SBR_HEADER_DATA sbrHeaderData,
HANDLE_ENV_CHANNEL hEnv) {
/* note !!! hEnv->encEnvData.noOfnoisebands will be updated later in function
* FDKsbrEnc_extractSbrEnvelope !!!*/
hEnv->TonCorr.sbrNoiseFloorEstimate.noiseBands =
sbrHeaderData->sbr_noise_bands;
if (FDKsbrEnc_ResetTonCorrParamExtr(
&hEnv->TonCorr, sbrConfigData->xposCtrlSwitch,
sbrConfigData->freqBandTable[HI][0], sbrConfigData->v_k_master,
sbrConfigData->num_Master, sbrConfigData->sampleFreq,
sbrConfigData->freqBandTable, sbrConfigData->nSfb,
sbrConfigData->noQmfBands))
return (1);
hEnv->sbrCodeNoiseFloor.nSfb[LO] =
hEnv->TonCorr.sbrNoiseFloorEstimate.noNoiseBands;
hEnv->sbrCodeNoiseFloor.nSfb[HI] =
hEnv->TonCorr.sbrNoiseFloorEstimate.noNoiseBands;
hEnv->sbrCodeEnvelope.nSfb[LO] = sbrConfigData->nSfb[LO];
hEnv->sbrCodeEnvelope.nSfb[HI] = sbrConfigData->nSfb[HI];
hEnv->encEnvData.noHarmonics = sbrConfigData->nSfb[HI];
hEnv->sbrCodeEnvelope.upDate = 0;
hEnv->sbrCodeNoiseFloor.upDate = 0;
return (0);
}
/* ****************************** FDKsbrEnc_SbrGetXOverFreq
* ******************************/
/**
* @fn
* @brief calculates the closest possible crossover frequency
* @return the crossover frequency SBR accepts
*
*/
static INT FDKsbrEnc_SbrGetXOverFreq(
HANDLE_SBR_ELEMENT hEnv, /*!< handle to SBR encoder instance */
INT xoverFreq) /*!< from core coder suggested crossover frequency */
{
INT band;
INT lastDiff, newDiff;
INT cutoffSb;
UCHAR *RESTRICT pVKMaster = hEnv->sbrConfigData.v_k_master;
/* Check if there is a matching cutoff frequency in the master table */
cutoffSb = (4 * xoverFreq * hEnv->sbrConfigData.noQmfBands /
hEnv->sbrConfigData.sampleFreq +
1) >>
1;
lastDiff = cutoffSb;
for (band = 0; band < hEnv->sbrConfigData.num_Master; band++) {
newDiff = fixp_abs((INT)pVKMaster[band] - cutoffSb);
if (newDiff >= lastDiff) {
band--;
break;
}
lastDiff = newDiff;
}
return ((pVKMaster[band] * hEnv->sbrConfigData.sampleFreq /
hEnv->sbrConfigData.noQmfBands +
1) >>
1);
}
/*****************************************************************************
functionname: FDKsbrEnc_EnvEncodeFrame
description: performs the sbr envelope calculation for one element
returns:
input:
output:
*****************************************************************************/
INT FDKsbrEnc_EnvEncodeFrame(
HANDLE_SBR_ENCODER hEnvEncoder, int iElement,
INT_PCM *samples, /*!< time samples, always deinterleaved */
UINT samplesBufSize, /*!< time buffer channel stride */
UINT *sbrDataBits, /*!< Size of SBR payload */
UCHAR *sbrData, /*!< SBR payload */
int clearOutput /*!< Do not consider any input signal */
) {
HANDLE_SBR_ELEMENT hSbrElement = NULL;
FDK_CRCINFO crcInfo;
INT crcReg;
INT ch;
INT band;
INT cutoffSb;
INT newXOver;
if (hEnvEncoder == NULL) return -1;
hSbrElement = hEnvEncoder->sbrElement[iElement];
if (hSbrElement == NULL) return -1;
/* header bitstream handling */
HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData = &hSbrElement->sbrBitstreamData;
INT psHeaderActive = 0;
sbrBitstreamData->HeaderActive = 0;
/* Anticipate PS header because of internal PS bitstream delay in order to be
* in sync with SBR header. */
if (sbrBitstreamData->CountSendHeaderData ==
(sbrBitstreamData->NrSendHeaderData - 1)) {
psHeaderActive = 1;
}
/* Signal SBR header to be written into bitstream */
if (sbrBitstreamData->CountSendHeaderData == 0) {
sbrBitstreamData->HeaderActive = 1;
}
/* Increment header interval counter */
if (sbrBitstreamData->NrSendHeaderData == 0) {
sbrBitstreamData->CountSendHeaderData = 1;
} else {
if (sbrBitstreamData->CountSendHeaderData >= 0) {
sbrBitstreamData->CountSendHeaderData++;
sbrBitstreamData->CountSendHeaderData %=
sbrBitstreamData->NrSendHeaderData;
}
}
if (hSbrElement->CmonData.dynBwEnabled) {
INT i;
for (i = 4; i > 0; i--)
hSbrElement->dynXOverFreqDelay[i] = hSbrElement->dynXOverFreqDelay[i - 1];
hSbrElement->dynXOverFreqDelay[0] = hSbrElement->CmonData.dynXOverFreqEnc;
if (hSbrElement->dynXOverFreqDelay[1] > hSbrElement->dynXOverFreqDelay[2])
newXOver = hSbrElement->dynXOverFreqDelay[2];
else
newXOver = hSbrElement->dynXOverFreqDelay[1];
/* has the crossover frequency changed? */
if (hSbrElement->sbrConfigData.dynXOverFreq != newXOver) {
/* get corresponding master band */
cutoffSb = ((4 * newXOver * hSbrElement->sbrConfigData.noQmfBands /
hSbrElement->sbrConfigData.sampleFreq) +
1) >>
1;
for (band = 0; band < hSbrElement->sbrConfigData.num_Master; band++) {
if (cutoffSb == hSbrElement->sbrConfigData.v_k_master[band]) break;
}
FDK_ASSERT(band < hSbrElement->sbrConfigData.num_Master);
hSbrElement->sbrConfigData.dynXOverFreq = newXOver;
hSbrElement->sbrHeaderData.sbr_xover_band = band;
hSbrElement->sbrBitstreamData.HeaderActive = 1;
psHeaderActive = 1; /* ps header is one frame delayed */
/*
update vk_master table
*/
if (updateFreqBandTable(&hSbrElement->sbrConfigData,
&hSbrElement->sbrHeaderData,
hEnvEncoder->downSampleFactor))
return (1);
/* reset SBR channels */
INT nEnvCh = hSbrElement->sbrConfigData.nChannels;
for (ch = 0; ch < nEnvCh; ch++) {
if (resetEnvChannel(&hSbrElement->sbrConfigData,
&hSbrElement->sbrHeaderData,
&hSbrElement->sbrChannel[ch]->hEnvChannel))
return (1);
}
}
}
/*
allocate space for dummy header and crc
*/
crcReg = FDKsbrEnc_InitSbrBitstream(
&hSbrElement->CmonData,
hSbrElement->payloadDelayLine[hEnvEncoder->nBitstrDelay],
MAX_PAYLOAD_SIZE * sizeof(UCHAR), &crcInfo,
hSbrElement->sbrConfigData.sbrSyntaxFlags);
/* Temporal Envelope Data */
SBR_FRAME_TEMP_DATA _fData;
SBR_FRAME_TEMP_DATA *fData = &_fData;
SBR_ENV_TEMP_DATA eData[MAX_NUM_CHANNELS];
/* Init Temporal Envelope Data */
{
int i;
FDKmemclear(&eData[0], sizeof(SBR_ENV_TEMP_DATA));
FDKmemclear(&eData[1], sizeof(SBR_ENV_TEMP_DATA));
FDKmemclear(fData, sizeof(SBR_FRAME_TEMP_DATA));
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) fData->res[i] = FREQ_RES_HIGH;
}
if (!clearOutput) {
