1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
|
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
� Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/*!
\file
\brief Low Power Profile Transposer,
This module provides the transposer. The main entry point is lppTransposer(). The function generates
high frequency content by copying data from the low band (provided by core codec) into the high band.
This process is also referred to as "patching". The function also implements spectral whitening by means of
inverse filtering based on LPC coefficients.
Together with the QMF filterbank the transposer can be tested using a supplied test program. See main_audio.cpp for details.
This module does use fractional arithmetic and the accuracy of the computations has an impact on the overall sound quality.
The module also needs to take into account the different scaling of spectral data.
\sa lppTransposer(), main_audio.cpp, sbr_scale.h, \ref documentationOverview
*/
#ifdef __ANDROID__
#include <cutils/log.h>
#endif
#include "lpp_tran.h"
#include "sbr_ram.h"
#include "sbr_rom.h"
#include "genericStds.h"
#include "autocorr2nd.h"
#if defined(__arm__)
#include "arm/lpp_tran_arm.cpp"
#endif
#define LPC_SCALE_FACTOR 2
/*!
*
* \brief Get bandwidth expansion factor from filtering level
*
* Returns a filter parameter (bandwidth expansion factor) depending on
* the desired filtering level signalled in the bitstream.
* When switching the filtering level from LOW to OFF, an additional
* level is being inserted to achieve a smooth transition.
*/
#ifndef FUNCTION_mapInvfMode
static FIXP_DBL
mapInvfMode (INVF_MODE mode,
INVF_MODE prevMode,
WHITENING_FACTORS whFactors)
{
switch (mode) {
case INVF_LOW_LEVEL:
if(prevMode == INVF_OFF)
return whFactors.transitionLevel;
else
return whFactors.lowLevel;
case INVF_MID_LEVEL:
return whFactors.midLevel;
case INVF_HIGH_LEVEL:
return whFactors.highLevel;
default:
if(prevMode == INVF_LOW_LEVEL)
return whFactors.transitionLevel;
else
return whFactors.off;
}
}
#endif /* #ifndef FUNCTION_mapInvfMode */
/*!
*
* \brief Perform inverse filtering level emphasis
*
* Retrieve bandwidth expansion factor and apply smoothing for each filter band
*
*/
#ifndef FUNCTION_inverseFilteringLevelEmphasis
static void
inverseFilteringLevelEmphasis(HANDLE_SBR_LPP_TRANS hLppTrans,/*!< Handle of lpp transposer */
UCHAR nInvfBands, /*!< Number of bands for inverse filtering */
INVF_MODE *sbr_invf_mode, /*!< Current inverse filtering modes */
INVF_MODE *sbr_invf_mode_prev, /*!< Previous inverse filtering modes */
FIXP_DBL * bwVector /*!< Resulting filtering levels */
)
{
for(int i = 0; i < nInvfBands; i++) {
FIXP_DBL accu;
FIXP_DBL bwTmp = mapInvfMode (sbr_invf_mode[i],
sbr_invf_mode_prev[i],
hLppTrans->pSettings->whFactors);
if(bwTmp < hLppTrans->bwVectorOld[i]) {
accu = fMultDiv2(FL2FXCONST_DBL(0.75f),bwTmp) +
fMultDiv2(FL2FXCONST_DBL(0.25f),hLppTrans->bwVectorOld[i]);
}
else {
accu = fMultDiv2(FL2FXCONST_DBL(0.90625f),bwTmp) +
fMultDiv2(FL2FXCONST_DBL(0.09375f),hLppTrans->bwVectorOld[i]);
}
if (accu < FL2FXCONST_DBL(0.015625f)>>1)
bwVector[i] = FL2FXCONST_DBL(0.0f);
else
bwVector[i] = fixMin(accu<<1,FL2FXCONST_DBL(0.99609375f));
}
}
#endif /* #ifndef FUNCTION_inverseFilteringLevelEmphasis */
/* Resulting autocorrelation determinant exponent */
#define ACDET_EXP (2*(DFRACT_BITS+sbrScaleFactor->lb_scale+10-ac.det_scale))
#define AC_EXP (-sbrScaleFactor->lb_scale+LPC_SCALE_FACTOR)
#define ALPHA_EXP (-sbrScaleFactor->lb_scale+LPC_SCALE_FACTOR+1)
/* Resulting transposed QMF values exponent 16 bit normalized samplebits assumed. */
#define QMFOUT_EXP ((SAMPLE_BITS-15)-sbrScaleFactor->lb_scale)
/*!
