summaryrefslogtreecommitdiffstats
path: root/libSBRenc/src/env_est.cpp
blob: 4fcda516a57f6f39a83dd7c7e80b197e285ed041 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

� Copyright  1995 - 2015 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
  All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:

You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.

You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */

#include "env_est.h"
#include "tran_det.h"

#include "qmf.h"

#include "fram_gen.h"
#include "bit_sbr.h"
#include "cmondata.h"
#include "sbr_ram.h"


#include "genericStds.h"

#define QUANT_ERROR_THRES 200
#define Y_NRG_SCALE 5 /* noCols = 32 -> shift(5) */


static const UCHAR panTable[2][10] = { { 0, 2, 4, 6, 8,12,16,20,24},
                                       { 0, 2, 4, 8,12, 0, 0, 0, 0 } };
static const UCHAR maxIndex[2] = {9, 5};


/******************************************************************************
 Functionname:  FDKsbrEnc_GetTonality
******************************************************************************/
/***************************************************************************/
/*!

  \brief      Calculates complete energy per band from the energy values
              of the QMF subsamples.

  \brief      quotaMatrix - calculated in FDKsbrEnc_CalculateTonalityQuotas()
  \brief      noEstPerFrame - number of estimations per frame
  \brief      startIndex - start index for the quota matrix
  \brief      Energies - energy matrix
  \brief      startBand - start band
  \brief      stopBand - number of QMF bands
  \brief      numberCols - number of QMF subsamples

  \return     mean tonality of the 5 bands with the highest energy
              scaled by 2^(RELAXATION_SHIFT+2)*RELAXATION_FRACT

****************************************************************************/
static FIXP_DBL FDKsbrEnc_GetTonality(
        const FIXP_DBL *const *quotaMatrix,
        const INT              noEstPerFrame,
        const INT              startIndex,
        const FIXP_DBL *const *Energies,
        const UCHAR            startBand,
        const INT              stopBand,
        const INT              numberCols
        )
{
  UCHAR b, e, k;
  INT      no_enMaxBand[SBR_MAX_ENERGY_VALUES] = { -1, -1, -1, -1, -1 };
  FIXP_DBL energyMax[SBR_MAX_ENERGY_VALUES] = { FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f) };
  FIXP_DBL energyMaxMin = MAXVAL_DBL; /* min. energy in energyMax array */
  UCHAR    posEnergyMaxMin = 0;       /* min. energy in energyMax array position */
  FIXP_DBL tonalityBand[SBR_MAX_ENERGY_VALUES] = { FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f) };
  FIXP_DBL globalTonality = FL2FXCONST_DBL(0.0f);
  FIXP_DBL energyBand[QMF_CHANNELS];
  INT      maxNEnergyValues; /* max. number of max. energy values */

  /*** Sum up energies for each band ***/
  FDK_ASSERT(numberCols==15||numberCols==16);
  /* numberCols is always 15 or 16 for ELD. In case of 16 bands, the
      energyBands are initialized with the [15]th column.
      The rest of the column energies are added in the next step.   */
  if (numberCols==15) {
    for (b=startBand; b<stopBand; b++) {
      energyBand[b]=FL2FXCONST_DBL(0.0f);
    }
  } else {
    for (b=startBand; b<stopBand; b++) {
      energyBand[b]=Energies[15][b]>>4;
    }
  }

  for (k=0; k<15; k++) {
    for (b=startBand; b<stopBand; b++) {
      energyBand[b] += Energies[k][b]>>4;
    }
  }

  /*** Determine 5 highest band-energies ***/
  maxNEnergyValues = fMin(SBR_MAX_ENERGY_VALUES, stopBand-startBand);

  /* Get min. value in energyMax array */
  energyMaxMin = energyMax[0] = energyBand[startBand];
  no_enMaxBand[0] = startBand;
  posEnergyMaxMin = 0;
  for (k=1; k<maxNEnergyValues; k++) {
    energyMax[k] = energyBand[startBand+k];
    no_enMaxBand[k] = startBand+k;
    if (energyMaxMin > energyMax[k]) {
      energyMaxMin = energyMax[k];
      posEnergyMaxMin = k;
    }
  }

  for (b=startBand+maxNEnergyValues; b<stopBand; b++) {
    if (energyBand[b] > energyMaxMin) {
      energyMax[posEnergyMaxMin] = energyBand[b];
      no_enMaxBand[posEnergyMaxMin] = b;

      /* Again, get min. value in energyMax array */
      energyMaxMin = energyMax[0];
      posEnergyMaxMin = 0;
      for (k=1; k<maxNEnergyValues; k++) {
        if (energyMaxMin > energyMax[k]) {
          energyMaxMin = energyMax[k];
          posEnergyMaxMin = k;
        }
      }
    }
  }
  /*** End determine 5 highest band-energies ***/

  /* Get tonality values for 5 highest energies */
  for (e=0; e<maxNEnergyValues; e++) {
    tonalityBand[e]=FL2FXCONST_DBL(0.0f);
    for (k=0; k<noEstPerFrame; k++) {
      tonalityBand[e] += quotaMatrix[startIndex + k][no_enMaxBand[e]] >> 1;
    }
    globalTonality += tonalityBand[e] >> 2; /* headroom of 2+1 (max. 5 additions) */
  }

  return globalTonality;
}

/***************************************************************************/
/*!

  \brief      Calculates energy form real and imaginary part of
              the QMF subsamples

  \return     none

****************************************************************************/
LNK_SECTION_CODE_L1
static void
FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the result of the operation */
                                   FIXP_DBL **RESTRICT realValues,  /*!< the real part of the QMF subsamples */
                                   FIXP_DBL **RESTRICT imagValues,  /*!< the imaginary part of the QMF subsamples */
                                   INT   numberBands,               /*!< number of QMF bands */
                                   INT   numberCols,                /*!< number of QMF subsamples */
                                   INT   *qmfScale,                 /*!< sclefactor of QMF subsamples */
                                   INT   *energyScale)              /*!< scalefactor of energies */
{
  int j, k;
  int scale;
  FIXP_DBL max_val = FL2FXCONST_DBL(0.0f);

  /* Get Scratch buffer */
  C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, QMF_CHANNELS*QMF_MAX_TIME_SLOTS/2);

  /* Get max possible scaling of QMF data */
  scale = DFRACT_BITS;
  for (k=0; k<numberCols; k++) {
    scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), getScalefactor(imagValues[k], numberBands)));
  }

  /* Tweak scaling stability for zero signal to non-zero signal transitions */
  if (scale >= DFRACT_BITS-1) {
    scale = (FRACT_BITS-1-*qmfScale);
  }
  /* prevent scaling of QFM values to -1.f */
  scale = fixMax(0,scale-1);

  /* Update QMF scale */
  *qmfScale += scale;

  /*
     Calculate energy of each time slot pair, max energy
     and shift QMF values as far as possible to the left.
   */
  {
    FIXP_DBL *nrgValues = tmpNrg;
    for (k=0; k<numberCols; k+=2)
    {
      /* Load band vector addresses of 2 consecutive timeslots */
      FIXP_DBL *RESTRICT r0 = realValues[k];
      FIXP_DBL *RESTRICT i0 = imagValues[k];
      FIXP_DBL *RESTRICT r1 = realValues[k+1];
      FIXP_DBL *RESTRICT i1 = imagValues[k+1];
      for (j=0; j<numberBands; j++)
      {
        FIXP_DBL  energy;
        FIXP_DBL  tr0,tr1,ti0,ti1;

        /* Read QMF values of 2 timeslots */
        tr0 = r0[j]; tr1 = r1[j]; ti0 = i0[j]; ti1 = i1[j];

        /* Scale QMF Values and Calc Energy of both timeslots */
        tr0 <<= scale;
        ti0 <<= scale;
        energy = fPow2AddDiv2(fPow2Div2(tr0), ti0) >> 1;

        tr1 <<= scale;
        ti1 <<= scale;
        energy += fPow2AddDiv2(fPow2Div2(tr1), ti1) >> 1;

        /* Write timeslot pair energy to scratch */
        *nrgValues++ = energy;
        max_val = fixMax(max_val, energy);

        /* Write back scaled QMF values */
        r0[j] = tr0; r1[j] = tr1; i0[j] = ti0; i1[j] = ti1;
      }
    }
  }
  /* energyScale: scalefactor energies of current frame */
  *energyScale = 2*(*qmfScale)-1;       /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */

  /* Scale timeslot pair energies and write to output buffer */
  scale = CountLeadingBits(max_val);
  {
  	FIXP_DBL *nrgValues = tmpNrg;
    for (k=0; k<numberCols>>1; k++) {
      scaleValues(energyValues[k], nrgValues, numberBands, scale);
      nrgValues += numberBands;
    }
    *energyScale += scale;
  }

  /* Free Scratch buffer */
  C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, QMF_CHANNELS*QMF_MAX_TIME_SLOTS/2);
}

LNK_SECTION_CODE_L1
static void
FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the result of the operation */
                                       FIXP_DBL **RESTRICT realValues,  /*!< the real part of the QMF subsamples */
                                       FIXP_DBL **RESTRICT imagValues,  /*!< the imaginary part of the QMF subsamples */
                                       int   numberBands,               /*!< number of QMF bands */
                                       int   numberCols,                /*!< number of QMF subsamples */
                                       int   *qmfScale,                 /*!< sclefactor of QMF subsamples */
                                       int   *energyScale)              /*!< scalefactor of energies */
{
  int j, k;
  int scale;
  FIXP_DBL max_val = FL2FXCONST_DBL(0.0f);

