1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/******************* Library for basic calculation routines ********************
Author(s): M. Gayer
Description: Fixed point specific mathematical functions
*******************************************************************************/
#ifndef FIXPOINT_MATH_H
#define FIXPOINT_MATH_H
#include "common_fix.h"
#include "scale.h"
/*
* Data definitions
*/
#define LD_DATA_SCALING (64.0f)
#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
#define MAX_LD_PRECISION 10
#define LD_PRECISION 10
/* Taylor series coefficients for ln(1-x), centered at 0 (MacLaurin polynomial).
*/
#ifndef LDCOEFF_16BIT
LNK_SECTION_CONSTDATA_L1
static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = {
FL2FXCONST_DBL(-1.0), FL2FXCONST_DBL(-1.0 / 2.0),
FL2FXCONST_DBL(-1.0 / 3.0), FL2FXCONST_DBL(-1.0 / 4.0),
FL2FXCONST_DBL(-1.0 / 5.0), FL2FXCONST_DBL(-1.0 / 6.0),
FL2FXCONST_DBL(-1.0 / 7.0), FL2FXCONST_DBL(-1.0 / 8.0),
FL2FXCONST_DBL(-1.0 / 9.0), FL2FXCONST_DBL(-1.0 / 10.0)};
#else /* LDCOEFF_16BIT */
LNK_SECTION_CONSTDATA_L1
static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = {
FL2FXCONST_SGL(-1.0), FL2FXCONST_SGL(-1.0 / 2.0),
FL2FXCONST_SGL(-1.0 / 3.0), FL2FXCONST_SGL(-1.0 / 4.0),
FL2FXCONST_SGL(-1.0 / 5.0), FL2FXCONST_SGL(-1.0 / 6.0),
FL2FXCONST_SGL(-1.0 / 7.0), FL2FXCONST_SGL(-1.0 / 8.0),
FL2FXCONST_SGL(-1.0 / 9.0), FL2FXCONST_SGL(-1.0 / 10.0)};
#endif /* LDCOEFF_16BIT */
/*****************************************************************************
functionname: invSqrtNorm2
description: delivers 1/sqrt(op) normalized to .5...1 and the shift value
of the OUTPUT
*****************************************************************************/
#define SQRT_BITS 7
#define SQRT_VALUES (128 + 2)
#define SQRT_BITS_MASK 0x7f
#define SQRT_FRACT_BITS_MASK 0x007FFFFF
extern const FIXP_DBL invSqrtTab[SQRT_VALUES];
/*
* Hardware specific implementations
*/
#if defined(__x86__)
#include "x86/fixpoint_math_x86.h"
#endif /* target architecture selector */
/*
* Fallback implementations
*/
#if !defined(FUNCTION_fIsLessThan)
/**
* \brief Compares two fixpoint values incl. scaling.
* \param a_m mantissa of the first input value.
* \param a_e exponent of the first input value.
* \param b_m mantissa of the second input value.
* \param b_e exponent of the second input value.
* \return non-zero if (a_m*2^a_e) < (b_m*2^b_e), 0 otherwise
*/
FDK_INLINE INT fIsLessThan(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e) {
INT n;
n = fixnorm_D(a_m);
a_m <<= n;
a_e -= n;
n = fixnorm_D(b_m);
b_m <<= n;
b_e -= n;
if (a_m == (FIXP_DBL)0) a_e = b_e;
if (b_m == (FIXP_DBL)0) b_e = a_e;
if (a_e > b_e) {
return ((b_m >> fMin(a_e - b_e, DFRACT_BITS - 1)) > a_m);
} else {
return ((a_m >> fMin(b_e - a_e, DFRACT_BITS - 1)) < b_m);
}
}
FDK_INLINE INT fIsLessThan(FIXP_SGL a_m, INT a_e, FIXP_SGL b_m, INT b_e) {
INT n;
n = fixnorm_S(a_m);
a_m <<= n;
a_e -= n;
n = fixnorm_S(b_m);
b_m <<= n;
b_e -= n;
if (a_m == (FIXP_SGL)0) a_e = b_e;
if (b_m == (FIXP_SGL)0) b_e = a_e;
if (a_e > b_e) {
return ((b_m >> fMin(a_e - b_e, FRACT_BITS - 1)) > a_m);
} else {
return ((a_m >> fMin(b_e - a_e, FRACT_BITS - 1)) < b_m);
}
}
#endif
/**
* \brief deprecated. Use fLog2() instead.