*
* \brief Perform transposition by patching of subband samples.
* This function serves as the main entry point into the module. The function determines the areas for the
* patching process (these are the source range as well as the target range) and implements spectral whitening
* by means of inverse filtering. The function autoCorrelation2nd() is an auxiliary function for calculating the
* LPC coefficients for the filtering. The actual calculation of the LPC coefficients and the implementation
* of the filtering are done as part of lppTransposer().
*
* Note that the filtering is done on all available QMF subsamples, whereas the patching is only done on those QMF
* subsamples that will be used in the next QMF synthesis. The filtering is also implemented before the patching
* includes further dependencies on parameters from the SBR data.
*
*/
void lppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, /*!< Handle of lpp transposer */
QMF_SCALE_FACTOR *sbrScaleFactor, /*!< Scaling factors */
FIXP_DBL **qmfBufferReal, /*!< Pointer to pointer to real part of subband samples (source) */
FIXP_DBL *degreeAlias, /*!< Vector for results of aliasing estimation */
FIXP_DBL **qmfBufferImag, /*!< Pointer to pointer to imaginary part of subband samples (source) */
const int useLP,
const int timeStep, /*!< Time step of envelope */
const int firstSlotOffs, /*!< Start position in time */
const int lastSlotOffs, /*!< Number of overlap-slots into next frame */
const int nInvfBands, /*!< Number of bands for inverse filtering */
INVF_MODE *sbr_invf_mode, /*!< Current inverse filtering modes */
INVF_MODE *sbr_invf_mode_prev /*!< Previous inverse filtering modes */
)
{
INT bwIndex[MAX_NUM_PATCHES];
FIXP_DBL bwVector[MAX_NUM_PATCHES]; /*!< pole moving factors */
int i;
int loBand, start, stop;
TRANSPOSER_SETTINGS *pSettings = hLppTrans->pSettings;
PATCH_PARAM *patchParam = pSettings->patchParam;
int patch;
FIXP_SGL alphar[LPC_ORDER], a0r, a1r;
FIXP_SGL alphai[LPC_ORDER], a0i=0, a1i=0;
FIXP_SGL bw = FL2FXCONST_SGL(0.0f);
int autoCorrLength;
FIXP_DBL k1, k1_below=0, k1_below2=0;
ACORR_COEFS ac;
int startSample;
int stopSample;
int stopSampleClear;
int comLowBandScale;
int ovLowBandShift;
int lowBandShift;
/* int ovHighBandShift;*/
alphai[0] = FL2FXCONST_SGL(0.0f);
alphai[1] = FL2FXCONST_SGL(0.0f);
startSample = firstSlotOffs * timeStep;
stopSample = pSettings->nCols + lastSlotOffs * timeStep;
inverseFilteringLevelEmphasis(hLppTrans, nInvfBands, sbr_invf_mode, sbr_invf_mode_prev, bwVector);
stopSampleClear = stopSample;
autoCorrLength = pSettings->nCols + pSettings->overlap;
if (pSettings->noOfPatches > 0) {
/* Set upper subbands to zero:
This is required in case that the patches do not cover the complete highband
(because the last patch would be too short).