/*
* Transform audio data into QMF domain
*/
for (ch = 0; ch < hSbrElement->sbrConfigData.nChannels; ch++) {
HANDLE_ENV_CHANNEL h_envChan = &hSbrElement->sbrChannel[ch]->hEnvChannel;
HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &h_envChan->sbrExtractEnvelope;
if (hSbrElement->elInfo.fParametricStereo == 0) {
QMF_SCALE_FACTOR tmpScale;
FIXP_DBL **pQmfReal, **pQmfImag;
C_AALLOC_SCRATCH_START(qmfWorkBuffer, FIXP_DBL, 64 * 2)
/* Obtain pointers to QMF buffers. */
pQmfReal = sbrExtrEnv->rBuffer;
pQmfImag = sbrExtrEnv->iBuffer;
qmfAnalysisFiltering(
hSbrElement->hQmfAnalysis[ch], pQmfReal, pQmfImag, &tmpScale,
samples + hSbrElement->elInfo.ChannelIndex[ch] * samplesBufSize, 0,
1, qmfWorkBuffer);
h_envChan->qmfScale = tmpScale.lb_scale + 7;
C_AALLOC_SCRATCH_END(qmfWorkBuffer, FIXP_DBL, 64 * 2)
} /* fParametricStereo == 0 */
/*
Parametric Stereo processing
*/
if (hSbrElement->elInfo.fParametricStereo) {
INT error = noError;
/* Limit Parametric Stereo to one instance */
FDK_ASSERT(ch == 0);
if (error == noError) {
/* parametric stereo processing:
- input:
o left and right time domain samples
- processing:
o stereo qmf analysis
o stereo hybrid analysis
o ps parameter extraction
o downmix + hybrid synthesis
- output:
o downmixed qmf data is written to sbrExtrEnv->rBuffer and
sbrExtrEnv->iBuffer
*/
SCHAR qmfScale;
INT_PCM *pSamples[2] = {
samples + hSbrElement->elInfo.ChannelIndex[0] * samplesBufSize,
samples + hSbrElement->elInfo.ChannelIndex[1] * samplesBufSize};
error = FDKsbrEnc_PSEnc_ParametricStereoProcessing(
hEnvEncoder->hParametricStereo, pSamples, samplesBufSize,
hSbrElement->hQmfAnalysis, sbrExtrEnv->rBuffer,
sbrExtrEnv->iBuffer,
samples + hSbrElement->elInfo.ChannelIndex[ch] * samplesBufSize,
&hEnvEncoder->qmfSynthesisPS, &qmfScale, psHeaderActive);
h_envChan->qmfScale = (int)qmfScale;
}
} /* if (hEnvEncoder->hParametricStereo) */
/*
Extract Envelope relevant things from QMF data
*/
FDKsbrEnc_extractSbrEnvelope1(&hSbrElement->sbrConfigData,
&hSbrElement->sbrHeaderData,
&hSbrElement->sbrBitstreamData, h_envChan,
&hSbrElement->CmonData, &eData[ch], fData);
} /* hEnvEncoder->sbrConfigData.nChannels */
}
/*
Process Envelope relevant things and calculate envelope data and write
payload
*/
FDKsbrEnc_extractSbrEnvelope2(
&hSbrElement->sbrConfigData, &hSbrElement->sbrHeaderData,
(hSbrElement->elInfo.fParametricStereo) ? hEnvEncoder->hParametricStereo
: NULL,
&hSbrElement->sbrBitstreamData, &hSbrElement->sbrChannel[0]->hEnvChannel,
(hSbrElement->sbrConfigData.stereoMode != SBR_MONO)
? &hSbrElement->sbrChannel[1]->hEnvChannel
: NULL,
&hSbrElement->CmonData, eData, fData, clearOutput);
hSbrElement->sbrBitstreamData.rightBorderFIX = 0;
/*
format payload, calculate crc
*/
FDKsbrEnc_AssembleSbrBitstream(&hSbrElement->CmonData, &crcInfo, crcReg,
hSbrElement->sbrConfigData.sbrSyntaxFlags);
/*
save new payload, set to zero length if greater than MAX_PAYLOAD_SIZE
*/
hSbrElement->payloadDelayLineSize[hEnvEncoder->nBitstrDelay] =
FDKgetValidBits(&hSbrElement->CmonData.sbrBitbuf);
if (hSbrElement->payloadDelayLineSize[hEnvEncoder->nBitstrDelay] >
(MAX_PAYLOAD_SIZE << 3))
hSbrElement->payloadDelayLineSize[hEnvEncoder->nBitstrDelay] = 0;
/* While filling the Delay lines, sbrData is NULL */
if (sbrData) {
*sbrDataBits = hSbrElement->payloadDelayLineSize[0];
FDKmemcpy(sbrData, hSbrElement->payloadDelayLine[0],
(hSbrElement->payloadDelayLineSize[0] + 7) >> 3);
}
/* delay header active flag */
if (hSbrElement->sbrBitstreamData.HeaderActive == 1) {
hSbrElement->sbrBitstreamData.HeaderActiveDelay =
1 + hEnvEncoder->nBitstrDelay;
} else {
if (hSbrElement->sbrBitstreamData.HeaderActiveDelay > 0) {
hSbrElement->sbrBitstreamData.HeaderActiveDelay--;
}
}
return (0);
}
/*****************************************************************************
functionname: FDKsbrEnc_Downsample
description: performs downsampling and delay compensation of the core path
returns:
input:
output:
*****************************************************************************/
INT FDKsbrEnc_Downsample(
HANDLE_SBR_ENCODER hSbrEncoder,
INT_PCM *samples, /*!< time samples, always deinterleaved */
UINT samplesBufSize, /*!< time buffer size per channel */
UINT numChannels, /*!< number of channels */
UINT *sbrDataBits, /*!< Size of SBR payload */
UCHAR *sbrData, /*!< SBR payload */
int clearOutput /*!< Do not consider any input signal */
) {
HANDLE_SBR_ELEMENT hSbrElement = NULL;
INT nOutSamples;
int el;
if (hSbrEncoder->downSampleFactor > 1) {
/* Do downsampling */
/* Loop over elements (LFE is handled later) */
for (el = 0; el < hSbrEncoder->noElements; el++) {
hSbrElement = hSbrEncoder->sbrElement[el];
if (hSbrEncoder->sbrElement[el] != NULL) {
if (hSbrEncoder->downsamplingMethod == SBRENC_DS_TIME) {
int ch;
int nChannels = hSbrElement->sbrConfigData.nChannels;
for (ch = 0; ch < nChannels; ch++) {
FDKaacEnc_Downsample(
&hSbrElement->sbrChannel[ch]->downSampler,
samples +
hSbrElement->elInfo.ChannelIndex[ch] * samplesBufSize +
hSbrEncoder->bufferOffset / numChannels,
hSbrElement->sbrConfigData.frameSize,
samples + hSbrElement->elInfo.ChannelIndex[ch] * samplesBufSize,
&nOutSamples);
}
}
}
}
/* Handle LFE (if existing) */
if (hSbrEncoder->lfeChIdx != -1) { /* lfe downsampler */
FDKaacEnc_Downsample(&hSbrEncoder->lfeDownSampler,
samples + hSbrEncoder->lfeChIdx * samplesBufSize +
hSbrEncoder->bufferOffset / numChannels,
hSbrEncoder->frameSize,
samples + hSbrEncoder->lfeChIdx * samplesBufSize,
&nOutSamples);
}
} else {
/* No downsampling. Still, some buffer shifting for correct delay */
int samples2Copy = hSbrEncoder->frameSize;
if (hSbrEncoder->bufferOffset / (int)numChannels < samples2Copy) {
for (int c = 0; c < (int)numChannels; c++) {
/* Do memmove while taking care of overlapping memory areas. (memcpy
does not necessarily take care) Distinguish between oeverlapping and