*/
#define CalcLdData(op) fLog2(op, 0)
void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
extern const UINT exp2_tab_long[32];
extern const UINT exp2w_tab_long[32];
extern const UINT exp2x_tab_long[32];
LNK_SECTION_CODE_L1
FDK_INLINE FIXP_DBL CalcInvLdData(const FIXP_DBL x) {
int set_zero = (x < FL2FXCONST_DBL(-31.0 / 64.0)) ? 0 : 1;
int set_max = (x >= FL2FXCONST_DBL(31.0 / 64.0)) | (x == FL2FXCONST_DBL(0.0));
FIXP_SGL frac = (FIXP_SGL)((LONG)x & 0x3FF);
UINT index3 = (UINT)(LONG)(x >> 10) & 0x1F;
UINT index2 = (UINT)(LONG)(x >> 15) & 0x1F;
UINT index1 = (UINT)(LONG)(x >> 20) & 0x1F;
int exp = fMin(31, ((x > FL2FXCONST_DBL(0.0f)) ? (31 - (int)(x >> 25))
: (int)(-(x >> 25))));
UINT lookup1 = exp2_tab_long[index1] * set_zero;
UINT lookup2 = exp2w_tab_long[index2];
UINT lookup3 = exp2x_tab_long[index3];
UINT lookup3f =
lookup3 + (UINT)(LONG)fMultDiv2((FIXP_DBL)(0x0016302F), (FIXP_SGL)frac);
UINT lookup12 = (UINT)(LONG)fMult((FIXP_DBL)lookup1, (FIXP_DBL)lookup2);
UINT lookup = (UINT)(LONG)fMult((FIXP_DBL)lookup12, (FIXP_DBL)lookup3f);
FIXP_DBL retVal = (lookup << 3) >> exp;
if (set_max) {
retVal = (FIXP_DBL)MAXVAL_DBL;
}
return retVal;
}
void InitLdInt();
FIXP_DBL CalcLdInt(INT i);
extern const USHORT sqrt_tab[49];
inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) {
UINT y = (INT)x;
UCHAR is_zero = (y == 0);
INT zeros = fixnormz_D(y) & 0x1e;
y <<= zeros;
UINT idx = (y >> 26) - 16;
USHORT frac = (y >> 10) & 0xffff;
USHORT nfrac = 0xffff ^ frac;
UINT t = (UINT)nfrac * sqrt_tab[idx] + (UINT)frac * sqrt_tab[idx + 1];
t = t >> (zeros >> 1);
return (is_zero ? 0 : t);
}
inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) {
UINT y = (INT)x;
INT e;
if (x == (FIXP_DBL)0) {
return x;
}
/* Normalize */
e = fixnormz_D(y);
y <<= e;
e = *x_e - e + 2;
/* Correct odd exponent. */
if (e & 1) {
y >>= 1;
e++;
}
/* Get square root */
UINT idx = (y >> 26) - 16;
USHORT frac = (y >> 10) & 0xffff;
USHORT nfrac = 0xffff ^ frac;
UINT t = (UINT)nfrac * sqrt_tab[idx] + (UINT)frac * sqrt_tab[idx + 1];
/* Write back exponent */
*x_e = e >> 1;
return (FIXP_DBL)(LONG)(t >> 1);
}
void InitInvSqrtTab();
#ifndef FUNCTION_invSqrtNorm2
/**
* \brief calculate 1.0/sqrt(op)
* \param op_m mantissa of input value.