  /* Get Scratch buffer */
  C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, QMF_MAX_TIME_SLOTS*QMF_CHANNELS/2);

  FDK_ASSERT(numberBands <= QMF_CHANNELS);
  FDK_ASSERT(numberCols <= QMF_MAX_TIME_SLOTS/2);

  /* Get max possible scaling of QMF data */
  scale = DFRACT_BITS;
  for (k=0; k<numberCols; k++) {
    scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), getScalefactor(imagValues[k], numberBands)));
  }

  /* Tweak scaling stability for zero signal to non-zero signal transitions */
  if (scale >= DFRACT_BITS-1) {
    scale = (FRACT_BITS-1-*qmfScale);
  }
  /* prevent scaling of QFM values to -1.f */
  scale = fixMax(0,scale-1);

  /* Update QMF scale */
  *qmfScale += scale;

  /*
     Calculate energy of each time slot pair, max energy
     and shift QMF values as far as possible to the left.
   */
  {
    FIXP_DBL *nrgValues = tmpNrg;
    for (k=0; k<numberCols; k++)
    {
      /* Load band vector addresses of 2 consecutive timeslots */
      FIXP_DBL *RESTRICT r0 = realValues[k];
      FIXP_DBL *RESTRICT i0 = imagValues[k];
      for (j=0; j<numberBands; j++)
      {
        FIXP_DBL  energy;
        FIXP_DBL  tr0,ti0;

        /* Read QMF values of 2 timeslots */
        tr0 = r0[j]; ti0 = i0[j];

        /* Scale QMF Values and Calc Energy of both timeslots */
        tr0 <<= scale;
        ti0 <<= scale;
        energy = fPow2AddDiv2(fPow2Div2(tr0), ti0);
        *nrgValues++ = energy;

        max_val = fixMax(max_val, energy);

        /* Write back scaled QMF values */
        r0[j] = tr0; i0[j] = ti0;
      }
    }
  }
  /* energyScale: scalefactor energies of current frame */
  *energyScale = 2*(*qmfScale)-1;       /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */

  /* Scale timeslot pair energies and write to output buffer */
  scale = CountLeadingBits(max_val);
  {
  	FIXP_DBL *nrgValues = tmpNrg;
    for (k=0; k<numberCols; k++) {
      scaleValues(energyValues[k], nrgValues, numberBands, scale);
      nrgValues += numberBands;
    }
    *energyScale += scale;
  }

  /* Free Scratch buffer */
  C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, QMF_MAX_TIME_SLOTS*QMF_CHANNELS/2);
}

/***************************************************************************/
/*!

  \brief  Quantisation of the panorama value (balance)

  \return the quantized pan value

****************************************************************************/
static INT
mapPanorama(INT nrgVal,     /*! integer value of the energy */
            INT ampRes,     /*! amplitude resolution [1.5/3dB] */
            INT *quantError /*! quantization error of energy val*/
           )
{
  int i;
  INT min_val, val;
  UCHAR panIndex;
  INT sign;

  sign = nrgVal > 0 ? 1 : -1;

  nrgVal *= sign;

  min_val = FDK_INT_MAX;
  panIndex = 0;
  for (i = 0; i < maxIndex[ampRes]; i++) {
    val = fixp_abs ((nrgVal - (INT)panTable[ampRes][i]));

    if (val < min_val) {
      min_val = val;
      panIndex = i;
    }
  }

  *quantError=min_val;

  return panTable[ampRes][maxIndex[ampRes]-1] + sign * panTable[ampRes][panIndex];
}


/***************************************************************************/
/*!

  \brief  Quantisation of the noise floor levels

  \return void

****************************************************************************/
static void
sbrNoiseFloorLevelsQuantisation(SCHAR    *RESTRICT iNoiseLevels, /*! quantized noise levels */
                                FIXP_DBL *RESTRICT NoiseLevels,  /*! the noise levels  */
                                INT       coupling               /*! the coupling flag */
                               )
{
  INT i;
  INT tmp, dummy;

  /* Quantisation, similar to sfb quant... */
  for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) {
    /* tmp = NoiseLevels[i] > (PFLOAT)30.0f ? 30: (INT) (NoiseLevels[i] + (PFLOAT)0.5); */
    /* 30>>6 = 0.46875 */
    if ((FIXP_DBL)NoiseLevels[i] > FL2FXCONST_DBL(0.46875f)) {
      tmp = 30;
    }
    else {
      /* tmp = (INT)((FIXP_DBL)NoiseLevels[i] + (FL2FXCONST_DBL(0.5f)>>(*/ /* FRACT_BITS+ */ /* 6-1)));*/
      /* tmp = tmp >> (DFRACT_BITS-1-6); */ /* conversion to integer happens here */
      /* rounding is done by shifting one bit less than necessary to the right, adding '1' and then shifting the final bit */
      tmp = ((((INT)NoiseLevels[i])>>(DFRACT_BITS-1-LD_DATA_SHIFT)) ); /* conversion to integer */
			 if (tmp != 0)
			   tmp += 1;
    }

    if (coupling) {
      tmp = tmp < -30 ? -30 : tmp;
      tmp = mapPanorama (tmp,1,&dummy);
    }
    iNoiseLevels[i] = tmp;
  }
}

/***************************************************************************/
/*!

  \brief  Calculation of noise floor for coupling

  \return void

****************************************************************************/
static void
coupleNoiseFloor(FIXP_DBL *RESTRICT noise_level_left, /*! noise level left  (modified)*/
                 FIXP_DBL *RESTRICT noise_level_right /*! noise level right (modified)*/
                )
{
  FIXP_DBL cmpValLeft,cmpValRight;
  INT i;
  FIXP_DBL temp1,temp2;

  for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) {

    /* Calculation of the power function using ld64:
       z  = x^y;
       z' = CalcLd64(z) = y*CalcLd64(x)/64;
       z  = CalcInvLd64(z');
    */
    cmpValLeft  = NOISE_FLOOR_OFFSET_64 - noise_level_left[i];
    cmpValRight = NOISE_FLOOR_OFFSET_64 - noise_level_right[i];

    if (cmpValRight < FL2FXCONST_DBL(0.0f)) {
      temp1 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_right[i]);
    }
    else {
      temp1 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_right[i]);
      temp1 = temp1 << (DFRACT_BITS-1-LD_DATA_SHIFT-1);  /* INT to fract conversion of result, if input of CalcInvLdData is positiv */
    }

    if (cmpValLeft < FL2FXCONST_DBL(0.0f)) {
      temp2 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_left[i]);
    }
    else {
      temp2 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_left[i]);
      temp2 = temp2 << (DFRACT_BITS-1-LD_DATA_SHIFT-1);  /* INT to fract conversion of result, if input of CalcInvLdData is positiv */
    }


    if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && (cmpValRight < FL2FXCONST_DBL(0.0f))) {
      noise_level_left[i]  = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>1)))); /* no scaling needed! both values are dfract */
      noise_level_right[i] = CalcLdData(temp2) - CalcLdData(temp1);
    }

    if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && (cmpValRight >= FL2FXCONST_DBL(0.0f))) {
      noise_level_left[i]  = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>1))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
      noise_level_right[i] = CalcLdData(temp2) - CalcLdData(temp1);
    }

    if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && (cmpValRight < FL2FXCONST_DBL(0.0f))) {
      noise_level_left[i]  = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>(7+1)) + (temp2>>1))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
      noise_level_right[i] = (CalcLdData(temp2) + FL2FXCONST_DBL(0.109375f)) - CalcLdData(temp1);
    }

    if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && (cmpValRight >= FL2FXCONST_DBL(0.0f))) {
      noise_level_left[i]  = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>(7+1)))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
      noise_level_right[i] = CalcLdData(temp2) - (CalcLdData(temp1) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
    }
  }
}

/***************************************************************************/
/*!

  \brief  Calculation of energy starting in lower band (li) up to upper band (ui)
          over slots (start_pos) to (stop_pos)

  \return void

****************************************************************************/
static FIXP_DBL
getEnvSfbEnergy(INT li,              /*! lower band */
                INT ui,              /*! upper band */
                INT start_pos,       /*! start slot */
                INT stop_pos,        /*! stop slot */
                INT border_pos,      /*! slots scaling border */
                FIXP_DBL **YBuffer,  /*! sfb energy buffer */
                INT YBufferSzShift,  /*! Energy buffer index scale */
                INT scaleNrg0,       /*! scaling of lower slots */
                INT scaleNrg1)       /*! scaling of upper slots */
{
  /* use dynamic scaling for outer energy loop;
     energies are critical and every bit is important */
  int sc0, sc1, k, l;

  FIXP_DBL nrgSum, nrg1, nrg2, accu1, accu2;
  INT dynScale, dynScale1, dynScale2;
  if(ui-li==0) dynScale = DFRACT_BITS-1;
  else
  dynScale = CalcLdInt(ui-li)>>(DFRACT_BITS-1-LD_DATA_SHIFT);

  sc0 = fixMin(scaleNrg0,Y_NRG_SCALE); sc1 = fixMin(scaleNrg1,Y_NRG_SCALE);
  /* dynScale{1,2} is set such that the right shift below is positive */
  dynScale1 = fixMin((scaleNrg0-sc0),dynScale);
  dynScale2 = fixMin((scaleNrg1-sc1),dynScale);
  nrgSum = accu1 = accu2 = (FIXP_DBL)0;

  for (k = li; k < ui; k++) {
    nrg1 = nrg2 = (FIXP_DBL)0;
    for (l = start_pos; l < border_pos; l++) {
      nrg1 += YBuffer[l>>YBufferSzShift][k] >> sc0;
    }
    for (; l < stop_pos; l++) {
      nrg2 += YBuffer[l>>YBufferSzShift][k] >> sc1;
    }
    accu1 += (nrg1>>dynScale1);
    accu2 += (nrg2>>dynScale2);
  }
  /* This shift factor is always positive. See comment above. */
  nrgSum += ( accu1 >> fixMin((scaleNrg0-sc0-dynScale1),(DFRACT_BITS-1)) )
          +  ( accu2 >> fixMin((scaleNrg1-sc1-dynScale2),(DFRACT_BITS-1)) );

  return nrgSum;
}

/***************************************************************************/
/*!