non overlapping version due to reasons of complexity. */
FDKmemmove(samples + c * samplesBufSize,
samples + c * samplesBufSize +
hSbrEncoder->bufferOffset / numChannels,
samples2Copy * sizeof(INT_PCM));
}
} else {
for (int c = 0; c < (int)numChannels; c++) {
/* Simple memcpy since the memory areas are not overlapping */
FDKmemcpy(samples + c * samplesBufSize,
samples + c * samplesBufSize +
hSbrEncoder->bufferOffset / numChannels,
samples2Copy * sizeof(INT_PCM));
}
}
}
return 0;
}
/*****************************************************************************
functionname: createEnvChannel
description: initializes parameters and allocates memory
returns: error status
input:
output: hEnv
*****************************************************************************/
static INT createEnvChannel(HANDLE_ENV_CHANNEL hEnv, INT channel,
UCHAR *dynamic_RAM) {
FDKmemclear(hEnv, sizeof(struct ENV_CHANNEL));
if (FDKsbrEnc_CreateTonCorrParamExtr(&hEnv->TonCorr, channel)) {
return (1);
}
if (FDKsbrEnc_CreateExtractSbrEnvelope(&hEnv->sbrExtractEnvelope, channel,
/*chan*/ 0, dynamic_RAM)) {
return (1);
}
return 0;
}
/*****************************************************************************
functionname: initEnvChannel
description: initializes parameters
returns: error status
input:
output:
*****************************************************************************/
static INT initEnvChannel(HANDLE_SBR_CONFIG_DATA sbrConfigData,
HANDLE_SBR_HEADER_DATA sbrHeaderData,
HANDLE_ENV_CHANNEL hEnv, sbrConfigurationPtr params,
ULONG statesInitFlag, INT chanInEl,
UCHAR *dynamic_RAM) {
int frameShift, tran_off = 0;
INT e;
INT tran_fc;
INT timeSlots, timeStep, startIndex;
INT noiseBands[2] = {3, 3};
e = 1 << params->e;
FDK_ASSERT(params->e >= 0);
hEnv->encEnvData.freq_res_fixfix[0] = params->freq_res_fixfix[0];
hEnv->encEnvData.freq_res_fixfix[1] = params->freq_res_fixfix[1];
hEnv->encEnvData.fResTransIsLow = params->fResTransIsLow;
hEnv->fLevelProtect = 0;
hEnv->encEnvData.ldGrid =
(sbrConfigData->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) ? 1 : 0;
hEnv->encEnvData.sbr_xpos_mode = (XPOS_MODE)params->sbr_xpos_mode;
if (hEnv->encEnvData.sbr_xpos_mode == XPOS_SWITCHED) {
/*
no other type than XPOS_MDCT or XPOS_SPEECH allowed,
but enable switching
*/
sbrConfigData->switchTransposers = TRUE;
hEnv->encEnvData.sbr_xpos_mode = XPOS_MDCT;
} else {
sbrConfigData->switchTransposers = FALSE;
}
hEnv->encEnvData.sbr_xpos_ctrl = params->sbr_xpos_ctrl;
/* extended data */
if (params->parametricCoding) {
hEnv->encEnvData.extended_data = 1;
} else {
hEnv->encEnvData.extended_data = 0;
}
hEnv->encEnvData.extension_size = 0;
startIndex = QMF_FILTER_PROTOTYPE_SIZE - sbrConfigData->noQmfBands;
switch (params->sbrFrameSize) {
case 2304:
timeSlots = 18;
break;
case 2048:
case 1024:
case 512:
timeSlots = 16;
break;
case 1920:
case 960:
case 480:
timeSlots = 15;
break;
case 1152:
timeSlots = 9;
break;
default:
return (1); /* Illegal frame size */
}
timeStep = sbrConfigData->noQmfSlots / timeSlots;
if (FDKsbrEnc_InitTonCorrParamExtr(
params->sbrFrameSize, &hEnv->TonCorr, sbrConfigData, timeSlots,
params->sbr_xpos_ctrl, params->ana_max_level,
sbrHeaderData->sbr_noise_bands, params->noiseFloorOffset,
params->useSpeechConfig))
return (1);
hEnv->encEnvData.noOfnoisebands =
hEnv->TonCorr.sbrNoiseFloorEstimate.noNoiseBands;
noiseBands[0] = hEnv->encEnvData.noOfnoisebands;
noiseBands[1] = hEnv->encEnvData.noOfnoisebands;
hEnv->encEnvData.sbr_invf_mode = (INVF_MODE)params->sbr_invf_mode;
if (hEnv->encEnvData.sbr_invf_mode == INVF_SWITCHED) {
hEnv->encEnvData.sbr_invf_mode = INVF_MID_LEVEL;
hEnv->TonCorr.switchInverseFilt = TRUE;
} else {
hEnv->TonCorr.switchInverseFilt = FALSE;
}
tran_fc = params->tran_fc;
if (tran_fc == 0) {
tran_fc = fixMin(
5000, FDKsbrEnc_getSbrStartFreqRAW(sbrHeaderData->sbr_start_frequency,
params->codecSettings.sampleFreq));
}
tran_fc =
(tran_fc * 4 * sbrConfigData->noQmfBands / sbrConfigData->sampleFreq +
1) >>
1;
if (sbrConfigData->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
frameShift = LD_PRETRAN_OFF;
tran_off = LD_PRETRAN_OFF + FRAME_MIDDLE_SLOT_512LD * timeStep;
} else {
frameShift = 0;
switch (timeSlots) {
/* The factor of 2 is by definition. */
case NUMBER_TIME_SLOTS_2048:
tran_off = 8 + FRAME_MIDDLE_SLOT_2048 * timeStep;
break;
case NUMBER_TIME_SLOTS_1920:
tran_off = 7 + FRAME_MIDDLE_SLOT_1920 * timeStep;
break;
default:
return 1;
}
}
if (FDKsbrEnc_InitExtractSbrEnvelope(
&hEnv->sbrExtractEnvelope, sbrConfigData->noQmfSlots,
sbrConfigData->noQmfBands, startIndex, timeSlots, timeStep, tran_off,
statesInitFlag, chanInEl, dynamic_RAM, sbrConfigData->sbrSyntaxFlags))
return (1);
if (FDKsbrEnc_InitSbrCodeEnvelope(&hEnv->sbrCodeEnvelope, sbrConfigData->nSfb,
params->deltaTAcrossFrames,
params->dF_edge_1stEnv,
params->dF_edge_incr))
return (1);
if (FDKsbrEnc_InitSbrCodeEnvelope(&hEnv->sbrCodeNoiseFloor, noiseBands,
params->deltaTAcrossFrames, 0, 0))
return (1);
if (FDKsbrEnc_InitSbrHuffmanTables(&hEnv->encEnvData, &hEnv->sbrCodeEnvelope,
&hEnv->sbrCodeNoiseFloor,
sbrHeaderData->sbr_amp_res))
return (1);
FDKsbrEnc_initFrameInfoGenerator(
&hEnv->SbrEnvFrame, params->spread, e, params->stat, timeSlots,
hEnv->encEnvData.freq_res_fixfix, hEnv->encEnvData.fResTransIsLow,
hEnv->encEnvData.ldGrid);
if (sbrConfigData->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
{
INT bandwidth_qmf_slot =
(sbrConfigData->sampleFreq >> 1) / (sbrConfigData->noQmfBands);
if (FDKsbrEnc_InitSbrFastTransientDetector(
&hEnv->sbrFastTransientDetector, sbrConfigData->noQmfSlots,
bandwidth_qmf_slot, sbrConfigData->noQmfBands,
sbrConfigData->freqBandTable[0][0]))
return (1);
}
/* The transient detector has to be initialized also if the fast transient
detector was active, because the values from the transient detector
structure are used. */