* \param result_e pointer to return the exponent of the result
* \return mantissa of the result
*/
/*****************************************************************************
delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT,
i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift)
uses Newton-iteration for approximation
Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2)
with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0
*****************************************************************************/
static FDK_FORCEINLINE FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift) {
FIXP_DBL val = op;
FIXP_DBL reg1, reg2;
if (val == FL2FXCONST_DBL(0.0)) {
*shift = 16;
return ((LONG)MAXVAL_DBL); /* maximum positive value */
}
#define INVSQRTNORM2_LINEAR_INTERPOLATE
#define INVSQRTNORM2_LINEAR_INTERPOLATE_HQ
/* normalize input, calculate shift value */
FDK_ASSERT(val > FL2FXCONST_DBL(0.0));
*shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since
test value is always > 0 */
val <<= *shift; /* normalized input V */
*shift += 2; /* bias for exponent */
#if defined(INVSQRTNORM2_LINEAR_INTERPOLATE)
INT index =
(INT)(val >> (DFRACT_BITS - 1 - (SQRT_BITS + 1))) & SQRT_BITS_MASK;
FIXP_DBL Fract =
(FIXP_DBL)(((INT)val & SQRT_FRACT_BITS_MASK) << (SQRT_BITS + 1));
FIXP_DBL diff = invSqrtTab[index + 1] - invSqrtTab[index];
reg1 = invSqrtTab[index] + (fMultDiv2(diff, Fract) << 1);
#if defined(INVSQRTNORM2_LINEAR_INTERPOLATE_HQ)
/* reg1 = t[i] + (t[i+1]-t[i])*fract ... already computed ...
+ (1-fract)fract*(t[i+2]-t[i+1])/2 */
if (Fract != (FIXP_DBL)0) {
/* fract = fract * (1 - fract) */
Fract = fMultDiv2(Fract, (FIXP_DBL)((ULONG)0x80000000 - (ULONG)Fract)) << 1;
diff = diff - (invSqrtTab[index + 2] - invSqrtTab[index + 1]);
reg1 = fMultAddDiv2(reg1, Fract, diff);
}
#endif /* INVSQRTNORM2_LINEAR_INTERPOLATE_HQ */
#else
#error \
"Either define INVSQRTNORM2_NEWTON_ITERATE or INVSQRTNORM2_LINEAR_INTERPOLATE"
#endif
/* calculate the output exponent = input exp/2 */
if (*shift & 0x00000001) { /* odd shift values ? */
/* Note: Do not use rounded value 0x5A82799A to avoid overflow with
* shift-by-2 */
reg2 = (FIXP_DBL)0x5A827999;
/* FL2FXCONST_DBL(0.707106781186547524400844362104849f);*/ /* 1/sqrt(2);
*/
reg1 = fMultDiv2(reg1, reg2) << 2;
}
*shift = *shift >> 1;
return (reg1);
}
#endif /* FUNCTION_invSqrtNorm2 */
#ifndef FUNCTION_sqrtFixp
static FDK_FORCEINLINE FIXP_DBL sqrtFixp(FIXP_DBL op) {
INT tmp_exp = 0;
FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
FDK_ASSERT(tmp_exp > 0);
return ((FIXP_DBL)(fMultDiv2((op << (tmp_exp - 1)), tmp_inv) << 2));
}
#endif /* FUNCTION_sqrtFixp */
#ifndef FUNCTION_invFixp
/**
* \brief calculate 1.0/op
* \param op mantissa of the input value.
* \return mantissa of the result with implicit exponent of 31
* \exceptions are provided for op=0,1 setting max. positive value
*/
static inline FIXP_DBL invFixp(FIXP_DBL op) {
if ((op == (FIXP_DBL)0x00000000) || (op == (FIXP_DBL)0x00000001)) {
return ((LONG)MAXVAL_DBL);
}
INT tmp_exp;
FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
FDK_ASSERT((31 - (2 * tmp_exp + 1)) >= 0);
int shift = 31 - (2 * tmp_exp + 1);
tmp_inv = fPow2Div2(tmp_inv);
if (shift) {
tmp_inv = ((tmp_inv >> (shift - 1)) + (FIXP_DBL)1) >> 1;
}
return tmp_inv;
}
/**
* \brief calculate 1.0/(op_m * 2^op_e)
* \param op_m mantissa of the input value.