Possible optimization: Clearing bands up to usb would be sufficient here. */
int targetStopBand = patchParam[pSettings->noOfPatches-1].targetStartBand
+ patchParam[pSettings->noOfPatches-1].numBandsInPatch;
int memSize = ((64) - targetStopBand) * sizeof(FIXP_DBL);
if (!useLP) {
for (i = startSample; i < stopSampleClear; i++) {
FDKmemclear(&qmfBufferReal[i][targetStopBand], memSize);
FDKmemclear(&qmfBufferImag[i][targetStopBand], memSize);
}
} else
for (i = startSample; i < stopSampleClear; i++) {
FDKmemclear(&qmfBufferReal[i][targetStopBand], memSize);
}
}
#ifdef __ANDROID__
else {
// Safetynet logging
android_errorWriteLog(0x534e4554, "112160868");
}
#endif
/* init bwIndex for each patch */
FDKmemclear(bwIndex, MAX_NUM_PATCHES*sizeof(INT));
/*
Calc common low band scale factor
*/
comLowBandScale = fixMin(sbrScaleFactor->ov_lb_scale,sbrScaleFactor->lb_scale);
ovLowBandShift = sbrScaleFactor->ov_lb_scale - comLowBandScale;
lowBandShift = sbrScaleFactor->lb_scale - comLowBandScale;
/* ovHighBandShift = firstSlotOffs == 0 ? ovLowBandShift:0;*/
/* outer loop over bands to do analysis only once for each band */
if (!useLP) {
start = pSettings->lbStartPatching;
stop = pSettings->lbStopPatching;
} else
{
start = fixMax(1, pSettings->lbStartPatching - 2);
stop = patchParam[0].targetStartBand;
}
for ( loBand = start; loBand < stop; loBand++ ) {
FIXP_DBL lowBandReal[(((1024)/(32))+(6))+LPC_ORDER];
FIXP_DBL *plowBandReal = lowBandReal;
FIXP_DBL **pqmfBufferReal = qmfBufferReal;
FIXP_DBL lowBandImag[(((1024)/(32))+(6))+LPC_ORDER];
FIXP_DBL *plowBandImag = lowBandImag;
FIXP_DBL **pqmfBufferImag = qmfBufferImag;
int resetLPCCoeffs=0;
int dynamicScale = DFRACT_BITS-1-LPC_SCALE_FACTOR;
int acDetScale = 0; /* scaling of autocorrelation determinant */
for(i=0;i<LPC_ORDER;i++){
*plowBandReal++ = hLppTrans->lpcFilterStatesReal[i][loBand];
if (!useLP)
*plowBandImag++ = hLppTrans->lpcFilterStatesImag[i][loBand];
}
/*
Take old slope length qmf slot source values out of (overlap)qmf buffer
*/
if (!useLP) {
for(i=0;i<pSettings->nCols+pSettings->overlap;i++){
*plowBandReal++ = (*pqmfBufferReal++)[loBand];
*plowBandImag++ = (*pqmfBufferImag++)[loBand];
}
} else
{
/* pSettings->overlap is always even */
FDK_ASSERT((pSettings->overlap & 1) == 0);
for(i=0;i<((pSettings->overlap+pSettings->nCols)>>1);i++) {
*plowBandReal++ = (*pqmfBufferReal++)[loBand];
*plowBandReal++ = (*pqmfBufferReal++)[loBand];
}
if (pSettings->nCols & 1) {
*plowBandReal++ = (*pqmfBufferReal++)[loBand];
}
}
/*
Determine dynamic scaling value.
*/
dynamicScale = fixMin(dynamicScale, getScalefactor(lowBandReal, LPC_ORDER+pSettings->overlap) + ovLowBandShift);
dynamicScale = fixMin(dynamicScale, getScalefactor(&lowBandReal[LPC_ORDER+pSettings->overlap], pSettings->nCols) + lowBandShift);
if (!useLP) {
dynamicScale = fixMin(dynamicScale, getScalefactor(lowBandImag, LPC_ORDER+pSettings->overlap) + ovLowBandShift);
dynamicScale = fixMin(dynamicScale, getScalefactor(&lowBandImag[LPC_ORDER+pSettings->overlap], pSettings->nCols) + lowBandShift);
}
dynamicScale = fixMax(0, dynamicScale-1); /* one additional bit headroom to prevent -1.0 */
/*
Scale temporal QMF buffer.