if (FDKsbrEnc_InitSbrTransientDetector(
&hEnv->sbrTransientDetector, sbrConfigData->sbrSyntaxFlags,
sbrConfigData->frameSize, sbrConfigData->sampleFreq, params, tran_fc,
sbrConfigData->noQmfSlots, sbrConfigData->noQmfBands,
hEnv->sbrExtractEnvelope.YBufferWriteOffset,
hEnv->sbrExtractEnvelope.YBufferSzShift, frameShift, tran_off))
return (1);
sbrConfigData->xposCtrlSwitch = params->sbr_xpos_ctrl;
hEnv->encEnvData.noHarmonics = sbrConfigData->nSfb[HI];
hEnv->encEnvData.addHarmonicFlag = 0;
return (0);
}
INT sbrEncoder_Open(HANDLE_SBR_ENCODER *phSbrEncoder, INT nElements,
INT nChannels, INT supportPS) {
INT i;
INT errorStatus = 1;
HANDLE_SBR_ENCODER hSbrEncoder = NULL;
if (phSbrEncoder == NULL) {
goto bail;
}
hSbrEncoder = GetRam_SbrEncoder();
if (hSbrEncoder == NULL) {
goto bail;
}
FDKmemclear(hSbrEncoder, sizeof(SBR_ENCODER));
if (NULL ==
(hSbrEncoder->pSBRdynamic_RAM = (UCHAR *)GetRam_SbrDynamic_RAM())) {
goto bail;
}
hSbrEncoder->dynamicRam = hSbrEncoder->pSBRdynamic_RAM;
/* Create SBR elements */
for (i = 0; i < nElements; i++) {
hSbrEncoder->sbrElement[i] = GetRam_SbrElement(i);
if (hSbrEncoder->sbrElement[i] == NULL) {
goto bail;
}
FDKmemclear(hSbrEncoder->sbrElement[i], sizeof(SBR_ELEMENT));
hSbrEncoder->sbrElement[i]->sbrConfigData.freqBandTable[LO] =
GetRam_Sbr_freqBandTableLO(i);
hSbrEncoder->sbrElement[i]->sbrConfigData.freqBandTable[HI] =
GetRam_Sbr_freqBandTableHI(i);
hSbrEncoder->sbrElement[i]->sbrConfigData.v_k_master =
GetRam_Sbr_v_k_master(i);
if ((hSbrEncoder->sbrElement[i]->sbrConfigData.freqBandTable[LO] == NULL) ||
(hSbrEncoder->sbrElement[i]->sbrConfigData.freqBandTable[HI] == NULL) ||
(hSbrEncoder->sbrElement[i]->sbrConfigData.v_k_master == NULL)) {
goto bail;
}
}
/* Create SBR channels */
for (i = 0; i < nChannels; i++) {
hSbrEncoder->pSbrChannel[i] = GetRam_SbrChannel(i);
if (hSbrEncoder->pSbrChannel[i] == NULL) {
goto bail;
}
if (createEnvChannel(&hSbrEncoder->pSbrChannel[i]->hEnvChannel, i,
hSbrEncoder->dynamicRam)) {
goto bail;
}
}
/* Create QMF States */
for (i = 0; i < fixMax(nChannels, (supportPS) ? 2 : 0); i++) {
hSbrEncoder->QmfAnalysis[i].FilterStates = GetRam_Sbr_QmfStatesAnalysis(i);
if (hSbrEncoder->QmfAnalysis[i].FilterStates == NULL) {
goto bail;
}
}
/* Create Parametric Stereo handle */
if (supportPS) {
if (PSEnc_Create(&hSbrEncoder->hParametricStereo)) {
goto bail;
}
hSbrEncoder->qmfSynthesisPS.FilterStates = GetRam_PsQmfStatesSynthesis();
if (hSbrEncoder->qmfSynthesisPS.FilterStates == NULL) {
goto bail;
}
} /* supportPS */
*phSbrEncoder = hSbrEncoder;
errorStatus = 0;
return errorStatus;
bail:
/* Close SBR encoder instance */
sbrEncoder_Close(&hSbrEncoder);
return errorStatus;
}
static INT FDKsbrEnc_Reallocate(HANDLE_SBR_ENCODER hSbrEncoder,
SBR_ELEMENT_INFO elInfo[(8)],
const INT noElements) {
INT totalCh = 0;
INT totalQmf = 0;
INT coreEl;
INT el = -1;
hSbrEncoder->lfeChIdx = -1; /* default value, until lfe found */
for (coreEl = 0; coreEl < noElements; coreEl++) {
/* SBR only handles SCE and CPE's */
if (elInfo[coreEl].elType == ID_SCE || elInfo[coreEl].elType == ID_CPE) {
el++;
} else {
if (elInfo[coreEl].elType == ID_LFE) {
hSbrEncoder->lfeChIdx = elInfo[coreEl].ChannelIndex[0];
}
continue;
}
SBR_ELEMENT_INFO *pelInfo = &elInfo[coreEl];
HANDLE_SBR_ELEMENT hSbrElement = hSbrEncoder->sbrElement[el];
int ch;
for (ch = 0; ch < pelInfo->nChannelsInEl; ch++) {
hSbrElement->sbrChannel[ch] = hSbrEncoder->pSbrChannel[totalCh];
totalCh++;
}
/* analysis QMF */
for (ch = 0;
ch < ((pelInfo->fParametricStereo) ? 2 : pelInfo->nChannelsInEl);
ch++) {
hSbrElement->elInfo.ChannelIndex[ch] = pelInfo->ChannelIndex[ch];
hSbrElement->hQmfAnalysis[ch] = &hSbrEncoder->QmfAnalysis[totalQmf++];
}
/* Copy Element info */
hSbrElement->elInfo.elType = pelInfo->elType;
hSbrElement->elInfo.instanceTag = pelInfo->instanceTag;
hSbrElement->elInfo.nChannelsInEl = pelInfo->nChannelsInEl;
hSbrElement->elInfo.fParametricStereo = pelInfo->fParametricStereo;
hSbrElement->elInfo.fDualMono = pelInfo->fDualMono;
} /* coreEl */
return 0;
}
/*****************************************************************************
functionname: FDKsbrEnc_bsBufInit
description: initializes bitstream buffer
returns: initialized bitstream buffer in env encoder
input:
output: hEnv
*****************************************************************************/
static INT FDKsbrEnc_bsBufInit(HANDLE_SBR_ELEMENT hSbrElement,
int nBitstrDelay) {
UCHAR *bitstreamBuffer;
/* initialize the bitstream buffer */
bitstreamBuffer = hSbrElement->payloadDelayLine[nBitstrDelay];
FDKinitBitStream(&hSbrElement->CmonData.sbrBitbuf, bitstreamBuffer,
MAX_PAYLOAD_SIZE * sizeof(UCHAR), 0, BS_WRITER);
return (0);
}
/*****************************************************************************
functionname: FDKsbrEnc_EnvInit
description: initializes parameters
returns: error status
input:
output: hEnv
*****************************************************************************/
static INT FDKsbrEnc_EnvInit(HANDLE_SBR_ELEMENT hSbrElement,
sbrConfigurationPtr params, INT *coreBandWith,
AUDIO_OBJECT_TYPE aot, int nElement,
const int headerPeriod, ULONG statesInitFlag,
const SBRENC_DS_TYPE downsamplingMethod,
UCHAR *dynamic_RAM) {
int ch, i;
if ((params->codecSettings.nChannels < 1) ||
(params->codecSettings.nChannels > MAX_NUM_CHANNELS)) {
return (1);
}
/* init and set syntax flags */
hSbrElement->sbrConfigData.sbrSyntaxFlags = 0;
switch (aot) {
case AOT_ER_AAC_ELD:
hSbrElement->sbrConfigData.sbrSyntaxFlags |= SBR_SYNTAX_LOW_DELAY;
break;
default:
break;
}
if (params->crcSbr) {
hSbrElement->sbrConfigData.sbrSyntaxFlags |= SBR_SYNTAX_CRC;
}
hSbrElement->sbrConfigData.noQmfBands = 64 >> (2 - params->downSampleFactor);
switch (hSbrElement->sbrConfigData.noQmfBands) {
case 64:
hSbrElement->sbrConfigData.noQmfSlots = params->sbrFrameSize >> 6;
break;
case 32:
hSbrElement->sbrConfigData.noQmfSlots = params->sbrFrameSize >> 5;
break;
default:
hSbrElement->sbrConfigData.noQmfSlots = params->sbrFrameSize >> 6;
return (2);
}
/*
now initialize sbrConfigData, sbrHeaderData and sbrBitstreamData,
*/
hSbrElement->sbrConfigData.nChannels = params->codecSettings.nChannels;
if (params->codecSettings.nChannels == 2) {
if ((hSbrElement->elInfo.elType == ID_CPE) &&
((hSbrElement->elInfo.fDualMono == 1))) {
hSbrElement->sbrConfigData.stereoMode = SBR_LEFT_RIGHT;
} else {
hSbrElement->sbrConfigData.stereoMode = params->stereoMode;
}
} else {
hSbrElement->sbrConfigData.stereoMode = SBR_MONO;
}
hSbrElement->sbrConfigData.frameSize = params->sbrFrameSize;
hSbrElement->sbrConfigData.sampleFreq =
params->downSampleFactor * params->codecSettings.sampleFreq;
hSbrElement->sbrBitstreamData.CountSendHeaderData = 0;
if (params->SendHeaderDataTime > 0) {
if (headerPeriod == -1) {
hSbrElement->sbrBitstreamData.NrSendHeaderData = (INT)(
params->SendHeaderDataTime * hSbrElement->sbrConfigData.sampleFreq /
(1000 * hSbrElement->sbrConfigData.frameSize));
hSbrElement->sbrBitstreamData.NrSendHeaderData =
fixMax(hSbrElement->sbrBitstreamData.NrSendHeaderData, 1);
} else {
/* assure header period at least once per second */
hSbrElement->sbrBitstreamData.NrSendHeaderData = fixMin(
fixMax(headerPeriod, 1), (hSbrElement->sbrConfigData.sampleFreq /
hSbrElement->sbrConfigData.frameSize));
}
} else {
hSbrElement->sbrBitstreamData.NrSendHeaderData = 0;
}
hSbrElement->sbrHeaderData.sbr_data_extra = params->sbr_data_extra;
hSbrElement->sbrBitstreamData.HeaderActive = 0;
hSbrElement->sbrBitstreamData.rightBorderFIX = 0;
hSbrElement->sbrHeaderData.sbr_start_frequency = params->startFreq;
hSbrElement->sbrHeaderData.sbr_stop_frequency = params->stopFreq;
hSbrElement->sbrHeaderData.sbr_xover_band = 0;
hSbrElement->sbrHeaderData.sbr_lc_stereo_mode = 0;
/* data_extra */
if (params->sbr_xpos_ctrl != SBR_XPOS_CTRL_DEFAULT)
hSbrElement->sbrHeaderData.sbr_data_extra = 1;
hSbrElement->sbrHeaderData.sbr_amp_res = (AMP_RES)params->amp_res;
hSbrElement->sbrConfigData.initAmpResFF = params->init_amp_res_FF;
/* header_extra_1 */
hSbrElement->sbrHeaderData.freqScale = params->freqScale;
hSbrElement->sbrHeaderData.alterScale = params->alterScale;
hSbrElement->sbrHeaderData.sbr_noise_bands = params->sbr_noise_bands;
hSbrElement->sbrHeaderData.header_extra_1 = 0;
if ((params->freqScale != SBR_FREQ_SCALE_DEFAULT) ||
(params->alterScale != SBR_ALTER_SCALE_DEFAULT) ||
(params->sbr_noise_bands != SBR_NOISE_BANDS_DEFAULT)) {
hSbrElement->sbrHeaderData.header_extra_1 = 1;
}
/* header_extra_2 */
hSbrElement->sbrHeaderData.sbr_limiter_bands = params->sbr_limiter_bands;
hSbrElement->sbrHeaderData.sbr_limiter_gains = params->sbr_limiter_gains;
if ((hSbrElement->sbrConfigData.sampleFreq > 48000) &&
(hSbrElement->sbrHeaderData.sbr_start_frequency >= 9)) {
hSbrElement->sbrHeaderData.sbr_limiter_gains = SBR_LIMITER_GAINS_INFINITE;
}
hSbrElement->sbrHeaderData.sbr_interpol_freq = params->sbr_interpol_freq;
hSbrElement->sbrHeaderData.sbr_smoothing_length =
params->sbr_smoothing_length;
hSbrElement->sbrHeaderData.header_extra_2 = 0;
if ((params->sbr_limiter_bands != SBR_LIMITER_BANDS_DEFAULT) ||
(params->sbr_limiter_gains != SBR_LIMITER_GAINS_DEFAULT) ||
(params->sbr_interpol_freq != SBR_INTERPOL_FREQ_DEFAULT) ||
(params->sbr_smoothing_length != SBR_SMOOTHING_LENGTH_DEFAULT)) {
hSbrElement->sbrHeaderData.header_extra_2 = 1;
}
/* other switches */
hSbrElement->sbrConfigData.useWaveCoding = params->useWaveCoding;
hSbrElement->sbrConfigData.useParametricCoding = params->parametricCoding;
hSbrElement->sbrConfigData.thresholdAmpResFF_m =
params->threshold_AmpRes_FF_m;
hSbrElement->sbrConfigData.thresholdAmpResFF_e =
params->threshold_AmpRes_FF_e;
/* init freq band table */
if (updateFreqBandTable(&hSbrElement->sbrConfigData,
&hSbrElement->sbrHeaderData,
params->downSampleFactor)) {
return (1);
}
/* now create envelope ext and QMF for each available channel */
for (ch = 0; ch < hSbrElement->sbrConfigData.nChannels; ch++) {
if (initEnvChannel(&hSbrElement->sbrConfigData, &hSbrElement->sbrHeaderData,
&hSbrElement->sbrChannel[ch]->hEnvChannel, params,
statesInitFlag, ch, dynamic_RAM)) {
return (1);
}
} /* nChannels */
/* reset and intialize analysis qmf */
for (ch = 0; ch < ((hSbrElement->elInfo.fParametricStereo)
? 2
: hSbrElement->sbrConfigData.nChannels);
ch++) {
int err;
UINT qmfFlags =
(hSbrElement->sbrConfigData.sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
? QMF_FLAG_CLDFB
: 0;
if (statesInitFlag)
qmfFlags &= ~QMF_FLAG_KEEP_STATES;
else
qmfFlags |= QMF_FLAG_KEEP_STATES;
err = qmfInitAnalysisFilterBank(
hSbrElement->hQmfAnalysis[ch],
(FIXP_QAS *)hSbrElement->hQmfAnalysis[ch]->FilterStates,
hSbrElement->sbrConfigData.noQmfSlots,
hSbrElement->sbrConfigData.noQmfBands,
hSbrElement->sbrConfigData.noQmfBands,
hSbrElement->sbrConfigData.noQmfBands, qmfFlags);
if (0 != err) {
return err;
}
}
/* */
hSbrElement->CmonData.xOverFreq = hSbrElement->sbrConfigData.xOverFreq;
hSbrElement->CmonData.dynBwEnabled =
(params->dynBwSupported && params->dynBwEnabled);
hSbrElement->CmonData.dynXOverFreqEnc =
FDKsbrEnc_SbrGetXOverFreq(hSbrElement, hSbrElement->CmonData.xOverFreq);
for (i = 0; i < 5; i++)
hSbrElement->dynXOverFreqDelay[i] = hSbrElement->CmonData.dynXOverFreqEnc;
hSbrElement->CmonData.sbrNumChannels = hSbrElement->sbrConfigData.nChannels;
hSbrElement->sbrConfigData.dynXOverFreq = hSbrElement->CmonData.xOverFreq;
/* Update Bandwith to be passed to the core encoder */
*coreBandWith = hSbrElement->CmonData.xOverFreq;
return (0);
}
INT sbrEncoder_GetInBufferSize(int noChannels) {
INT temp;
temp = (2048);
temp += 1024 + MAX_SAMPLE_DELAY;
temp *= noChannels;
temp *= sizeof(INT_PCM);
return temp;
}
/*
* Encode Dummy SBR payload frames to fill the delay lines.