* \param op_e pointer into were the exponent of the input value is stored, and
* the result will be stored into.
* \return mantissa of the result
*/
static inline FIXP_DBL invFixp(FIXP_DBL op_m, int *op_e) {
if ((op_m == (FIXP_DBL)0x00000000) || (op_m == (FIXP_DBL)0x00000001)) {
*op_e = 31 - *op_e;
return ((LONG)MAXVAL_DBL);
}
INT tmp_exp;
FIXP_DBL tmp_inv = invSqrtNorm2(op_m, &tmp_exp);
*op_e = (tmp_exp << 1) - *op_e + 1;
return fPow2Div2(tmp_inv);
}
#endif /* FUNCTION_invFixp */
#ifndef FUNCTION_schur_div
/**
* \brief Divide two FIXP_DBL values with given precision.
* \param num dividend
* \param denum divisor
* \param count amount of significant bits of the result (starting to the MSB)
* \return num/divisor
*/
FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count);
#endif /* FUNCTION_schur_div */
FIXP_DBL mul_dbl_sgl_rnd(const FIXP_DBL op1, const FIXP_SGL op2);
#ifndef FUNCTION_fMultNorm
/**
* \brief multiply two values with normalization, thus max precision.
* Author: Robert Weidner
*
* \param f1 first factor
* \param f2 second factor
* \param result_e pointer to an INT where the exponent of the result is stored
* into
* \return mantissa of the product f1*f2
*/
FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e);
/**
* \brief Multiply 2 values using maximum precision. The exponent of the result
* is 0.
* \param f1_m mantissa of factor 1
* \param f2_m mantissa of factor 2
* \return mantissa of the result with exponent equal to 0
*/
inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2) {
FIXP_DBL m;
INT e;
m = fMultNorm(f1, f2, &e);
m = scaleValueSaturate(m, e);
return m;
}
/**
* \brief Multiply 2 values with exponent and use given exponent for the
* mantissa of the result.
* \param f1_m mantissa of factor 1
* \param f1_e exponent of factor 1
* \param f2_m mantissa of factor 2
* \param f2_e exponent of factor 2
* \param result_e exponent for the returned mantissa of the result
* \return mantissa of the result with exponent equal to result_e
*/
inline FIXP_DBL fMultNorm(FIXP_DBL f1_m, INT f1_e, FIXP_DBL f2_m, INT f2_e,
INT result_e) {
FIXP_DBL m;
INT e;
m = fMultNorm(f1_m, f2_m, &e);
m = scaleValueSaturate(m, e + f1_e + f2_e - result_e);
return m;
}
#endif /* FUNCTION_fMultNorm */
#ifndef FUNCTION_fMultI
/**
* \brief Multiplies a fractional value and a integer value and performs
* rounding to nearest
* \param a fractional value
* \param b integer value
* \return integer value
*/
inline INT fMultI(FIXP_DBL a, INT b) {
FIXP_DBL m, mi;
INT m_e;
m = fMultNorm(a, (FIXP_DBL)b, &m_e);
if (m_e < (INT)0) {
if (m_e > (INT)-DFRACT_BITS) {
m = m >> ((-m_e) - 1);
mi = (m + (FIXP_DBL)1) >> 1;
} else {
mi = (FIXP_DBL)0;
}
} else {
mi = scaleValueSaturate(m, m_e);
}
return ((INT)mi);
}
#endif /* FUNCTION_fMultI */
#ifndef FUNCTION_fMultIfloor
/**
* \brief Multiplies a fractional value and a integer value and performs floor
* rounding
* \param a fractional value
* \param b integer value
* \return integer value
*/
inline INT fMultIfloor(FIXP_DBL a, INT b) {