*/
scaleValues(&lowBandReal[0], LPC_ORDER+pSettings->overlap, dynamicScale-ovLowBandShift);
scaleValues(&lowBandReal[LPC_ORDER+pSettings->overlap], pSettings->nCols, dynamicScale-lowBandShift);
if (!useLP) {
scaleValues(&lowBandImag[0], LPC_ORDER+pSettings->overlap, dynamicScale-ovLowBandShift);
scaleValues(&lowBandImag[LPC_ORDER+pSettings->overlap], pSettings->nCols, dynamicScale-lowBandShift);
}
if (!useLP) {
acDetScale += autoCorr2nd_cplx(&ac, lowBandReal+LPC_ORDER, lowBandImag+LPC_ORDER, autoCorrLength);
}
else
{
acDetScale += autoCorr2nd_real(&ac, lowBandReal+LPC_ORDER, autoCorrLength);
}
/* Examine dynamic of determinant in autocorrelation. */
acDetScale += 2*(comLowBandScale + dynamicScale);
acDetScale *= 2; /* two times reflection coefficent scaling */
acDetScale += ac.det_scale; /* ac scaling of determinant */
/* In case of determinant < 10^-38, resetLPCCoeffs=1 has to be enforced. */
if (acDetScale>126 ) {
resetLPCCoeffs = 1;
}
alphar[1] = FL2FXCONST_SGL(0.0f);
if (!useLP)
alphai[1] = FL2FXCONST_SGL(0.0f);
if (ac.det != FL2FXCONST_DBL(0.0f)) {
FIXP_DBL tmp,absTmp,absDet;
absDet = fixp_abs(ac.det);
if (!useLP) {
tmp = ( fMultDiv2(ac.r01r,ac.r12r) >> (LPC_SCALE_FACTOR-1) ) -
( (fMultDiv2(ac.r01i,ac.r12i) + fMultDiv2(ac.r02r,ac.r11r)) >> (LPC_SCALE_FACTOR-1) );
} else
{
tmp = ( fMultDiv2(ac.r01r,ac.r12r) >> (LPC_SCALE_FACTOR-1) ) -
( fMultDiv2(ac.r02r,ac.r11r) >> (LPC_SCALE_FACTOR-1) );
}
absTmp = fixp_abs(tmp);
/*
Quick check: is first filter coeff >= 1(4)
*/
{
INT scale;
FIXP_DBL result = fDivNorm(absTmp, absDet, &scale);
scale = scale+ac.det_scale;
if ( (scale > 0) && (result >= (FIXP_DBL)MAXVAL_DBL>>scale) ) {
resetLPCCoeffs = 1;
}
else {
alphar[1] = FX_DBL2FX_SGL(scaleValue(result,scale));
if((tmp<FL2FX_DBL(0.0f)) ^ (ac.det<FL2FX_DBL(0.0f))) {
alphar[1] = -alphar[1];
}
}
}
if (!useLP)
{
tmp = ( fMultDiv2(ac.r01i,ac.r12r) >> (LPC_SCALE_FACTOR-1) ) +
( (fMultDiv2(ac.r01r,ac.r12i) - (FIXP_DBL)fMultDiv2(ac.r02i,ac.r11r)) >> (LPC_SCALE_FACTOR-1) ) ;
absTmp = fixp_abs(tmp);
/*
Quick check: is second filter coeff >= 1(4)
*/
{
INT scale;
FIXP_DBL result = fDivNorm(absTmp, absDet, &scale);
scale = scale+ac.det_scale;
if ( (scale > 0) && (result >= /*FL2FXCONST_DBL(1.f)*/ (FIXP_DBL)MAXVAL_DBL>>scale) ) {
resetLPCCoeffs = 1;
}
else {
alphai[1] = FX_DBL2FX_SGL(scaleValue(result,scale));
if((tmp<FL2FX_DBL(0.0f)) ^ (ac.det<FL2FX_DBL(0.0f))) {
alphai[1] = -alphai[1];
}
}
}
}
}
alphar[0] = FL2FXCONST_SGL(0.0f);
if (!useLP)
alphai[0] = FL2FXCONST_SGL(0.0f);
if ( ac.r11r != FL2FXCONST_DBL(0.0f) ) {
/* ac.r11r is always >=0 */
FIXP_DBL tmp,absTmp;
if (!useLP) {
tmp = (ac.r01r>>(LPC_SCALE_FACTOR+1)) +
(fMultDiv2(alphar[1],ac.r12r) + fMultDiv2(alphai[1],ac.r12i));
} else
{
if(ac.r01r>=FL2FXCONST_DBL(0.0f))
tmp = (ac.r01r>>(LPC_SCALE_FACTOR+1)) + fMultDiv2(alphar[1],ac.r12r);
else
tmp = -((-ac.r01r)>>(LPC_SCALE_FACTOR+1)) + fMultDiv2(alphar[1],ac.r12r);
}
absTmp = fixp_abs(tmp);
/*
Quick check: is first filter coeff >= 1(4)
*/
if (absTmp >= (ac.r11r>>1)) {
resetLPCCoeffs=1;
}
else {
INT scale;
FIXP_DBL result = fDivNorm(absTmp, fixp_abs(ac.r11r), &scale);
alphar[0] = FX_DBL2FX_SGL(scaleValue(result,scale+1));
if((tmp>FL2FX_DBL(0.0f)) ^ (ac.r11r<FL2FX_DBL(0.0f)))
alphar[0] = -alphar[0];
}
if (!useLP)
{
tmp = (ac.r01i>>(LPC_SCALE_FACTOR+1)) +