  \brief  Energy compensation in missing harmonic mode

  \return void

****************************************************************************/
static FIXP_DBL
mhLoweringEnergy(FIXP_DBL nrg, INT M)
{
  /*
     Compensating for the fact that we in the decoder map the "average energy to every QMF
     band, and use this when we calculate the boost-factor. Since the mapped energy isn't
     the average energy but the maximum energy in case of missing harmonic creation, we will
     in the boost function calculate that too much limiting has been applied and hence we will
     boost the signal although it isn't called for. Hence we need to compensate for this by
     lowering the transmitted energy values for the sines so they will get the correct level
     after the boost is applied.
  */
  if(M > 2){
    INT tmpScale;
    tmpScale = CountLeadingBits(nrg);
    nrg <<= tmpScale;
    nrg = fMult(nrg, FL2FXCONST_DBL(0.398107267f)); /* The maximum boost is 1.584893, so the maximum attenuation should be square(1/1.584893) = 0.398107267 */
    nrg >>= tmpScale;
  }
  else{
    if(M > 1){
      nrg >>= 1;
    }
  }

  return nrg;
}

/***************************************************************************/
/*!

  \brief  Energy compensation in none missing harmonic mode

  \return void

****************************************************************************/
static FIXP_DBL nmhLoweringEnergy(
        FIXP_DBL nrg,
        const FIXP_DBL nrgSum,
        const INT nrgSum_scale,
        const INT M
        )
{
  if (nrg>FL2FXCONST_DBL(0)) {
    int sc=0;
    /* gain = nrgSum / (nrg*(M+1)) */
    FIXP_DBL gain = fMult(fDivNorm(nrgSum, nrg, &sc), GetInvInt(M+1));
    sc += nrgSum_scale;

    /* reduce nrg if gain smaller 1.f */
    if ( !((sc>=0) && ( gain > ((FIXP_DBL)MAXVAL_DBL>>sc) )) ) {
      nrg = fMult(scaleValue(gain,sc), nrg);
    }
  }
  return nrg;
}

/***************************************************************************/
/*!

  \brief  calculates the envelope values from the energies, depending on
          framing and stereo mode

  \return void

****************************************************************************/
static void
calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft,  /*! energy buffer left */
                      FIXP_DBL **RESTRICT YBufferRight, /*! energy buffer right */
                      int *RESTRICT YBufferScaleLeft,   /*! scale energy buffer left */
                      int *RESTRICT YBufferScaleRight,  /*! scale energy buffer right */
                      const SBR_FRAME_INFO *frame_info, /*! frame info vector */
                      SCHAR *RESTRICT sfb_nrgLeft,      /*! sfb energy buffer left */
                      SCHAR *RESTRICT sfb_nrgRight,     /*! sfb energy buffer right */
                      HANDLE_SBR_CONFIG_DATA h_con,     /*! handle to config data   */
                      HANDLE_ENV_CHANNEL h_sbr,         /*! envelope channel handle */
                      SBR_STEREO_MODE stereoMode,       /*! stereo coding mode */
                      INT* maxQuantError,               /*! maximum quantization error, for panorama. */
                      int YBufferSzShift)               /*! Energy buffer index scale */

{
  int i, j, m = 0;
  INT no_of_bands, start_pos, stop_pos, li, ui;
  FREQ_RES freq_res;

  INT ca = 2 - h_sbr->encEnvData.init_sbr_amp_res;
  INT oneBitLess = 0;
  if (ca == 2)
    oneBitLess = 1; /* LD_DATA_SHIFT => ld64 scaling; one bit less for rounding */

  INT quantError;
  INT nEnvelopes = frame_info->nEnvelopes;
  INT short_env = frame_info->shortEnv - 1;
  INT timeStep = h_sbr->sbrExtractEnvelope.time_step;
  INT commonScale,scaleLeft0,scaleLeft1;
  INT scaleRight0=0,scaleRight1=0;

  commonScale = fixMin(YBufferScaleLeft[0],YBufferScaleLeft[1]);

  if (stereoMode == SBR_COUPLING) {
    commonScale = fixMin(commonScale,YBufferScaleRight[0]);
    commonScale = fixMin(commonScale,YBufferScaleRight[1]);
  }

  commonScale = commonScale - 7;

  scaleLeft0 = YBufferScaleLeft[0] - commonScale;
  scaleLeft1 = YBufferScaleLeft[1] - commonScale ;
  FDK_ASSERT ((scaleLeft0 >= 0) && (scaleLeft1 >= 0));

  if (stereoMode == SBR_COUPLING) {
    scaleRight0 = YBufferScaleRight[0] - commonScale;
    scaleRight1 = YBufferScaleRight[1] - commonScale;
    FDK_ASSERT ((scaleRight0 >= 0) && (scaleRight1 >= 0));
    *maxQuantError = 0;
  }

  for (i = 0; i < nEnvelopes; i++) {

    FIXP_DBL pNrgLeft[QMF_MAX_TIME_SLOTS];
    FIXP_DBL pNrgRight[QMF_MAX_TIME_SLOTS];
    int envNrg_scale;
    FIXP_DBL envNrgLeft  = FL2FXCONST_DBL(0.0f);
    FIXP_DBL envNrgRight = FL2FXCONST_DBL(0.0f);
    int      missingHarmonic[QMF_MAX_TIME_SLOTS];
    int      count[QMF_MAX_TIME_SLOTS];

    start_pos = timeStep * frame_info->borders[i];
    stop_pos = timeStep * frame_info->borders[i + 1];
    freq_res = frame_info->freqRes[i];
    no_of_bands = h_con->nSfb[freq_res];
    envNrg_scale = DFRACT_BITS-fNormz((FIXP_DBL)no_of_bands);

    if (i == short_env) {
      stop_pos -= fixMax(2, timeStep);  /* consider at least 2 QMF slots less for short envelopes (envelopes just before transients) */
    }

    for (j = 0; j < no_of_bands; j++) {
      FIXP_DBL nrgLeft  = FL2FXCONST_DBL(0.0f);
      FIXP_DBL nrgRight = FL2FXCONST_DBL(0.0f);

      li = h_con->freqBandTable[freq_res][j];
      ui = h_con->freqBandTable[freq_res][j + 1];

      if(freq_res == FREQ_RES_HIGH){
        if(j == 0 && ui-li > 1){
          li++;
        }
      }
      else{
        if(j == 0 && ui-li > 2){
          li++;
        }
      }

      /*
        Find out whether a sine will be missing in the scale-factor
        band that we're currently processing.
      */
      missingHarmonic[j] = 0;

      if(h_sbr->encEnvData.addHarmonicFlag){

        if(freq_res == FREQ_RES_HIGH){
          if(h_sbr->encEnvData.addHarmonic[j]){    /*A missing sine in the current band*/
            missingHarmonic[j] = 1;
          }
        }
        else{
          INT i;
          INT startBandHigh = 0;
          INT stopBandHigh = 0;

          while(h_con->freqBandTable[FREQ_RES_HIGH][startBandHigh] < h_con->freqBandTable[FREQ_RES_LOW][j])
            startBandHigh++;
          while(h_con->freqBandTable[FREQ_RES_HIGH][stopBandHigh] < h_con->freqBandTable[FREQ_RES_LOW][j + 1])
            stopBandHigh++;

          for(i = startBandHigh; i<stopBandHigh; i++){
            if(h_sbr->encEnvData.addHarmonic[i]){
              missingHarmonic[j] = 1;
            }
          }
        }
      }