FIXP_DBL m, mi;
INT m_e;
m = fMultNorm(a, (FIXP_DBL)b, &m_e);
if (m_e < (INT)0) {
if (m_e > (INT)-DFRACT_BITS) {
mi = m >> (-m_e);
} else {
mi = (FIXP_DBL)0;
if (m < (FIXP_DBL)0) {
mi = (FIXP_DBL)-1;
}
}
} else {
mi = scaleValueSaturate(m, m_e);
}
return ((INT)mi);
}
#endif /* FUNCTION_fMultIfloor */
#ifndef FUNCTION_fMultIceil
/**
* \brief Multiplies a fractional value and a integer value and performs ceil
* rounding
* \param a fractional value
* \param b integer value
* \return integer value
*/
inline INT fMultIceil(FIXP_DBL a, INT b) {
FIXP_DBL m, mi;
INT m_e;
m = fMultNorm(a, (FIXP_DBL)b, &m_e);
if (m_e < (INT)0) {
if (m_e > (INT) - (DFRACT_BITS - 1)) {
mi = (m >> (-m_e));
if ((LONG)m & ((1 << (-m_e)) - 1)) {
mi = mi + (FIXP_DBL)1;
}
} else {
if (m > (FIXP_DBL)0) {
mi = (FIXP_DBL)1;
} else {
if ((m_e == -(DFRACT_BITS - 1)) && (m == (FIXP_DBL)MINVAL_DBL)) {
mi = (FIXP_DBL)-1;
} else {
mi = (FIXP_DBL)0;
}
}
}
} else {
mi = scaleValueSaturate(m, m_e);
}
return ((INT)mi);
}
#endif /* FUNCTION_fMultIceil */
#ifndef FUNCTION_fDivNorm
/**
* \brief Divide 2 FIXP_DBL values with normalization of input values.
* \param num numerator
* \param denum denominator
* \param result_e pointer to an INT where the exponent of the result is stored
* into
* \return num/denum with exponent = *result_e
*/
FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
/**
* \brief Divide 2 positive FIXP_DBL values with normalization of input values.
* \param num numerator
* \param denum denominator
* \return num/denum with exponent = 0
*/
FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
/**
* \brief Divide 2 signed FIXP_DBL values with normalization of input values.
* \param num numerator
* \param denum denominator
* \param result_e pointer to an INT where the exponent of the result is stored
* into
* \return num/denum with exponent = *result_e
*/
FIXP_DBL fDivNormSigned(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
/**
* \brief Divide 2 signed FIXP_DBL values with normalization of input values.
* \param num numerator
* \param denum denominator
* \return num/denum with exponent = 0
*/
FIXP_DBL fDivNormSigned(FIXP_DBL num, FIXP_DBL denom);
#endif /* FUNCTION_fDivNorm */
/**
* \brief Adjust mantissa to exponent -1
* \param a_m mantissa of value to be adjusted
* \param pA_e pointer to the exponen of a_m
* \return adjusted mantissa
*/
inline FIXP_DBL fAdjust(FIXP_DBL a_m, INT *pA_e) {
INT shift;
shift = fNorm(a_m) - 1;
*pA_e -= shift;
return scaleValue(a_m, shift);
}
#ifndef FUNCTION_fAddNorm
/**
* \brief Add two values with normalization
* \param a_m mantissa of first summand
* \param a_e exponent of first summand
* \param a_m mantissa of second summand
* \param a_e exponent of second summand
* \param pResult_e pointer to where the exponent of the result will be stored
* to.
* \return mantissa of result
*/
inline FIXP_DBL fAddNorm(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e,
INT *pResult_e) {
INT result_e;
FIXP_DBL result_m;
/* If one of the summands is zero, return the other.