(fMultDiv2(alphai[1],ac.r12r) - fMultDiv2(alphar[1],ac.r12i));
absTmp = fixp_abs(tmp);
/*
Quick check: is second filter coeff >= 1(4)
*/
if (absTmp >= (ac.r11r>>1)) {
resetLPCCoeffs=1;
}
else {
INT scale;
FIXP_DBL result = fDivNorm(absTmp, fixp_abs(ac.r11r), &scale);
alphai[0] = FX_DBL2FX_SGL(scaleValue(result,scale+1));
if((tmp>FL2FX_DBL(0.0f)) ^ (ac.r11r<FL2FX_DBL(0.0f)))
alphai[0] = -alphai[0];
}
}
}
if (!useLP)
{
/* Now check the quadratic criteria */
if( (fMultDiv2(alphar[0],alphar[0]) + fMultDiv2(alphai[0],alphai[0])) >= FL2FXCONST_DBL(0.5f) )
resetLPCCoeffs=1;
if( (fMultDiv2(alphar[1],alphar[1]) + fMultDiv2(alphai[1],alphai[1])) >= FL2FXCONST_DBL(0.5f) )
resetLPCCoeffs=1;
}
if(resetLPCCoeffs){
alphar[0] = FL2FXCONST_SGL(0.0f);
alphar[1] = FL2FXCONST_SGL(0.0f);
if (!useLP)
{
alphai[0] = FL2FXCONST_SGL(0.0f);
alphai[1] = FL2FXCONST_SGL(0.0f);
}
}
if (useLP)
{
/* Aliasing detection */
if(ac.r11r==FL2FXCONST_DBL(0.0f)) {
k1 = FL2FXCONST_DBL(0.0f);
}
else {
if ( fixp_abs(ac.r01r) >= fixp_abs(ac.r11r) ) {
if ( fMultDiv2(ac.r01r,ac.r11r) < FL2FX_DBL(0.0f)) {
k1 = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_SGL(1.0f)*/;
}else {
/* Since this value is squared later, it must not ever become -1.0f. */
k1 = (FIXP_DBL)(MINVAL_DBL+1) /*FL2FXCONST_SGL(-1.0f)*/;
}
}
else {
INT scale;
FIXP_DBL result = fDivNorm(fixp_abs(ac.r01r), fixp_abs(ac.r11r), &scale);
k1 = scaleValue(result,scale);
if(!((ac.r01r<FL2FX_DBL(0.0f)) ^ (ac.r11r<FL2FX_DBL(0.0f)))) {
k1 = -k1;
}
}
}
if(loBand > 1){
/* Check if the gain should be locked */
FIXP_DBL deg = /*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL - fPow2(k1_below);
degreeAlias[loBand] = FL2FXCONST_DBL(0.0f);
if (((loBand & 1) == 0) && (k1 < FL2FXCONST_DBL(0.0f))){
if (k1_below < FL2FXCONST_DBL(0.0f)) { /* 2-Ch Aliasing Detection */
degreeAlias[loBand] = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_DBL(1.0f)*/;
if ( k1_below2 > FL2FXCONST_DBL(0.0f) ) { /* 3-Ch Aliasing Detection */
degreeAlias[loBand-1] = deg;
}
}
else if ( k1_below2 > FL2FXCONST_DBL(0.0f) ) { /* 3-Ch Aliasing Detection */
degreeAlias[loBand] = deg;
}
}
if (((loBand & 1) == 1) && (k1 > FL2FXCONST_DBL(0.0f))){
if (k1_below > FL2FXCONST_DBL(0.0f)) { /* 2-CH Aliasing Detection */
degreeAlias[loBand] = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_DBL(1.0f)*/;
if ( k1_below2 < FL2FXCONST_DBL(0.0f) ) { /* 3-CH Aliasing Detection */
degreeAlias[loBand-1] = deg;
}
}
else if ( k1_below2 < FL2FXCONST_DBL(0.0f) ) { /* 3-CH Aliasing Detection */
degreeAlias[loBand] = deg;
}
}
}
/* remember k1 values of the 2 QMF channels below the current channel */
k1_below2 = k1_below;
k1_below = k1;
}
patch = 0;
while ( patch < pSettings->noOfPatches ) { /* inner loop over every patch */
int hiBand = loBand + patchParam[patch].targetBandOffs;
if ( loBand < patchParam[patch].sourceStartBand
|| loBand >= patchParam[patch].sourceStopBand
//|| hiBand >= hLppTrans->pSettings->noChannels
) {
/* Lowband not in current patch - proceed */
patch++;
continue;
}
FDK_ASSERT( hiBand < (64) );
/* bwIndex[patch] is already initialized with value from previous band inside this patch */
while (hiBand >= pSettings->bwBorders[bwIndex[patch]] && bwIndex[patch] < MAX_NUM_PATCHES-1) {
bwIndex[patch]++;
}
/*
Filter Step 2: add the left slope with the current filter to the buffer