*/
static INT FDKsbrEnc_DelayCompensation(HANDLE_SBR_ENCODER hEnvEnc,
INT_PCM *timeBuffer,
UINT timeBufferBufSize) {
int n, el;
for (n = hEnvEnc->nBitstrDelay; n > 0; n--) {
for (el = 0; el < hEnvEnc->noElements; el++) {
if (FDKsbrEnc_EnvEncodeFrame(
hEnvEnc, el,
timeBuffer + hEnvEnc->downsampledOffset / hEnvEnc->nChannels,
timeBufferBufSize, NULL, NULL, 1))
return -1;
}
sbrEncoder_UpdateBuffers(hEnvEnc, timeBuffer, timeBufferBufSize);
}
return 0;
}
UINT sbrEncoder_LimitBitRate(UINT bitRate, UINT numChannels,
UINT coreSampleRate, AUDIO_OBJECT_TYPE aot) {
UINT newBitRate = bitRate;
INT index;
FDK_ASSERT(numChannels > 0 && numChannels <= 2);
if (aot == AOT_PS) {
if (numChannels == 1) {
index = getPsTuningTableIndex(bitRate, &newBitRate);
if (index == INVALID_TABLE_IDX) {
bitRate = newBitRate;
}
} else {
return 0;
}
}
index = getSbrTuningTableIndex(bitRate, numChannels, coreSampleRate, aot,
&newBitRate);
if (index != INVALID_TABLE_IDX) {
newBitRate = bitRate;
}
return newBitRate;
}
UINT sbrEncoder_IsSingleRatePossible(AUDIO_OBJECT_TYPE aot) {
UINT isPossible = (AOT_PS == aot) ? 0 : 1;
return isPossible;
}
/*****************************************************************************/
/* */
/*functionname: sbrEncoder_Init_delay */
/*description: Determine Delay balancing and new encoder delay */
/* */
/*returns: - error status */
/*input: - frame length of the core (i.e. e.g. AAC) */
/* - number of channels */
/* - downsample factor (1 for downsampled, 2 for dual-rate SBR) */
/* - low delay presence */
/* - ps presence */
/* - downsampling method: QMF-, time domain or no downsampling */
/* - various delay values (see DELAY_PARAM struct description) */
/* */
/*Example: Delay balancing for a HE-AACv1 encoder (time-domain downsampling) */
/*========================================================================== */
/* */
/* +--------+ +--------+ +--------+ +--------+ +--------+ */
/* |core | |ds 2:1 | |AAC | |QMF | |QMF | */
/* +-+path +------------+ +-+core +-+analysis+-+overlap +-+ */
/* | |offset | | | | | |32 bands| | | | */
/* | +--------+ +--------+ +--------+ +--------+ +--------+ | */
/* | core path +-------++ */
/* | |QMF | */
/*->+ +synth. +-> */
/* | |64 bands| */
/* | +-------++ */
/* | +--------+ +--------+ +--------+ +--------+ | */
/* | |SBR path| |QMF | |subband | |bs delay| | */
/* +-+offset +-+analysis+-+sample +-+(full +-----------------------+ */
/* | | |64 bands| |buffer | | frames)| */
/* +--------+ +--------+ +--------+ +--------+ */
/* SBR path */
/* */
/*****************************************************************************/
static INT sbrEncoder_Init_delay(
const int coreFrameLength, /* input */
const int numChannels, /* input */
const int downSampleFactor, /* input */
const int lowDelay, /* input */
const int usePs, /* input */
const int is212, /* input */
const SBRENC_DS_TYPE downsamplingMethod, /* input */
DELAY_PARAM *hDelayParam /* input/output */
) {
int delayCorePath = 0; /* delay in core path */
int delaySbrPath = 0; /* delay difference in QMF aka SBR path */
int delayInput2Core = 0; /* delay from the input to the core */
int delaySbrDec = 0; /* delay of the decoder's SBR module */
int delayCore = hDelayParam->delay; /* delay of the core */
/* Added delay by the SBR delay initialization */
int corePathOffset = 0; /* core path */
int sbrPathOffset = 0; /* sbr path */
int bitstreamDelay = 0; /* sbr path, framewise */
int flCore = coreFrameLength; /* core frame length */
int returnValue = 0; /* return value - 0 means: no error */
/* 1) Calculate actual delay for core and SBR path */
if (is212) {
delayCorePath = DELAY_COREPATH_ELDv2SBR(flCore, downSampleFactor);
delaySbrPath = DELAY_ELDv2SBR(flCore, downSampleFactor);
delaySbrDec = ((flCore) / 2) * (downSampleFactor);
} else if (lowDelay) {
delayCorePath = DELAY_COREPATH_ELDSBR(flCore, downSampleFactor);
delaySbrPath = DELAY_ELDSBR(flCore, downSampleFactor);
delaySbrDec = DELAY_QMF_POSTPROC(downSampleFactor);
} else if (usePs) {
delayCorePath = DELAY_COREPATH_PS(flCore, downSampleFactor);
delaySbrPath = DELAY_PS(flCore, downSampleFactor);
delaySbrDec = DELAY_COREPATH_SBR(flCore, downSampleFactor);
} else {
delayCorePath = DELAY_COREPATH_SBR(flCore, downSampleFactor);
delaySbrPath = DELAY_SBR(flCore, downSampleFactor);
delaySbrDec = DELAY_COREPATH_SBR(flCore, downSampleFactor);
}
delayCorePath += delayCore * downSampleFactor;
delayCorePath +=
(downsamplingMethod == SBRENC_DS_TIME) ? hDelayParam->dsDelay : 0;
/* 2) Manage coupling of paths */
if (downsamplingMethod == SBRENC_DS_QMF && delayCorePath > delaySbrPath) {
/* In case of QMF downsampling, both paths are coupled, i.e. the SBR path
offset would be added to both the SBR path and to the core path
as well, thus making it impossible to achieve delay balancing.
To overcome that problem, a framewise delay is added to the SBR path
first, until the overall delay of the core path is shorter than
the delay of the SBR path. When this is achieved, the missing delay
difference can be added as downsampled offset to the core path.
*/
while (delayCorePath > delaySbrPath) {
/* Add one frame delay to SBR path */
delaySbrPath += flCore * downSampleFactor;
bitstreamDelay += 1;
}
}
/* 3) Calculate necessary additional delay to balance the paths */
if (delayCorePath > delaySbrPath) {
/* Delay QMF input */
while (delayCorePath > delaySbrPath + (int)flCore * (int)downSampleFactor) {
/* Do bitstream frame-wise delay balancing if there are
more than SBR framelength samples delay difference */
delaySbrPath += flCore * downSampleFactor;
bitstreamDelay += 1;
}
/* Multiply input offset by input channels */
corePathOffset = 0;
sbrPathOffset = (delayCorePath - delaySbrPath) * numChannels;
} else {
/* Delay AAC data */
/* Multiply downsampled offset by AAC core channels. Divide by 2 because of
half samplerate of downsampled data. */
corePathOffset = ((delaySbrPath - delayCorePath) * numChannels) >>
(downSampleFactor - 1);
sbrPathOffset = 0;
}
/* 4) Calculate delay from input to core */
if (usePs) {
delayInput2Core =
(DELAY_QMF_ANA(downSampleFactor) + DELAY_QMF_DS + DELAY_HYB_SYN) +
(downSampleFactor * corePathOffset) + 1;
} else if (downsamplingMethod == SBRENC_DS_TIME) {
delayInput2Core = corePathOffset + hDelayParam->dsDelay;
} else {
delayInput2Core = corePathOffset;
}
/* 6) Set output parameters */
hDelayParam->delay = FDKmax(delayCorePath, delaySbrPath); /* overall delay */
hDelayParam->sbrDecDelay = delaySbrDec; /* SBR decoder delay */
hDelayParam->delayInput2Core = delayInput2Core; /* delay input - core */
hDelayParam->bitstrDelay = bitstreamDelay; /* bitstream delay, in frames */
hDelayParam->corePathOffset = corePathOffset; /* offset added to core path */
hDelayParam->sbrPathOffset = sbrPathOffset; /* offset added to SBR path */
return returnValue;
}