This is necessary for the summation of a very small number to zero */
if (a_m == (FIXP_DBL)0) {
*pResult_e = b_e;
return b_m;
}
if (b_m == (FIXP_DBL)0) {
*pResult_e = a_e;
return a_m;
}
a_m = fAdjust(a_m, &a_e);
b_m = fAdjust(b_m, &b_e);
if (a_e > b_e) {
result_m = a_m + (b_m >> fMin(a_e - b_e, DFRACT_BITS - 1));
result_e = a_e;
} else {
result_m = (a_m >> fMin(b_e - a_e, DFRACT_BITS - 1)) + b_m;
result_e = b_e;
}
*pResult_e = result_e;
return result_m;
}
inline FIXP_DBL fAddNorm(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e,
INT result_e) {
FIXP_DBL result_m;
a_m = scaleValue(a_m, a_e - result_e);
b_m = scaleValue(b_m, b_e - result_e);
result_m = a_m + b_m;
return result_m;
}
#endif /* FUNCTION_fAddNorm */
/**
* \brief Divide 2 FIXP_DBL values with normalization of input values.
* \param num numerator
* \param denum denomintator
* \return num/denum with exponent = 0
*/
FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
#ifndef FUNCTION_fPow
/**
* \brief return 2 ^ (exp_m * 2^exp_e)
* \param exp_m mantissa of the exponent to 2.0f
* \param exp_e exponent of the exponent to 2.0f
* \param result_e pointer to a INT where the exponent of the result will be
* stored into
* \return mantissa of the result
*/
FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
/**
* \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa
* with implicit exponent of zero.
* \param exp_m mantissa of the exponent to 2.0f
* \param exp_e exponent of the exponent to 2.0f
* \return mantissa of the result
*/
FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
/**
* \brief return x ^ (exp_m * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e).
* This saves the need to compute log2() of constant values (when x is a
* constant).
* \param baseLd_m mantissa of log2() of x.
* \param baseLd_e exponent of log2() of x.
* \param exp_m mantissa of the exponent to 2.0f
* \param exp_e exponent of the exponent to 2.0f
* \param result_e pointer to a INT where the exponent of the result will be
* stored into
* \return mantissa of the result
*/
FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e,
INT *result_e);
/**
* \brief return x ^ (exp_m * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e).
* This saves the need to compute log2() of constant values (when x is a
* constant). This version does not return an exponent, which is
* implicitly 0.
* \param baseLd_m mantissa of log2() of x.
* \param baseLd_e exponent of log2() of x.
* \param exp_m mantissa of the exponent to 2.0f
* \param exp_e exponent of the exponent to 2.0f
* \return mantissa of the result
*/
FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e);
/**
* \brief return (base_m * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead
* whenever possible.
* \param base_m mantissa of the base.
* \param base_e exponent of the base.
* \param exp_m mantissa of power to be calculated of the base.
* \param exp_e exponent of power to be calculated of the base.
* \param result_e pointer to a INT where the exponent of the result will be
* stored into.
* \return mantissa of the result.
*/
FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e,
INT *result_e);
/**
* \brief return (base_m * 2^base_e) ^ N
* \param base_m mantissa of the base
* \param base_e exponent of the base
* \param N power to be calculated of the base
* \param result_e pointer to a INT where the exponent of the result will be
* stored into
* \return mantissa of the result
*/
FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
#endif /* #ifndef FUNCTION_fPow */
#ifndef FUNCTION_fLog2
/**
* \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated.
* Use fLog2() instead.
* \param arg mantissa of the argument
* \param arg_e exponent of the argument
* \param result_e pointer to an INT to store the exponent of the result
* \return the mantissa of the result.
* \param
*/
FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
/**
* \brief calculate logarithm of base 2 of x_m * 2^(x_e)
* \param x_m mantissa of the input value.
* \param x_e exponent of the input value.
* \param pointer to an INT where the exponent of the result is returned into.
* \return mantissa of the result.