pure source values are already in there
*/
bw = FX_DBL2FX_SGL(bwVector[bwIndex[patch]]);
a0r = FX_DBL2FX_SGL(fMult(bw,alphar[0])); /* Apply current bandwidth expansion factor */
if (!useLP)
a0i = FX_DBL2FX_SGL(fMult(bw,alphai[0]));
bw = FX_DBL2FX_SGL(fPow2(bw));
a1r = FX_DBL2FX_SGL(fMult(bw,alphar[1]));
if (!useLP)
a1i = FX_DBL2FX_SGL(fMult(bw,alphai[1]));
/*
Filter Step 3: insert the middle part which won't be windowed
*/
if ( bw <= FL2FXCONST_SGL(0.0f) ) {
if (!useLP) {
int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
for(i = startSample; i < stopSample; i++ ) {
qmfBufferReal[i][hiBand] = lowBandReal[LPC_ORDER+i]>>descale;
qmfBufferImag[i][hiBand] = lowBandImag[LPC_ORDER+i]>>descale;
}
} else
{
int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
for(i = startSample; i < stopSample; i++ ) {
qmfBufferReal[i][hiBand] = lowBandReal[LPC_ORDER+i]>>descale;
}
}
}
else { /* bw <= 0 */
if (!useLP) {
int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
#ifdef FUNCTION_LPPTRANSPOSER_func1
lppTransposer_func1(lowBandReal+LPC_ORDER+startSample,lowBandImag+LPC_ORDER+startSample,
qmfBufferReal+startSample,qmfBufferImag+startSample,
stopSample-startSample, (int) hiBand,
dynamicScale,descale,
a0r, a0i, a1r, a1i);
#else
for(i = startSample; i < stopSample; i++ ) {
FIXP_DBL accu1, accu2;
accu1 = (fMultDiv2(a0r,lowBandReal[LPC_ORDER+i-1]) - fMultDiv2(a0i,lowBandImag[LPC_ORDER+i-1]) +
fMultDiv2(a1r,lowBandReal[LPC_ORDER+i-2]) - fMultDiv2(a1i,lowBandImag[LPC_ORDER+i-2]))>>dynamicScale;
accu2 = (fMultDiv2(a0i,lowBandReal[LPC_ORDER+i-1]) + fMultDiv2(a0r,lowBandImag[LPC_ORDER+i-1]) +
fMultDiv2(a1i,lowBandReal[LPC_ORDER+i-2]) + fMultDiv2(a1r,lowBandImag[LPC_ORDER+i-2]))>>dynamicScale;
qmfBufferReal[i][hiBand] = (lowBandReal[LPC_ORDER+i]>>descale) + (accu1<<1);
qmfBufferImag[i][hiBand] = (lowBandImag[LPC_ORDER+i]>>descale) + (accu2<<1);
}
#endif
} else
{
int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
FDK_ASSERT(dynamicScale >= 0);
for(i = startSample; i < stopSample; i++ ) {
FIXP_DBL accu1;
accu1 = (fMultDiv2(a0r,lowBandReal[LPC_ORDER+i-1]) + fMultDiv2(a1r,lowBandReal[LPC_ORDER+i-2]))>>dynamicScale;
qmfBufferReal[i][hiBand] = (lowBandReal[LPC_ORDER+i]>>descale) + (accu1<<1);
}
}
} /* bw <= 0 */
patch++;
} /* inner loop over patches */
/*
* store the unmodified filter coefficients if there is
* an overlapping envelope
*****************************************************************/
} /* outer loop over bands (loBand) */
if (useLP)
{
for ( loBand = pSettings->lbStartPatching; loBand < pSettings->lbStopPatching; loBand++ ) {
patch = 0;
while ( patch < pSettings->noOfPatches ) {
UCHAR hiBand = loBand + patchParam[patch].targetBandOffs;
if ( loBand < patchParam[patch].sourceStartBand
|| loBand >= patchParam[patch].sourceStopBand
|| hiBand >= (64) /* Highband out of range (biterror) */
) {
/* Lowband not in current patch or highband out of range (might be caused by biterrors)- proceed */
patch++;
continue;
}
if(hiBand != patchParam[patch].targetStartBand)
degreeAlias[hiBand] = degreeAlias[loBand];
patch++;
}
}/* end for loop */
}
for (i = 0; i < nInvfBands; i++ ) {
hLppTrans->bwVectorOld[i] = bwVector[i];
}
/*
set high band scale factor
*/
sbrScaleFactor->hb_scale = comLowBandScale-(LPC_SCALE_FACTOR);
}
/*!