      /*
        If a sine is missing in a scalefactorband, with more than one qmf channel
        use the nrg from the channel with the largest nrg rather than the mean.
        Compensate for the boost calculation in the decdoder.
      */
      int border_pos = fixMin(stop_pos, h_sbr->sbrExtractEnvelope.YBufferWriteOffset<<YBufferSzShift);

      if(missingHarmonic[j]){

        int k;
        count[j] = stop_pos - start_pos;
        nrgLeft = FL2FXCONST_DBL(0.0f);

        for (k = li; k < ui; k++) {
          FIXP_DBL tmpNrg;
          tmpNrg = getEnvSfbEnergy(k,
                                   k+1,
                                   start_pos,
                                   stop_pos,
                                   border_pos,
                                   YBufferLeft,
                                   YBufferSzShift,
                                   scaleLeft0,
                                   scaleLeft1);

          nrgLeft = fixMax(nrgLeft, tmpNrg);
        }

        /* Energy lowering compensation */
        nrgLeft = mhLoweringEnergy(nrgLeft, ui-li);

        if (stereoMode == SBR_COUPLING) {

          nrgRight = FL2FXCONST_DBL(0.0f);

          for (k = li; k < ui; k++) {
            FIXP_DBL tmpNrg;
            tmpNrg = getEnvSfbEnergy(k,
                                     k+1,
                                     start_pos,
                                     stop_pos,
                                     border_pos,
                                     YBufferRight,
                                     YBufferSzShift,
                                     scaleRight0,
                                     scaleRight1);

            nrgRight = fixMax(nrgRight, tmpNrg);
          }

          /* Energy lowering compensation */
          nrgRight = mhLoweringEnergy(nrgRight, ui-li);
        }
      } /* end missingHarmonic */
      else{
        count[j] = (stop_pos - start_pos) * (ui - li);

        nrgLeft = getEnvSfbEnergy(li,
                                  ui,
                                  start_pos,
                                  stop_pos,
                                  border_pos,
                                  YBufferLeft,
                                  YBufferSzShift,
                                  scaleLeft0,
                                  scaleLeft1);

        if (stereoMode == SBR_COUPLING) {
          nrgRight = getEnvSfbEnergy(li,
                                     ui,
                                     start_pos,
                                     stop_pos,
                                     border_pos,
                                     YBufferRight,
                                     YBufferSzShift,
                                     scaleRight0,
                                     scaleRight1);
        }
      } /* !missingHarmonic */

      /* save energies */
      pNrgLeft[j]  = nrgLeft;
      pNrgRight[j] = nrgRight;
      envNrgLeft  += (nrgLeft>>envNrg_scale);
      envNrgRight += (nrgRight>>envNrg_scale);
    } /* j */

    for (j = 0; j < no_of_bands; j++) {

      FIXP_DBL nrgLeft2 = FL2FXCONST_DBL(0.0f);
      FIXP_DBL nrgLeft  = pNrgLeft[j];
      FIXP_DBL nrgRight = pNrgRight[j];

      /* None missing harmonic Energy lowering compensation */
      if(!missingHarmonic[j] && h_sbr->fLevelProtect) {
        /* in case of missing energy in base band,
           reduce reference energy to prevent overflows in decoder output */
        nrgLeft = nmhLoweringEnergy(nrgLeft, envNrgLeft, envNrg_scale, no_of_bands);
        if (stereoMode == SBR_COUPLING) {
          nrgRight = nmhLoweringEnergy(nrgRight, envNrgRight, envNrg_scale, no_of_bands);
        }
      }

      if (stereoMode == SBR_COUPLING) {
        /* calc operation later with log */
        nrgLeft2 = nrgLeft;
        nrgLeft = (nrgRight + nrgLeft) >> 1;
      }

      /* nrgLeft = f20_log2(nrgLeft / (PFLOAT)(count * h_sbr->sbrQmf.no_channels))+(PFLOAT)44; */
      /* If nrgLeft == 0 then the Log calculations below do fail. */
      if (nrgLeft > FL2FXCONST_DBL(0.0f))
      {
        FIXP_DBL tmp0,tmp1,tmp2,tmp3;
        INT tmpScale;

        tmpScale = CountLeadingBits(nrgLeft);
        nrgLeft = nrgLeft << tmpScale;

        tmp0 = CalcLdData(nrgLeft);                                                       /* scaled by 1/64 */
        tmp1 = ((FIXP_DBL) (commonScale+tmpScale)) << (DFRACT_BITS-1-LD_DATA_SHIFT-1);    /* scaled by 1/64 */
        tmp2 = ((FIXP_DBL)(count[j]*h_con->noQmfBands)) << (DFRACT_BITS-1-14-1);
        tmp2 = CalcLdData(tmp2);                                                          /* scaled by 1/64 */
        tmp3 = FL2FXCONST_DBL(0.6875f-0.21875f-0.015625f)>>1;                             /* scaled by 1/64 */

        nrgLeft = ((tmp0-tmp2)>>1) + (tmp3 - tmp1);
      } else {
        nrgLeft = FL2FXCONST_DBL(-1.0f);
      }

      /* ld64 to integer conversion */
      nrgLeft = fixMin(fixMax(nrgLeft,FL2FXCONST_DBL(0.0f)),(FL2FXCONST_DBL(0.5f)>>oneBitLess));
      nrgLeft = (FIXP_DBL)(LONG)nrgLeft >> (DFRACT_BITS-1-LD_DATA_SHIFT-1-oneBitLess-1);
      sfb_nrgLeft[m] = ((INT)nrgLeft+1)>>1; /* rounding */

      if (stereoMode == SBR_COUPLING) {
        FIXP_DBL scaleFract;
        int sc0, sc1;

        nrgLeft2 = fixMax((FIXP_DBL)0x1, nrgLeft2);
        nrgRight = fixMax((FIXP_DBL)0x1, nrgRight);

        sc0 = CountLeadingBits(nrgLeft2);
        sc1 = CountLeadingBits(nrgRight);

        scaleFract = ((FIXP_DBL)(sc0-sc1)) << (DFRACT_BITS-1-LD_DATA_SHIFT); /* scale value in ld64 representation */
        nrgRight = CalcLdData(nrgLeft2<<sc0) - CalcLdData(nrgRight<<sc1) - scaleFract;

        /* ld64 to integer conversion */
        nrgRight = (FIXP_DBL)(LONG)(nrgRight) >> (DFRACT_BITS-1-LD_DATA_SHIFT-1-oneBitLess);
        nrgRight  = (nrgRight+(FIXP_DBL)1)>>1; /* rounding */

        sfb_nrgRight[m] = mapPanorama (nrgRight,h_sbr->encEnvData.init_sbr_amp_res,&quantError);

        *maxQuantError = fixMax(quantError, *maxQuantError);
      }

      m++;
    } /* j */

     /* Do energy compensation for sines that are present in two
         QMF-bands in the original, but will only occur in one band in
         the decoder due to the synthetic sine coding.*/
    if (h_con->useParametricCoding) {
      m-=no_of_bands;
      for (j = 0; j < no_of_bands; j++) {
        if (freq_res==FREQ_RES_HIGH && h_sbr->sbrExtractEnvelope.envelopeCompensation[j]){
          sfb_nrgLeft[m] -= (ca * fixp_abs((INT)h_sbr->sbrExtractEnvelope.envelopeCompensation[j]));
        }
        sfb_nrgLeft[m] = fixMax(0, sfb_nrgLeft[m]);
        m++;
      }
    } /* useParametricCoding */

  } /* i*/
}

/***************************************************************************/
/*!

  \brief  calculates the noise floor and the envelope values from the
          energies, depending on framing and stereo mode

  FDKsbrEnc_extractSbrEnvelope is the main function for encoding and writing the
  envelope and the noise floor. The function includes the following processes:

  -Analysis subband filtering.
  -Encoding SA and pan parameters (if enabled).
  -Transient detection.

****************************************************************************/

LNK_SECTION_CODE_L1
void
FDKsbrEnc_extractSbrEnvelope1 (
                    HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data   */
                    HANDLE_SBR_HEADER_DATA sbrHeaderData,
                    HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData,
                    HANDLE_ENV_CHANNEL hEnvChan,
                    HANDLE_COMMON_DATA hCmonData,
                    SBR_ENV_TEMP_DATA   *eData,
                    SBR_FRAME_TEMP_DATA *fData
                   )
{

  HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &hEnvChan->sbrExtractEnvelope;

  if (sbrExtrEnv->YBufferSzShift == 0)
    FDKsbrEnc_getEnergyFromCplxQmfDataFull(&sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset],
                                           sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset,
                                           sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset,
                                           h_con->noQmfBands,
                                           sbrExtrEnv->no_cols,
                                          &hEnvChan->qmfScale,
                                          &sbrExtrEnv->YBufferScale[1]);
  else
    FDKsbrEnc_getEnergyFromCplxQmfData(&sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset],
                                       sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset,
                                       sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset,
                                       h_con->noQmfBands,
                                       sbrExtrEnv->no_cols,
                                      &hEnvChan->qmfScale,
                                      &sbrExtrEnv->YBufferScale[1]);



  /*
    Precalculation of Tonality Quotas  COEFF Transform OK
  */
  FDKsbrEnc_CalculateTonalityQuotas(&hEnvChan->TonCorr,
                                     sbrExtrEnv->rBuffer,
                                     sbrExtrEnv->iBuffer,
                                     h_con->freqBandTable[HI][h_con->nSfb[HI]],
                                     hEnvChan->qmfScale);


  if(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
    FIXP_DBL tonality = FDKsbrEnc_GetTonality (
          hEnvChan->TonCorr.quotaMatrix,
          hEnvChan->TonCorr.numberOfEstimatesPerFrame,
          hEnvChan->TonCorr.startIndexMatrix,
          sbrExtrEnv->YBuffer + sbrExtrEnv->YBufferWriteOffset,
          h_con->freqBandTable[HI][0]+1,
          h_con->noQmfBands,
          sbrExtrEnv->no_cols
        );

    hEnvChan->encEnvData.ton_HF[1] = hEnvChan->encEnvData.ton_HF[0];
    hEnvChan->encEnvData.ton_HF[0] = tonality;