*/
FDK_INLINE FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e) {
FIXP_DBL result_m;
/* Short cut for zero and negative numbers. */
if (x_m <= FL2FXCONST_DBL(0.0f)) {
*result_e = DFRACT_BITS - 1;
return FL2FXCONST_DBL(-1.0f);
}
/* Calculate log2() */
{
FIXP_DBL x2_m;
/* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation
of the function log(1-x) centered at 0 is most accurate. */
{
INT b_norm;
b_norm = fNormz(x_m) - 1;
x2_m = x_m << b_norm;
x_e = x_e - b_norm;
}
/* map x from log(x) domain to log(1-x) domain. */
x2_m = -(x2_m + FL2FXCONST_DBL(-1.0));
/* Taylor polynomial approximation of ln(1-x) */
{
FIXP_DBL px2_m;
result_m = FL2FXCONST_DBL(0.0);
px2_m = x2_m;
for (int i = 0; i < LD_PRECISION; i++) {
result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m);
px2_m = fMult(px2_m, x2_m);
}
}
/* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from
* ln(x) result). */
result_m =
fMultAddDiv2(result_m, result_m,
FL2FXCONST_DBL(2.0 * 0.4426950408889634073599246810019));
/* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */
if (x_e != 0) {
int enorm;
enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e);
/* The -1 in the right shift of result_m compensates the fMultDiv2() above
* in the taylor polynomial evaluation loop.*/
result_m = (result_m >> (enorm - 1)) +
((FIXP_DBL)x_e << (DFRACT_BITS - 1 - enorm));
*result_e = enorm;
} else {
/* 1 compensates the fMultDiv2() above in the taylor polynomial evaluation
* loop.*/
*result_e = 1;
}
}
return result_m;
}
/**
* \brief calculate logarithm of base 2 of x_m * 2^(x_e)
* \param x_m mantissa of the input value.
* \param x_e exponent of the input value.
* \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
*/
FDK_INLINE FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e) {
if (x_m <= FL2FXCONST_DBL(0.0f)) {
x_m = FL2FXCONST_DBL(-1.0f);
} else {
INT result_e;
x_m = fLog2(x_m, x_e, &result_e);
x_m = scaleValue(x_m, result_e - LD_DATA_SHIFT);
}
return x_m;
}
#endif /* FUNCTION_fLog2 */
#ifndef FUNCTION_fAddSaturate
/**
* \brief Add with saturation of the result.
* \param a first summand
* \param b second summand
* \return saturated sum of a and b.
*/
inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) {
LONG sum;
sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
return (FIXP_SGL)(SHORT)sum;
}
/**
* \brief Add with saturation of the result.
* \param a first summand
* \param b second summand
* \return saturated sum of a and b.
*/
inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) {
LONG sum;
sum = (LONG)(a >> 1) + (LONG)(b >> 1);
sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL >> 1)), (INT)(MINVAL_DBL >> 1));
return (FIXP_DBL)(LONG)(sum << 1);
}
#endif /* FUNCTION_fAddSaturate */
INT fixp_floorToInt(FIXP_DBL f_inp, INT sf);
FIXP_DBL fixp_floor(FIXP_DBL f_inp, INT sf);
INT fixp_ceilToInt(FIXP_DBL f_inp, INT sf);
FIXP_DBL fixp_ceil(FIXP_DBL f_inp, INT sf);
INT fixp_truncateToInt(FIXP_DBL f_inp, INT sf);
FIXP_DBL fixp_truncate(FIXP_DBL f_inp, INT sf);
INT fixp_roundToInt(FIXP_DBL f_inp, INT sf);
FIXP_DBL fixp_round(FIXP_DBL f_inp, INT sf);
/*****************************************************************************
array for 1/n, n=1..80
****************************************************************************/
extern const FIXP_DBL invCount[80];
LNK_SECTION_INITCODE
inline void InitInvInt(void) {}
/**
* \brief Calculate the value of 1/i where i is a integer value. It supports
* input values from 1 upto (80-1).
* \param intValue Integer input value.
* \param FIXP_DBL representation of 1/intValue
*/
inline FIXP_DBL GetInvInt(int intValue) {
return invCount[fMin(fMax(intValue, 0), 80 - 1)];
}
#endif /* FIXPOINT_MATH_H */
|