*
* \brief Initialize one low power transposer instance
*
*
*/
SBR_ERROR
createLppTransposer (HANDLE_SBR_LPP_TRANS hs, /*!< Handle of low power transposer */
TRANSPOSER_SETTINGS *pSettings, /*!< Pointer to settings */
const int highBandStartSb, /*!< ? */
UCHAR *v_k_master, /*!< Master table */
const int numMaster, /*!< Valid entries in master table */
const int usb, /*!< Highband area stop subband */
const int timeSlots, /*!< Number of time slots */
const int nCols, /*!< Number of colums (codec qmf bank) */
UCHAR *noiseBandTable, /*!< Mapping of SBR noise bands to QMF bands */
const int noNoiseBands, /*!< Number of noise bands */
UINT fs, /*!< Sample Frequency */
const int chan, /*!< Channel number */
const int overlap
)
{
/* FB inverse filtering settings */
hs->pSettings = pSettings;
pSettings->nCols = nCols;
pSettings->overlap = overlap;
switch (timeSlots) {
case 15:
case 16:
break;
default:
return SBRDEC_UNSUPPORTED_CONFIG; /* Unimplemented */
}
if (chan==0) {
/* Init common data only once */
hs->pSettings->nCols = nCols;
return resetLppTransposer (hs,
highBandStartSb,
v_k_master,
numMaster,
noiseBandTable,
noNoiseBands,
usb,
fs);
}
return SBRDEC_OK;
}
static int findClosestEntry(UCHAR goalSb, UCHAR *v_k_master, UCHAR numMaster, UCHAR direction)
{
int index;
if( goalSb <= v_k_master[0] )
return v_k_master[0];
if( goalSb >= v_k_master[numMaster] )
return v_k_master[numMaster];
if(direction) {
index = 0;
while( v_k_master[index] < goalSb ) {
index++;
}
} else {
index = numMaster;
while( v_k_master[index] > goalSb ) {
index--;
}
}
return v_k_master[index];
}
/*!
*
* \brief Reset memory for one lpp transposer instance
*
* \return SBRDEC_OK on success, SBRDEC_UNSUPPORTED_CONFIG on error
*/
SBR_ERROR
resetLppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, /*!< Handle of lpp transposer */
UCHAR highBandStartSb, /*!< High band area: start subband */
UCHAR *v_k_master, /*!< Master table */
UCHAR numMaster, /*!< Valid entries in master table */
UCHAR *noiseBandTable, /*!< Mapping of SBR noise bands to QMF bands */
UCHAR noNoiseBands, /*!< Number of noise bands */
UCHAR usb, /*!< High band area: stop subband */
UINT fs /*!< SBR output sampling frequency */
)
{
TRANSPOSER_SETTINGS *pSettings = hLppTrans->pSettings;
PATCH_PARAM *patchParam = pSettings->patchParam;
int i, patch;
int targetStopBand;
int sourceStartBand;
int patchDistance;
int numBandsInPatch;
int lsb = v_k_master[0]; /* Start subband expressed in "non-critical" sampling terms*/
int xoverOffset = highBandStartSb - lsb; /* Calculate distance in QMF bands between k0 and kx */
int startFreqHz;
int desiredBorder;
usb = fixMin(usb, v_k_master[numMaster]); /* Avoid endless loops (compare with float code). */
/*
* Plausibility check
*/
if ( lsb - SHIFT_START_SB < 4 ) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
/*
* Initialize the patching parameter
*/
/* ISO/IEC 14496-3 (Figure 4.48): goalSb = round( 2.048e6 / fs ) */
desiredBorder = (((2048000*2) / fs) + 1) >> 1;
desiredBorder = findClosestEntry(desiredBorder, v_k_master, numMaster, 1); /* Adapt region to master-table */
/* First patch */
sourceStartBand = SHIFT_START_SB + xoverOffset;
targetStopBand = lsb + xoverOffset; /* upperBand */
/* Even (odd) numbered channel must be patched to even (odd) numbered channel */
patch = 0;
while(targetStopBand < usb) {
/* Too many patches?