/*****************************************************************************
functionname: sbrEncoder_Init
description: initializes the SBR encoder
returns: error status
*****************************************************************************/
INT sbrEncoder_Init(HANDLE_SBR_ENCODER hSbrEncoder,
SBR_ELEMENT_INFO elInfo[(8)], int noElements,
INT_PCM *inputBuffer, UINT inputBufferBufSize,
INT *coreBandwidth, INT *inputBufferOffset,
INT *numChannels, const UINT syntaxFlags,
INT *coreSampleRate, UINT *downSampleFactor,
INT *frameLength, AUDIO_OBJECT_TYPE aot, int *delay,
int transformFactor, const int headerPeriod,
ULONG statesInitFlag) {
HANDLE_ERROR_INFO errorInfo = noError;
sbrConfiguration sbrConfig[(8)];
INT error = 0;
INT lowestBandwidth;
/* Save input parameters */
INT inputSampleRate = *coreSampleRate;
int coreFrameLength = *frameLength;
int inputBandWidth = *coreBandwidth;
int inputChannels = *numChannels;
SBRENC_DS_TYPE downsamplingMethod = SBRENC_DS_NONE;
int highestSbrStartFreq, highestSbrStopFreq;
int lowDelay = 0;
int usePs = 0;
int is212 = 0;
DELAY_PARAM delayParam;
/* check whether SBR setting is available for the current encoder
* configuration (bitrate, samplerate) */
if (!sbrEncoder_IsSingleRatePossible(aot)) {
*downSampleFactor = 2;
}
if (aot == AOT_PS) {
usePs = 1;
}
if (aot == AOT_ER_AAC_ELD) {
lowDelay = 1;
} else if (aot == AOT_ER_AAC_LD) {
error = 1;
goto bail;
}
/* Parametric Stereo */
if (usePs) {
if (*numChannels == 2 && noElements == 1) {
/* Override Element type in case of Parametric stereo */
elInfo[0].elType = ID_SCE;
elInfo[0].fParametricStereo = 1;
elInfo[0].nChannelsInEl = 1;
/* core encoder gets downmixed mono signal */
*numChannels = 1;
} else {
error = 1;
goto bail;
}
} /* usePs */
/* set the core's sample rate */
switch (*downSampleFactor) {
case 1:
*coreSampleRate = inputSampleRate;
downsamplingMethod = SBRENC_DS_NONE;
break;
case 2:
*coreSampleRate = inputSampleRate >> 1;
downsamplingMethod = usePs ? SBRENC_DS_QMF : SBRENC_DS_TIME;
break;
default:
*coreSampleRate = inputSampleRate >> 1;
return 0; /* return error */
}
/* check whether SBR setting is available for the current encoder
* configuration (bitrate, coreSampleRate) */
{
int el, coreEl;
/* Check if every element config is feasible */
for (coreEl = 0; coreEl < noElements; coreEl++) {
/* SBR only handles SCE and CPE's */
if (elInfo[coreEl].elType != ID_SCE && elInfo[coreEl].elType != ID_CPE) {
continue;
}
/* check if desired configuration is available */
if (!FDKsbrEnc_IsSbrSettingAvail(elInfo[coreEl].bitRate, 0,
elInfo[coreEl].nChannelsInEl,
inputSampleRate, *coreSampleRate, aot)) {
error = 1;
goto bail;
}
}
hSbrEncoder->nChannels = *numChannels;
hSbrEncoder->frameSize = coreFrameLength * *downSampleFactor;
hSbrEncoder->downsamplingMethod = downsamplingMethod;
hSbrEncoder->downSampleFactor = *downSampleFactor;
hSbrEncoder->estimateBitrate = 0;
hSbrEncoder->inputDataDelay = 0;
is212 = ((aot == AOT_ER_AAC_ELD) && (syntaxFlags & AC_LD_MPS)) ? 1 : 0;
/* Open SBR elements */
el = -1;
highestSbrStartFreq = highestSbrStopFreq = 0;
lowestBandwidth = 99999;
/* Loop through each core encoder element and get a matching SBR element
* config */
for (coreEl = 0; coreEl < noElements; coreEl++) {
/* SBR only handles SCE and CPE's */
if (elInfo[coreEl].elType == ID_SCE || elInfo[coreEl].elType == ID_CPE) {
el++;
} else {
continue;
}
/* Set parametric Stereo Flag. */
if (usePs) {
elInfo[coreEl].fParametricStereo = 1;
} else {
elInfo[coreEl].fParametricStereo = 0;
}
/*
* Init sbrConfig structure
*/
if (!FDKsbrEnc_InitializeSbrDefaults(&sbrConfig[el], *downSampleFactor,
coreFrameLength, IS_LOWDELAY(aot))) {
error = 1;
goto bail;
}
/*
* Modify sbrConfig structure according to Element parameters
*/
if (!FDKsbrEnc_AdjustSbrSettings(
&sbrConfig[el], elInfo[coreEl].bitRate,
elInfo[coreEl].nChannelsInEl, *coreSampleRate, inputSampleRate,
transformFactor, 24000, 0, 0, /* useSpeechConfig */
0, /* lcsMode */
usePs, /* bParametricStereo */
aot)) {
error = 1;
goto bail;
}
/* Find common frequency border for all SBR elements */
highestSbrStartFreq =
fixMax(highestSbrStartFreq, sbrConfig[el].startFreq);
highestSbrStopFreq = fixMax(highestSbrStopFreq, sbrConfig[el].stopFreq);
} /* first element loop */
/* Set element count (can be less than core encoder element count) */
hSbrEncoder->noElements = el + 1;
FDKsbrEnc_Reallocate(hSbrEncoder, elInfo, noElements);
for (el = 0; el < hSbrEncoder->noElements; el++) {
int bandwidth = *coreBandwidth;
/* Use lowest common bandwidth */
sbrConfig[el].startFreq = highestSbrStartFreq;
sbrConfig[el].stopFreq = highestSbrStopFreq;
/* initialize SBR element, and get core bandwidth */
error = FDKsbrEnc_EnvInit(hSbrEncoder->sbrElement[el], &sbrConfig[el],
&bandwidth, aot, el, headerPeriod,
statesInitFlag, hSbrEncoder->downsamplingMethod,
hSbrEncoder->dynamicRam);
if (error != 0) {
error = 2;
goto bail;
}
/* Get lowest core encoder bandwidth to be returned later. */
lowestBandwidth = fixMin(lowestBandwidth, bandwidth);
} /* second element loop */
/* Initialize a downsampler for each channel in each SBR element */
if (hSbrEncoder->downsamplingMethod == SBRENC_DS_TIME) {
for (el = 0; el < hSbrEncoder->noElements; el++) {
HANDLE_SBR_ELEMENT hSbrEl = hSbrEncoder->sbrElement[el];
INT Wc, ch;
Wc = 500; /* Cutoff frequency with full bandwidth */
for (ch = 0; ch < hSbrEl->elInfo.nChannelsInEl; ch++) {
FDKaacEnc_InitDownsampler(&hSbrEl->sbrChannel[ch]->downSampler, Wc,
*downSampleFactor);
FDK_ASSERT(hSbrEl->sbrChannel[ch]->downSampler.delay <=
MAX_DS_FILTER_DELAY);
}
} /* third element loop */
/* lfe */
FDKaacEnc_InitDownsampler(&hSbrEncoder->lfeDownSampler, 0,
*downSampleFactor);
}
/* Get delay information */
delayParam.dsDelay =
hSbrEncoder->sbrElement[0]->sbrChannel[0]->downSampler.delay;
delayParam.delay = *delay;
error = sbrEncoder_Init_delay(coreFrameLength, *numChannels,
*downSampleFactor, lowDelay, usePs, is212,
downsamplingMethod, &delayParam);
if (error != 0) {
error = 3;
goto bail;
}
hSbrEncoder->nBitstrDelay = delayParam.bitstrDelay;
hSbrEncoder->sbrDecDelay = delayParam.sbrDecDelay;
hSbrEncoder->inputDataDelay = delayParam.delayInput2Core;
/* Assign core encoder Bandwidth */
*coreBandwidth = lowestBandwidth;
/* Estimate sbr bitrate, 2.5 kBit/s per sbr channel */
hSbrEncoder->estimateBitrate += 2500 * (*numChannels);
/* Initialize bitstream buffer for each element */
for (el = 0; el < hSbrEncoder->noElements; el++) {
FDKsbrEnc_bsBufInit(hSbrEncoder->sbrElement[el], delayParam.bitstrDelay);
}
/* initialize parametric stereo */
if (usePs) {
PSENC_CONFIG psEncConfig;
FDK_ASSERT(hSbrEncoder->noElements == 1);
INT psTuningTableIdx = getPsTuningTableIndex(elInfo[0].bitRate, NULL);
psEncConfig.frameSize = coreFrameLength; // sbrConfig.sbrFrameSize;
psEncConfig.qmfFilterMode = 0;
psEncConfig.sbrPsDelay = 0;
/* tuning parameters */