    /* tonality is scaled by 2^19/0.524288f (fract part of RELAXATION) */
    hEnvChan->encEnvData.global_tonality = (hEnvChan->encEnvData.ton_HF[0]>>1) + (hEnvChan->encEnvData.ton_HF[1]>>1);
  }



  /*
    Transient detection COEFF Transform OK
  */
  if(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
  {
    FDKsbrEnc_fastTransientDetect(
            &hEnvChan->sbrFastTransientDetector,
             sbrExtrEnv->YBuffer,
             sbrExtrEnv->YBufferScale,
             sbrExtrEnv->YBufferWriteOffset,
             eData->transient_info
             );

  }
  else
  {
  FDKsbrEnc_transientDetect(&hEnvChan->sbrTransientDetector,
                             sbrExtrEnv->YBuffer,
                             sbrExtrEnv->YBufferScale,
                             eData->transient_info,
                             sbrExtrEnv->YBufferWriteOffset,
                             sbrExtrEnv->YBufferSzShift,
                             sbrExtrEnv->time_step,
                             hEnvChan->SbrEnvFrame.frameMiddleSlot);
  }



  /*
    Generate flags for 2 env in a FIXFIX-frame.
    Remove this function to get always 1 env per FIXFIX-frame.
  */

  /*
    frame Splitter COEFF Transform OK
  */
  FDKsbrEnc_frameSplitter(sbrExtrEnv->YBuffer,
                          sbrExtrEnv->YBufferScale,
                         &hEnvChan->sbrTransientDetector,
                          h_con->freqBandTable[1],
                          eData->transient_info,
                          sbrExtrEnv->YBufferWriteOffset,
                          sbrExtrEnv->YBufferSzShift,
                          h_con->nSfb[1],
                          sbrExtrEnv->time_step,
                          sbrExtrEnv->no_cols,
                         &hEnvChan->encEnvData.global_tonality);


}

/***************************************************************************/
/*!

  \brief  calculates the noise floor and the envelope values from the
          energies, depending on framing and stereo mode

  FDKsbrEnc_extractSbrEnvelope is the main function for encoding and writing the
  envelope and the noise floor. The function includes the following processes:

  -Determine time/frequency division of current granule.
  -Sending transient info to bitstream.
  -Set amp_res to 1.5 dB if the current frame contains only one envelope.
  -Lock dynamic bandwidth frequency change if the next envelope not starts on a
  frame boundary.
  -MDCT transposer (needed to detect where harmonics will be missing).
  -Spectrum Estimation (used for pulse train and missing harmonics detection).
  -Pulse train detection.
  -Inverse Filtering detection.
  -Waveform Coding.
  -Missing Harmonics detection.
  -Extract envelope of current frame.
  -Noise floor estimation.
  -Noise floor quantisation and coding.
  -Encode envelope of current frame.
  -Send the encoded data to the bitstream.
  -Write to bitstream.

****************************************************************************/

LNK_SECTION_CODE_L1
void
FDKsbrEnc_extractSbrEnvelope2 (
                    HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data   */
                    HANDLE_SBR_HEADER_DATA sbrHeaderData,
                    HANDLE_PARAMETRIC_STEREO    hParametricStereo,
                    HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData,
                    HANDLE_ENV_CHANNEL   h_envChan0,
                    HANDLE_ENV_CHANNEL   h_envChan1,
                    HANDLE_COMMON_DATA   hCmonData,
                    SBR_ENV_TEMP_DATA   *eData,
                    SBR_FRAME_TEMP_DATA *fData,
                    int                  clearOutput
                   )
{
  HANDLE_ENV_CHANNEL h_envChan[MAX_NUM_CHANNELS] = {h_envChan0, h_envChan1};
  int ch, i, j, c, YSzShift = h_envChan[0]->sbrExtractEnvelope.YBufferSzShift;

  SBR_STEREO_MODE stereoMode = h_con->stereoMode;
  int nChannels = h_con->nChannels;
  const int *v_tuning;
  static const int v_tuningHEAAC[6] = { 0, 2, 4, 0, 0, 0 };

  static const int v_tuningELD[6] = { 0, 2, 3, 0, 0, 0 };

  if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
    v_tuning = v_tuningELD;
  else
    v_tuning = v_tuningHEAAC;


  /*
    Select stereo mode.
  */
  if (stereoMode == SBR_COUPLING) {
    if (eData[0].transient_info[1] && eData[1].transient_info[1]) {
      eData[0].transient_info[0] = fixMin(eData[1].transient_info[0], eData[0].transient_info[0]);
      eData[1].transient_info[0] = eData[0].transient_info[0];
    }
    else {
      if (eData[0].transient_info[1] && !eData[1].transient_info[1]) {
        eData[1].transient_info[0] = eData[0].transient_info[0];
      }
      else {
        if (!eData[0].transient_info[1] && eData[1].transient_info[1])
          eData[0].transient_info[0] = eData[1].transient_info[0];
        else {
          eData[0].transient_info[0] = fixMax(eData[1].transient_info[0], eData[0].transient_info[0]);
          eData[1].transient_info[0] = eData[0].transient_info[0];
        }
      }
    }
  }

  /*
    Determine time/frequency division of current granule
  */
  eData[0].frame_info = FDKsbrEnc_frameInfoGenerator(&h_envChan[0]->SbrEnvFrame,
                                                     eData[0].transient_info,
                                                     h_envChan[0]->sbrExtractEnvelope.pre_transient_info,
                                                     h_envChan[0]->encEnvData.ldGrid,
                                                     v_tuning);

  h_envChan[0]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid;

  /* AAC LD patch for transient prediction */
  if (h_envChan[0]->encEnvData.ldGrid && eData[0].transient_info[2]) {
    /* if next frame will start with transient, set shortEnv to numEnvelopes(shortend Envelope = shortEnv-1)*/
    h_envChan[0]->SbrEnvFrame.SbrFrameInfo.shortEnv = h_envChan[0]->SbrEnvFrame.SbrFrameInfo.nEnvelopes;
  }


  switch (stereoMode) {
  case SBR_LEFT_RIGHT:
  case SBR_SWITCH_LRC:
    eData[1].frame_info = FDKsbrEnc_frameInfoGenerator(&h_envChan[1]->SbrEnvFrame,
                                                       eData[1].transient_info,
                                                       h_envChan[1]->sbrExtractEnvelope.pre_transient_info,
                                                       h_envChan[1]->encEnvData.ldGrid,
                                                       v_tuning);

    h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[1]->SbrEnvFrame.SbrGrid;

    if (h_envChan[1]->encEnvData.ldGrid && eData[1].transient_info[2]) {
      /* if next frame will start with transient, set shortEnv to numEnvelopes(shortend Envelope = shortEnv-1)*/
      h_envChan[1]->SbrEnvFrame.SbrFrameInfo.shortEnv = h_envChan[1]->SbrEnvFrame.SbrFrameInfo.nEnvelopes;
    }

    /* compare left and right frame_infos */
    if (eData[0].frame_info->nEnvelopes != eData[1].frame_info->nEnvelopes) {
      stereoMode = SBR_LEFT_RIGHT;
    } else {
      for (i = 0; i < eData[0].frame_info->nEnvelopes + 1; i++) {
        if (eData[0].frame_info->borders[i] != eData[1].frame_info->borders[i]) {
          stereoMode = SBR_LEFT_RIGHT;
          break;
        }
      }
      for (i = 0; i < eData[0].frame_info->nEnvelopes; i++) {
        if (eData[0].frame_info->freqRes[i] != eData[1].frame_info->freqRes[i]) {
          stereoMode = SBR_LEFT_RIGHT;
          break;
        }
      }
      if (eData[0].frame_info->shortEnv != eData[1].frame_info->shortEnv) {
        stereoMode = SBR_LEFT_RIGHT;
      }
    }
    break;
  case SBR_COUPLING:
    eData[1].frame_info = eData[0].frame_info;
    h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid;
    break;
  case SBR_MONO:
    /* nothing to do */
    break;
  default:
    FDK_ASSERT (0);
  }


  for (ch = 0; ch < nChannels;ch++)
  {
    HANDLE_ENV_CHANNEL hEnvChan = h_envChan[ch];
    HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &hEnvChan->sbrExtractEnvelope;
    SBR_ENV_TEMP_DATA *ed = &eData[ch];


    /*
       Send transient info to bitstream and store for next call
    */
    sbrExtrEnv->pre_transient_info[0] = ed->transient_info[0];/* tran_pos */
    sbrExtrEnv->pre_transient_info[1] = ed->transient_info[1];/* tran_flag */
    hEnvChan->encEnvData.noOfEnvelopes = ed->nEnvelopes = ed->frame_info->nEnvelopes;     /* number of envelopes of current frame */