Allow MAX_NUM_PATCHES+1 patches here.
we need to check later again, since patch might be the highest patch
AND contain less than 3 bands => actual number of patches will be reduced by 1.
*/
if (patch > MAX_NUM_PATCHES) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
patchParam[patch].guardStartBand = targetStopBand;
patchParam[patch].targetStartBand = targetStopBand;
numBandsInPatch = desiredBorder - targetStopBand; /* Get the desired range of the patch */
if ( numBandsInPatch >= lsb - sourceStartBand ) {
/* Desired number bands are not available -> patch whole source range */
patchDistance = targetStopBand - sourceStartBand; /* Get the targetOffset */
patchDistance = patchDistance & ~1; /* Rounding off odd numbers and make all even */
numBandsInPatch = lsb - (targetStopBand - patchDistance); /* Update number of bands to be patched */
numBandsInPatch = findClosestEntry(targetStopBand + numBandsInPatch, v_k_master, numMaster, 0) -
targetStopBand; /* Adapt region to master-table */
}
/* Desired number bands are available -> get the minimal even patching distance */
patchDistance = numBandsInPatch + targetStopBand - lsb; /* Get minimal distance */
patchDistance = (patchDistance + 1) & ~1; /* Rounding up odd numbers and make all even */
if (numBandsInPatch > 0) {
patchParam[patch].sourceStartBand = targetStopBand - patchDistance;
patchParam[patch].targetBandOffs = patchDistance;
patchParam[patch].numBandsInPatch = numBandsInPatch;
patchParam[patch].sourceStopBand = patchParam[patch].sourceStartBand + numBandsInPatch;
targetStopBand += patchParam[patch].numBandsInPatch;
patch++;
}
/* All patches but first */
sourceStartBand = SHIFT_START_SB;
/* Check if we are close to desiredBorder */
if( desiredBorder - targetStopBand < 3) /* MPEG doc */
{
desiredBorder = usb;
}
}
patch--;
/* If highest patch contains less than three subband: skip it */
if ( (patch>0) && (patchParam[patch].numBandsInPatch < 3) ) {
patch--;
targetStopBand = patchParam[patch].targetStartBand + patchParam[patch].numBandsInPatch;
}
/* now check if we don't have one too many */
if (patch >= MAX_NUM_PATCHES) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
pSettings->noOfPatches = patch + 1;
/* Check lowest and highest source subband */
pSettings->lbStartPatching = targetStopBand;
pSettings->lbStopPatching = 0;
for ( patch = 0; patch < pSettings->noOfPatches; patch++ ) {
pSettings->lbStartPatching = fixMin( pSettings->lbStartPatching, patchParam[patch].sourceStartBand );
pSettings->lbStopPatching = fixMax( pSettings->lbStopPatching, patchParam[patch].sourceStopBand );
}
for(i = 0 ; i < noNoiseBands; i++){
pSettings->bwBorders[i] = noiseBandTable[i+1];
}
for (;i < MAX_NUM_NOISE_VALUES; i++) {
pSettings->bwBorders[i] = 255;
}
/*
* Choose whitening factors
*/
startFreqHz = ( (lsb + xoverOffset)*fs ) >> 7; /* Shift does a division by 2*(64) */
for( i = 1; i < NUM_WHFACTOR_TABLE_ENTRIES; i++ )
{
if( startFreqHz < FDK_sbrDecoder_sbr_whFactorsIndex[i])
break;
}
i--;
pSettings->whFactors.off = FDK_sbrDecoder_sbr_whFactorsTable[i][0];
pSettings->whFactors.transitionLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][1];
pSettings->whFactors.lowLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][2];
pSettings->whFactors.midLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][3];
pSettings->whFactors.highLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][4];
return SBRDEC_OK;
}
|