if (psTuningTableIdx != INVALID_TABLE_IDX) {
psEncConfig.nStereoBands = psTuningTable[psTuningTableIdx].nStereoBands;
psEncConfig.maxEnvelopes = psTuningTable[psTuningTableIdx].nEnvelopes;
psEncConfig.iidQuantErrorThreshold =
(FIXP_DBL)psTuningTable[psTuningTableIdx].iidQuantErrorThreshold;
/* calculation is not quite linear, increased number of envelopes causes
* more bits */
/* assume avg. 50 bits per frame for 10 stereo bands / 1 envelope
* configuration */
hSbrEncoder->estimateBitrate +=
((((*coreSampleRate) * 5 * psEncConfig.nStereoBands *
psEncConfig.maxEnvelopes) /
hSbrEncoder->frameSize));
} else {
error = ERROR(CDI, "Invalid ps tuning table index.");
goto bail;
}
qmfInitSynthesisFilterBank(
&hSbrEncoder->qmfSynthesisPS,
(FIXP_DBL *)hSbrEncoder->qmfSynthesisPS.FilterStates,
hSbrEncoder->sbrElement[0]->sbrConfigData.noQmfSlots,
hSbrEncoder->sbrElement[0]->sbrConfigData.noQmfBands >> 1,
hSbrEncoder->sbrElement[0]->sbrConfigData.noQmfBands >> 1,
hSbrEncoder->sbrElement[0]->sbrConfigData.noQmfBands >> 1,
(statesInitFlag) ? 0 : QMF_FLAG_KEEP_STATES);
if (errorInfo == noError) {
/* update delay */
psEncConfig.sbrPsDelay =
FDKsbrEnc_GetEnvEstDelay(&hSbrEncoder->sbrElement[0]
->sbrChannel[0]
->hEnvChannel.sbrExtractEnvelope);
errorInfo =
PSEnc_Init(hSbrEncoder->hParametricStereo, &psEncConfig,
hSbrEncoder->sbrElement[0]->sbrConfigData.noQmfSlots,
hSbrEncoder->sbrElement[0]->sbrConfigData.noQmfBands,
hSbrEncoder->dynamicRam);
}
}
hSbrEncoder->downsampledOffset = delayParam.corePathOffset;
hSbrEncoder->bufferOffset = delayParam.sbrPathOffset;
*delay = delayParam.delay;
{ hSbrEncoder->downmixSize = coreFrameLength * (*numChannels); }
/* Delay Compensation: fill bitstream delay buffer with zero input signal */
if (hSbrEncoder->nBitstrDelay > 0) {
error = FDKsbrEnc_DelayCompensation(hSbrEncoder, inputBuffer,
inputBufferBufSize);
if (error != 0) goto bail;
}
/* Set Output frame length */
*frameLength = coreFrameLength * *downSampleFactor;
/* Input buffer offset */
*inputBufferOffset =
fixMax(delayParam.sbrPathOffset, delayParam.corePathOffset);
}
return error;
bail:
/* Restore input settings */
*coreSampleRate = inputSampleRate;
*frameLength = coreFrameLength;
*numChannels = inputChannels;
*coreBandwidth = inputBandWidth;
return error;
}
INT sbrEncoder_EncodeFrame(HANDLE_SBR_ENCODER hSbrEncoder, INT_PCM *samples,
UINT samplesBufSize, UINT sbrDataBits[(8)],
UCHAR sbrData[(8)][MAX_PAYLOAD_SIZE]) {
INT error;
int el;
for (el = 0; el < hSbrEncoder->noElements; el++) {
if (hSbrEncoder->sbrElement[el] != NULL) {
error = FDKsbrEnc_EnvEncodeFrame(
hSbrEncoder, el,
samples + hSbrEncoder->downsampledOffset / hSbrEncoder->nChannels,
samplesBufSize, &sbrDataBits[el], sbrData[el], 0);
if (error) return error;
}
}
error = FDKsbrEnc_Downsample(
hSbrEncoder,
samples + hSbrEncoder->downsampledOffset / hSbrEncoder->nChannels,
samplesBufSize, hSbrEncoder->nChannels, &sbrDataBits[el], sbrData[el], 0);
if (error) return error;
return 0;
}
INT sbrEncoder_UpdateBuffers(HANDLE_SBR_ENCODER hSbrEncoder,
INT_PCM *timeBuffer, UINT timeBufferBufSize) {
if (hSbrEncoder->downsampledOffset > 0) {
int c;
int nd = hSbrEncoder->downmixSize / hSbrEncoder->nChannels;
for (c = 0; c < hSbrEncoder->nChannels; c++) {
/* Move delayed downsampled data */
FDKmemcpy(timeBuffer + timeBufferBufSize * c,
timeBuffer + timeBufferBufSize * c + nd,
sizeof(INT_PCM) *
(hSbrEncoder->downsampledOffset / hSbrEncoder->nChannels));
}
} else {
int c;
for (c = 0; c < hSbrEncoder->nChannels; c++) {
/* Move delayed input data */
FDKmemcpy(
timeBuffer + timeBufferBufSize * c,
timeBuffer + timeBufferBufSize * c + hSbrEncoder->frameSize,
sizeof(INT_PCM) * hSbrEncoder->bufferOffset / hSbrEncoder->nChannels);
}
}
if (hSbrEncoder->nBitstrDelay > 0) {
int el;
for (el = 0; el < hSbrEncoder->noElements; el++) {
FDKmemmove(
hSbrEncoder->sbrElement[el]->payloadDelayLine[0],
hSbrEncoder->sbrElement[el]->payloadDelayLine[1],
sizeof(UCHAR) * (hSbrEncoder->nBitstrDelay * MAX_PAYLOAD_SIZE));
FDKmemmove(&hSbrEncoder->sbrElement[el]->payloadDelayLineSize[0],
&hSbrEncoder->sbrElement[el]->payloadDelayLineSize[1],
sizeof(UINT) * (hSbrEncoder->nBitstrDelay));
}
}
return 0;
}
INT sbrEncoder_SendHeader(HANDLE_SBR_ENCODER hSbrEncoder) {
INT error = -1;
if (hSbrEncoder) {
int el;
for (el = 0; el < hSbrEncoder->noElements; el++) {
if ((hSbrEncoder->noElements == 1) &&
(hSbrEncoder->sbrElement[0]->elInfo.fParametricStereo == 1)) {
hSbrEncoder->sbrElement[el]->sbrBitstreamData.CountSendHeaderData =
hSbrEncoder->sbrElement[el]->sbrBitstreamData.NrSendHeaderData - 1;
} else {
hSbrEncoder->sbrElement[el]->sbrBitstreamData.CountSendHeaderData = 0;
}
}
error = 0;
}
return error;
}
INT sbrEncoder_ContainsHeader(HANDLE_SBR_ENCODER hSbrEncoder) {
INT sbrHeader = 1;
if (hSbrEncoder) {
int el;
for (el = 0; el < hSbrEncoder->noElements; el++) {
sbrHeader &=
(hSbrEncoder->sbrElement[el]->sbrBitstreamData.HeaderActiveDelay == 1)
? 1
: 0;
}
}
return sbrHeader;
}
INT sbrEncoder_GetHeaderDelay(HANDLE_SBR_ENCODER hSbrEncoder) {
INT delay = -1;
if (hSbrEncoder) {
if ((hSbrEncoder->noElements == 1) &&
(hSbrEncoder->sbrElement[0]->elInfo.fParametricStereo == 1)) {
delay = hSbrEncoder->nBitstrDelay + 1;
} else {
delay = hSbrEncoder->nBitstrDelay;
}
}
return delay;
}
INT sbrEncoder_GetBsDelay(HANDLE_SBR_ENCODER hSbrEncoder) {
INT delay = -1;
if (hSbrEncoder) {
delay = hSbrEncoder->nBitstrDelay;
}
return delay;
}
INT sbrEncoder_SAPPrepare(HANDLE_SBR_ENCODER hSbrEncoder) {
INT error = -1;
if (hSbrEncoder) {
int el;
for (el = 0; el < hSbrEncoder->noElements; el++) {
hSbrEncoder->sbrElement[el]->sbrBitstreamData.rightBorderFIX = 1;
}
error = 0;
}
return error;
}
INT sbrEncoder_GetEstimateBitrate(HANDLE_SBR_ENCODER hSbrEncoder) {
INT estimateBitrate = 0;
if (hSbrEncoder) {
estimateBitrate += hSbrEncoder->estimateBitrate;
}
return estimateBitrate;
}
INT sbrEncoder_GetInputDataDelay(HANDLE_SBR_ENCODER hSbrEncoder) {
INT delay = -1;
if (hSbrEncoder) {
delay = hSbrEncoder->inputDataDelay;
}
return delay;
}
INT sbrEncoder_GetSbrDecDelay(HANDLE_SBR_ENCODER hSbrEncoder) {
INT delay = -1;
if (hSbrEncoder) {
delay = hSbrEncoder->sbrDecDelay;
}
return delay;
}
INT sbrEncoder_GetLibInfo(LIB_INFO *info) {
int i;
if (info == NULL) {
return -1;
}
/* search for next free tab */
for (i = 0; i < FDK_MODULE_LAST; i++) {
if (info[i].module_id == FDK_NONE) break;
}
if (i == FDK_MODULE_LAST) {
return -1;
}
info += i;
info->module_id = FDK_SBRENC;
info->version =
LIB_VERSION(SBRENCODER_LIB_VL0, SBRENCODER_LIB_VL1, SBRENCODER_LIB_VL2);
LIB_VERSION_STRING(info);
#ifdef __ANDROID__
info->build_date = "";
info->build_time = "";
#else
info->build_date = __DATE__;
info->build_time = __TIME__;
#endif
info->title = "SBR Encoder";
/* Set flags */
info->flags = 0 | CAPF_SBR_HQ | CAPF_SBR_PS_MPEG;
/* End of flags */
return 0;
}
|