    /*
      Check if the current frame is divided into one envelope only. If so, set the amplitude
      resolution to 1.5 dB, otherwise may set back to chosen value
    */
   if( ( hEnvChan->encEnvData.hSbrBSGrid->frameClass == FIXFIX )
        && ( ed->nEnvelopes == 1 ) )
   {

     if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
     {
       /* Note: global_tonaliy_float_value == ((float)hEnvChan->encEnvData.global_tonality/((INT64)(1)<<(31-(19+2)))/0.524288*(2.0/3.0)));
                threshold_float_value == ((float)h_con->thresholdAmpResFF_m/((INT64)(1)<<(31-(h_con->thresholdAmpResFF_e)))/0.524288*(2.0/3.0))); */
       /* decision of SBR_AMP_RES */
       if (fIsLessThan( /* global_tonality > threshold ? */
             h_con->thresholdAmpResFF_m, h_con->thresholdAmpResFF_e,
             hEnvChan->encEnvData.global_tonality, RELAXATION_SHIFT+2 )
          )
       {
         hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5;
       }
       else {
         hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_3_0;
       }
     } else {
       hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5;
     }

      if ( hEnvChan->encEnvData.currentAmpResFF != hEnvChan->encEnvData.init_sbr_amp_res) {

        FDKsbrEnc_InitSbrHuffmanTables(&hEnvChan->encEnvData,
                                       &hEnvChan->sbrCodeEnvelope,
                                       &hEnvChan->sbrCodeNoiseFloor,
                                       hEnvChan->encEnvData.currentAmpResFF);
      }
    }
    else {
      if(sbrHeaderData->sbr_amp_res != hEnvChan->encEnvData.init_sbr_amp_res ) {

        FDKsbrEnc_InitSbrHuffmanTables(&hEnvChan->encEnvData,
                                       &hEnvChan->sbrCodeEnvelope,
                                       &hEnvChan->sbrCodeNoiseFloor,
                                       sbrHeaderData->sbr_amp_res);
      }
    }

    if (!clearOutput) {

      /*
        Tonality correction parameter extraction (inverse filtering level, noise floor additional sines).
      */
      FDKsbrEnc_TonCorrParamExtr(&hEnvChan->TonCorr,
                                  hEnvChan->encEnvData.sbr_invf_mode_vec,
                                  ed->noiseFloor,
                                 &hEnvChan->encEnvData.addHarmonicFlag,
                                  hEnvChan->encEnvData.addHarmonic,
                                  sbrExtrEnv->envelopeCompensation,
                                  ed->frame_info,
                                  ed->transient_info,
                                  h_con->freqBandTable[HI],
                                  h_con->nSfb[HI],
                                  hEnvChan->encEnvData.sbr_xpos_mode,
                                  h_con->sbrSyntaxFlags);

    }

    /* Low energy in low band fix */
    if ( hEnvChan->sbrTransientDetector.prevLowBandEnergy < hEnvChan->sbrTransientDetector.prevHighBandEnergy
      && hEnvChan->sbrTransientDetector.prevHighBandEnergy > FL2FX_DBL(0.03)
      /* The fix needs the non-fast transient detector running.
         It sets prevLowBandEnergy and prevHighBandEnergy.      */
      && !(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
      )
    {
      int i;

      hEnvChan->fLevelProtect = 1;

      for (i=0; i<MAX_NUM_NOISE_VALUES; i++)
        hEnvChan->encEnvData.sbr_invf_mode_vec[i] = INVF_HIGH_LEVEL;
    } else {
      hEnvChan->fLevelProtect = 0;
    }

    hEnvChan->encEnvData.sbr_invf_mode = hEnvChan->encEnvData.sbr_invf_mode_vec[0];

    hEnvChan->encEnvData.noOfnoisebands = hEnvChan->TonCorr.sbrNoiseFloorEstimate.noNoiseBands;


  } /* ch */



   /*
      Save number of scf bands per envelope
    */
  for (ch = 0; ch < nChannels;ch++) {
    for (i = 0; i < eData[ch].nEnvelopes; i++){
      h_envChan[ch]->encEnvData.noScfBands[i] =
      (eData[ch].frame_info->freqRes[i] == FREQ_RES_HIGH ? h_con->nSfb[FREQ_RES_HIGH] : h_con->nSfb[FREQ_RES_LOW]);
    }
  }

  /*
    Extract envelope of current frame.
  */
  switch (stereoMode) {
  case SBR_MONO:
     calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
                          h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
                          eData[0].frame_info, eData[0].sfb_nrg, NULL,
                          h_con, h_envChan[0], SBR_MONO, NULL, YSzShift);
    break;
  case SBR_LEFT_RIGHT:
    calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
                          h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
                          eData[0].frame_info, eData[0].sfb_nrg, NULL,
                          h_con, h_envChan[0], SBR_MONO, NULL, YSzShift);
    calculateSbrEnvelope (h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL,
                          h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL,
                          eData[1].frame_info,eData[1].sfb_nrg, NULL,
                          h_con, h_envChan[1], SBR_MONO, NULL, YSzShift);
    break;
  case SBR_COUPLING:
    calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, h_envChan[1]->sbrExtractEnvelope.YBuffer,
                          h_envChan[0]->sbrExtractEnvelope.YBufferScale, h_envChan[1]->sbrExtractEnvelope.YBufferScale,
                          eData[0].frame_info, eData[0].sfb_nrg, eData[1].sfb_nrg,
                          h_con, h_envChan[0], SBR_COUPLING, &fData->maxQuantError, YSzShift);
    break;
  case SBR_SWITCH_LRC:
    calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
                          h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
                          eData[0].frame_info, eData[0].sfb_nrg, NULL,
                          h_con, h_envChan[0], SBR_MONO, NULL, YSzShift);
    calculateSbrEnvelope (h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL,
                          h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL,
                          eData[1].frame_info, eData[1].sfb_nrg, NULL,
                          h_con, h_envChan[1], SBR_MONO,NULL, YSzShift);
    calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, h_envChan[1]->sbrExtractEnvelope.YBuffer,
                          h_envChan[0]->sbrExtractEnvelope.YBufferScale, h_envChan[1]->sbrExtractEnvelope.YBufferScale,
                          eData[0].frame_info, eData[0].sfb_nrg_coupling, eData[1].sfb_nrg_coupling,
                          h_con, h_envChan[0], SBR_COUPLING, &fData->maxQuantError, YSzShift);
    break;
  }



  /*
    Noise floor quantisation and coding.
  */

  switch (stereoMode) {
  case SBR_MONO:
    sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, 0);

    FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res,
                           &h_envChan[0]->sbrCodeNoiseFloor,
                           h_envChan[0]->encEnvData.domain_vec_noise, 0,
                           (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                           sbrBitstreamData->HeaderActive);

    break;
  case SBR_LEFT_RIGHT:
    sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0);

    FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res,
                  &h_envChan[0]->sbrCodeNoiseFloor,
                  h_envChan[0]->encEnvData.domain_vec_noise, 0,
                  (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                  sbrBitstreamData->HeaderActive);

    sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 0);

    FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res,
                  &h_envChan[1]->sbrCodeNoiseFloor,
                  h_envChan[1]->encEnvData.domain_vec_noise, 0,
                  (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                  sbrBitstreamData->HeaderActive);

    break;

  case SBR_COUPLING:
    coupleNoiseFloor(eData[0].noiseFloor,eData[1].noiseFloor);

    sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0);

    FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res,
                  &h_envChan[0]->sbrCodeNoiseFloor,
                  h_envChan[0]->encEnvData.domain_vec_noise, 1,
                  (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                  sbrBitstreamData->HeaderActive);

    sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 1);

    FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res,
                  &h_envChan[1]->sbrCodeNoiseFloor,
                  h_envChan[1]->encEnvData.domain_vec_noise, 1,
                  (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1,
                  sbrBitstreamData->HeaderActive);

    break;
  case SBR_SWITCH_LRC:
    sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0);
    sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 0);
    coupleNoiseFloor(eData[0].noiseFloor,eData[1].noiseFloor);
    sbrNoiseFloorLevelsQuantisation(eData[0].noise_level_coupling,eData[0].noiseFloor, 0);
    sbrNoiseFloorLevelsQuantisation(eData[1].noise_level_coupling,eData[1].noiseFloor, 1);
    break;
  }



  /*
    Encode envelope of current frame.
  */
  switch (stereoMode) {
  case SBR_MONO:
    sbrHeaderData->coupling = 0;
    h_envChan[0]->encEnvData.balance = 0;
    FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
                  &h_envChan[0]->sbrCodeEnvelope,
                  h_envChan[0]->encEnvData.domain_vec,
                  sbrHeaderData->coupling,
                  eData[0].frame_info->nEnvelopes, 0,
                  sbrBitstreamData->HeaderActive);
    break;
  case SBR_LEFT_RIGHT:
    sbrHeaderData->coupling = 0;

    h_envChan[0]->encEnvData.balance = 0;
    h_envChan[1]->encEnvData.balance = 0;


    FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
                  &h_envChan[0]->sbrCodeEnvelope,
                  h_envChan[0]->encEnvData.domain_vec,
                  sbrHeaderData->coupling,
                  eData[0].frame_info->nEnvelopes, 0,
                  sbrBitstreamData->HeaderActive);
    FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes,
                  &h_envChan[1]->sbrCodeEnvelope,
                  h_envChan[1]->encEnvData.domain_vec,
                  sbrHeaderData->coupling,
                  eData[1].frame_info->nEnvelopes, 0,
                  sbrBitstreamData->HeaderActive);
    break;
  case SBR_COUPLING:
    sbrHeaderData->coupling = 1;
    h_envChan[0]->encEnvData.balance = 0;
    h_envChan[1]->encEnvData.balance = 1;

    FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
                  &h_envChan[0]->sbrCodeEnvelope,
                  h_envChan[0]->encEnvData.domain_vec,
                  sbrHeaderData->coupling,
                  eData[0].frame_info->nEnvelopes, 0,
                  sbrBitstreamData->HeaderActive);
    FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes,
                  &h_envChan[1]->sbrCodeEnvelope,
                  h_envChan[1]->encEnvData.domain_vec,
                  sbrHeaderData->coupling,
                  eData[1].frame_info->nEnvelopes, 1,
                  sbrBitstreamData->HeaderActive);
    break;
  case SBR_SWITCH_LRC:
    {
      INT payloadbitsLR;
      INT payloadbitsCOUPLING;

      SCHAR sfbNrgPrevTemp[MAX_NUM_CHANNELS][MAX_FREQ_COEFFS];
      SCHAR noisePrevTemp[MAX_NUM_CHANNELS][MAX_NUM_NOISE_COEFFS];
      INT upDateNrgTemp[MAX_NUM_CHANNELS];
      INT upDateNoiseTemp[MAX_NUM_CHANNELS];
      INT domainVecTemp[MAX_NUM_CHANNELS][MAX_ENVELOPES];
      INT domainVecNoiseTemp[MAX_NUM_CHANNELS][MAX_ENVELOPES];

      INT tempFlagRight = 0;
      INT tempFlagLeft = 0;

      /*
         Store previous values, in order to be able to "undo" what is being done.
      */

      for(ch = 0; ch < nChannels;ch++){
        FDKmemcpy (sfbNrgPrevTemp[ch], h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev,
              MAX_FREQ_COEFFS * sizeof (SCHAR));

        FDKmemcpy (noisePrevTemp[ch], h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev,
              MAX_NUM_NOISE_COEFFS * sizeof (SCHAR));

        upDateNrgTemp[ch] = h_envChan[ch]->sbrCodeEnvelope.upDate;
        upDateNoiseTemp[ch] = h_envChan[ch]->sbrCodeNoiseFloor.upDate;

        /*
          forbid time coding in the first envelope in case of a different
          previous stereomode
        */
        if(sbrHeaderData->prev_coupling){
          h_envChan[ch]->sbrCodeEnvelope.upDate = 0;
          h_envChan[ch]->sbrCodeNoiseFloor.upDate = 0;
        }
      } /* ch */


      /*
         Code ordinary Left/Right stereo
      */
      FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
                    &h_envChan[0]->sbrCodeEnvelope,
                    h_envChan[0]->encEnvData.domain_vec, 0,
                    eData[0].frame_info->nEnvelopes, 0,
                    sbrBitstreamData->HeaderActive);
      FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes,
                    &h_envChan[1]->sbrCodeEnvelope,
                    h_envChan[1]->encEnvData.domain_vec, 0,
                    eData[1].frame_info->nEnvelopes, 0,
                    sbrBitstreamData->HeaderActive);

      c = 0;
      for (i = 0; i < eData[0].nEnvelopes; i++) {
        for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++)
          {
            h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg[c];
            h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg[c];
            c++;
          }
      }



      FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res,
                    &h_envChan[0]->sbrCodeNoiseFloor,
                    h_envChan[0]->encEnvData.domain_vec_noise, 0,
                    (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                    sbrBitstreamData->HeaderActive);


      for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
        h_envChan[0]->encEnvData.sbr_noise_levels[i] = eData[0].noise_level[i];


      FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res,
                    &h_envChan[1]->sbrCodeNoiseFloor,
                    h_envChan[1]->encEnvData.domain_vec_noise, 0,
                    (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                    sbrBitstreamData->HeaderActive);

      for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
        h_envChan[1]->encEnvData.sbr_noise_levels[i] = eData[1].noise_level[i];


      sbrHeaderData->coupling = 0;
      h_envChan[0]->encEnvData.balance = 0;
      h_envChan[1]->encEnvData.balance = 0;

      payloadbitsLR = FDKsbrEnc_CountSbrChannelPairElement (sbrHeaderData,
                                                  hParametricStereo,
                                                  sbrBitstreamData,
                                                  &h_envChan[0]->encEnvData,
                                                  &h_envChan[1]->encEnvData,
                                                  hCmonData,
                                                  h_con->sbrSyntaxFlags);

      /*
        swap saved stored with current values
      */
      for(ch = 0; ch < nChannels;ch++){
        INT   itmp;
        for(i=0;i<MAX_FREQ_COEFFS;i++){
          /*
            swap sfb energies
          */
          itmp =  h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i];
          h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i]=sfbNrgPrevTemp[ch][i];
          sfbNrgPrevTemp[ch][i]=itmp;
        }
        for(i=0;i<MAX_NUM_NOISE_COEFFS;i++){
          /*
            swap noise energies
          */
          itmp =  h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i];
          h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i]=noisePrevTemp[ch][i];
          noisePrevTemp[ch][i]=itmp;
       }
        /* swap update flags */
        itmp  = h_envChan[ch]->sbrCodeEnvelope.upDate;
        h_envChan[ch]->sbrCodeEnvelope.upDate=upDateNrgTemp[ch];
        upDateNrgTemp[ch] = itmp;

        itmp =  h_envChan[ch]->sbrCodeNoiseFloor.upDate;
        h_envChan[ch]->sbrCodeNoiseFloor.upDate=upDateNoiseTemp[ch];
        upDateNoiseTemp[ch]=itmp;

        /*
            save domain vecs
        */
        FDKmemcpy(domainVecTemp[ch],h_envChan[ch]->encEnvData.domain_vec,sizeof(INT)*MAX_ENVELOPES);
        FDKmemcpy(domainVecNoiseTemp[ch],h_envChan[ch]->encEnvData.domain_vec_noise,sizeof(INT)*MAX_ENVELOPES);

        /*
          forbid time coding in the first envelope in case of a different
          previous stereomode
        */

        if(!sbrHeaderData->prev_coupling){
          h_envChan[ch]->sbrCodeEnvelope.upDate = 0;
          h_envChan[ch]->sbrCodeNoiseFloor.upDate = 0;
        }
      } /* ch */


      /*
         Coupling
       */

      FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg_coupling, eData[0].frame_info->freqRes,
                    &h_envChan[0]->sbrCodeEnvelope,
                    h_envChan[0]->encEnvData.domain_vec, 1,
                    eData[0].frame_info->nEnvelopes, 0,
                    sbrBitstreamData->HeaderActive);

      FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg_coupling, eData[1].frame_info->freqRes,
                    &h_envChan[1]->sbrCodeEnvelope,
                    h_envChan[1]->encEnvData.domain_vec, 1,
                    eData[1].frame_info->nEnvelopes, 1,
                    sbrBitstreamData->HeaderActive);


      c = 0;
      for (i = 0; i < eData[0].nEnvelopes; i++) {
        for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++) {
          h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg_coupling[c];
          h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg_coupling[c];
          c++;
        }
      }

      FDKsbrEnc_codeEnvelope (eData[0].noise_level_coupling, fData->res,
                    &h_envChan[0]->sbrCodeNoiseFloor,
                    h_envChan[0]->encEnvData.domain_vec_noise, 1,
                    (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
                     sbrBitstreamData->HeaderActive);

      for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
        h_envChan[0]->encEnvData.sbr_noise_levels[i] = eData[0].noise_level_coupling[i];


      FDKsbrEnc_codeEnvelope (eData[1].noise_level_coupling, fData->res,
                    &h_envChan[1]->sbrCodeNoiseFloor,
                    h_envChan[1]->encEnvData.domain_vec_noise, 1,
                    (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1,
                    sbrBitstreamData->HeaderActive);

      for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
        h_envChan[1]->encEnvData.sbr_noise_levels[i] = eData[1].noise_level_coupling[i];

      sbrHeaderData->coupling = 1;

      h_envChan[0]->encEnvData.balance  = 0;
      h_envChan[1]->encEnvData.balance  = 1;

      tempFlagLeft  = h_envChan[0]->encEnvData.addHarmonicFlag;
      tempFlagRight = h_envChan[1]->encEnvData.addHarmonicFlag;

      payloadbitsCOUPLING =
        FDKsbrEnc_CountSbrChannelPairElement (sbrHeaderData,
                                    hParametricStereo,
                                    sbrBitstreamData,
                                    &h_envChan[0]->encEnvData,
                                    &h_envChan[1]->encEnvData,
                                    hCmonData,
                                    h_con->sbrSyntaxFlags);


      h_envChan[0]->encEnvData.addHarmonicFlag = tempFlagLeft;
      h_envChan[1]->encEnvData.addHarmonicFlag = tempFlagRight;

      if (payloadbitsCOUPLING < payloadbitsLR) {

          /*
            copy coded coupling envelope and noise data to l/r
          */
          for(ch = 0; ch < nChannels;ch++){
            SBR_ENV_TEMP_DATA *ed = &eData[ch];
            FDKmemcpy (ed->sfb_nrg, ed->sfb_nrg_coupling,
                  MAX_NUM_ENVELOPE_VALUES * sizeof (SCHAR));
            FDKmemcpy (ed->noise_level, ed->noise_level_coupling,
                  MAX_NUM_NOISE_VALUES * sizeof (SCHAR));
          }

          sbrHeaderData->coupling = 1;
          h_envChan[0]->encEnvData.balance  = 0;
          h_envChan[1]->encEnvData.balance  = 1;
      }
      else{
          /*
            restore saved l/r items
          */
          for(ch = 0; ch < nChannels;ch++){

            FDKmemcpy (h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev,
                    sfbNrgPrevTemp[ch], MAX_FREQ_COEFFS * sizeof (SCHAR));

            h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch];

            FDKmemcpy (h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev,
                    noisePrevTemp[ch], MAX_NUM_NOISE_COEFFS * sizeof (SCHAR));

            FDKmemcpy (h_envChan[ch]->encEnvData.domain_vec,domainVecTemp[ch],sizeof(INT)*MAX_ENVELOPES);
            FDKmemcpy (h_envChan[ch]->encEnvData.domain_vec_noise,domainVecNoiseTemp[ch],sizeof(INT)*MAX_ENVELOPES);

            h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch];
          }

          sbrHeaderData->coupling = 0;
          h_envChan[0]->encEnvData.balance  = 0;
          h_envChan[1]->encEnvData.balance  = 0;
        }
    }
    break;
  } /* switch */


  /* tell the envelope encoders how long it has been, since we last sent
     a frame starting with a dF-coded envelope */
  if (stereoMode == SBR_MONO ) {
    if (h_envChan[0]->encEnvData.domain_vec[0] == TIME)
      h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac++;
    else
      h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac = 0;
  }
  else {
    if (h_envChan[0]->encEnvData.domain_vec[0] == TIME ||
        h_envChan[1]->encEnvData.domain_vec[0] == TIME) {
      h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac++;
      h_envChan[1]->sbrCodeEnvelope.dF_edge_incr_fac++;
    }
    else {
      h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac = 0;
      h_envChan[1]->sbrCodeEnvelope.dF_edge_incr_fac = 0;
    }
  }

  /*
    Send the encoded data to the bitstream
  */
  for(ch = 0; ch < nChannels;ch++){
    SBR_ENV_TEMP_DATA *ed = &eData[ch];
    c = 0;
    for (i = 0; i < ed->nEnvelopes; i++) {
      for (j = 0; j < h_envChan[ch]->encEnvData.noScfBands[i]; j++) {
        h_envChan[ch]->encEnvData.ienvelope[i][j] = ed->sfb_nrg[c];

        c++;
      }
    }
    for (i = 0; i < MAX_NUM_NOISE_VALUES; i++){
      h_envChan[ch]->encEnvData.sbr_noise_levels[i] = ed->noise_level[i];
    }
  }/* ch */


  /*
    Write bitstream
  */
  if (nChannels == 2) {
    FDKsbrEnc_WriteEnvChannelPairElement(sbrHeaderData,
                               hParametricStereo,
                               sbrBitstreamData,
                               &h_envChan[0]->encEnvData,
                               &h_envChan[1]->encEnvData,
                               hCmonData,
                               h_con->sbrSyntaxFlags);
  }
  else {
    FDKsbrEnc_WriteEnvSingleChannelElement(sbrHeaderData,
                                 hParametricStereo,
                                 sbrBitstreamData,
                                 &h_envChan[0]->encEnvData,
                                 hCmonData,
                                 h_con->sbrSyntaxFlags);
  }

  /*
   * Update buffers.
   */
  for (ch=0; ch<nChannels; ch++)
  {
      int YBufferLength = h_envChan[ch]->sbrExtractEnvelope.no_cols >> h_envChan[ch]->sbrExtractEnvelope.YBufferSzShift;
      for (i = 0; i < h_envChan[ch]->sbrExtractEnvelope.YBufferWriteOffset; i++) {
         FDKmemcpy(h_envChan[ch]->sbrExtractEnvelope.YBuffer[i],
                   h_envChan[ch]->sbrExtractEnvelope.YBuffer[i + YBufferLength],
                   sizeof(FIXP_DBL)*QMF_CHANNELS);
      }
      h_envChan[ch]->sbrExtractEnvelope.YBufferScale[0] = h_envChan[ch]->sbrExtractEnvelope.YBufferScale[1];
  }

  sbrHeaderData->prev_coupling = sbrHeaderData->coupling;
}

/***************************************************************************/
/*!

  \brief  creates an envelope extractor handle

  \return error status

****************************************************************************/
INT
FDKsbrEnc_CreateExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE  hSbrCut,
                                    INT channel
                                   ,INT chInEl
                                   ,UCHAR* dynamic_RAM
                         )
{
  INT i;
  FIXP_DBL* YBuffer = GetRam_Sbr_envYBuffer(channel);

  FDKmemclear(hSbrCut,sizeof(SBR_EXTRACT_ENVELOPE));
  hSbrCut->p_YBuffer = YBuffer;


  for (i = 0; i < (QMF_MAX_TIME_SLOTS>>1); i++) {
    hSbrCut->YBuffer[i] = YBuffer + (i*QMF_CHANNELS);
  }
  FIXP_DBL *YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM);
  INT n=0;
  for (; i < QMF_MAX_TIME_SLOTS; i++,n++) {
    hSbrCut->YBuffer[i] = YBufferDyn + (n*QMF_CHANNELS);
  }

  FIXP_DBL* rBuffer = GetRam_Sbr_envRBuffer(0, dynamic_RAM);
  FIXP_DBL* iBuffer = GetRam_Sbr_envIBuffer(0, dynamic_RAM);

  for (i = 0; i < QMF_MAX_TIME_SLOTS; i++) {
    hSbrCut->rBuffer[i] = rBuffer + (i*QMF_CHANNELS);
    hSbrCut->iBuffer[i] = iBuffer + (i*QMF_CHANNELS);
  }

  return 0;
}


/***************************************************************************/
/*!

  \brief  Initialize an envelope extractor instance.

  \return error status

****************************************************************************/
INT
FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE  hSbrCut,
                                  int no_cols,
                                  int no_rows,
                                  int start_index,
                                  int time_slots,
                                  int time_step,
                                  int tran_off,
                                  ULONG statesInitFlag
                                 ,int chInEl
                                 ,UCHAR* dynamic_RAM
                                 ,UINT sbrSyntaxFlags
                                  )
{
  int YBufferLength, rBufferLength;
  int i;

  if (sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
    int off = TRANSIENT_OFFSET_LD;
#ifndef FULL_DELAY
    hSbrCut->YBufferWriteOffset = (no_cols>>1)+off*time_step;
#else
    hSbrCut->YBufferWriteOffset = no_cols+off*time_step;
#endif
  } else
  {
    hSbrCut->YBufferWriteOffset = tran_off*time_step;
  }
  hSbrCut->rBufferReadOffset  = 0;


  YBufferLength = hSbrCut->YBufferWriteOffset + no_cols;
  rBufferLength = no_cols;

  hSbrCut->pre_transient_info[0] = 0;
  hSbrCut->pre_transient_info[1] = 0;


  hSbrCut->no_cols = no_cols;
  hSbrCut->no_rows = no_rows;
  hSbrCut->start_index = start_index;

  hSbrCut->time_slots = time_slots;
  hSbrCut->time_step = time_step;

  FDK_ASSERT(no_rows        <=   QMF_CHANNELS);

  /* Use half the Energy values if time step is 2 or greater */
  if (time_step >= 2)
    hSbrCut->YBufferSzShift = 1;
  else
    hSbrCut->YBufferSzShift = 0;

  YBufferLength               >>= hSbrCut->YBufferSzShift;
  hSbrCut->YBufferWriteOffset >>= hSbrCut->YBufferSzShift;

  FDK_ASSERT(YBufferLength<=QMF_MAX_TIME_SLOTS);

  FIXP_DBL *YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM);
  INT n=0;
  for (i=(QMF_MAX_TIME_SLOTS>>1); i < QMF_MAX_TIME_SLOTS; i++,n++) {
    hSbrCut->YBuffer[i] = YBufferDyn + (n*QMF_CHANNELS);
  }

  if(statesInitFlag) {
    for (i=0; i<YBufferLength; i++) {
      FDKmemclear( hSbrCut->YBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL));
    }
  }

  for (i = 0; i < rBufferLength; i++) {
    FDKmemclear( hSbrCut->rBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL));
    FDKmemclear( hSbrCut->iBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL));
  }

  FDKmemclear (hSbrCut->envelopeCompensation,sizeof(UCHAR)*MAX_FREQ_COEFFS);

  if(statesInitFlag) {
    hSbrCut->YBufferScale[0] = hSbrCut->YBufferScale[1] = FRACT_BITS-1;
  }

  return (0);
}




/***************************************************************************/
/*!

  \brief  deinitializes an envelope extractor handle

  \return void

****************************************************************************/

void
FDKsbrEnc_deleteExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut)
{

  if (hSbrCut) {
    FreeRam_Sbr_envYBuffer(&hSbrCut->p_YBuffer);
  }
}

INT
FDKsbrEnc_GetEnvEstDelay(HANDLE_SBR_EXTRACT_ENVELOPE hSbr)
{
  return hSbr->no_rows*((hSbr->YBufferWriteOffset)*2     /* mult 2 because nrg's are grouped half */
                        - hSbr->rBufferReadOffset );       /* in reference hold half spec and calc nrg's on overlapped spec */

}