/*
Copyright (C) 2014 CSP Innovazione nelle ICT s.c.a r.l. (http://rd.csp.it/)
Copyright (C) 2014, 2015 Matthias P. Braendli (http://opendigitalradio.org)
Copyright (C) 2015 Stefan Pöschel (http://opendigitalradio.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
mot-encoder.c
Generete PAD data for MOT Slideshow and DLS
Authors:
Sergio Sagliocco
Matthias P. Braendli
Stefan Pöschel
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "config.h"
#include "charset.h"
#if HAVE_MAGICKWAND
# include
#endif
#define DEBUG 0
#define SLEEPDELAY_DEFAULT 10 //seconds
extern "C" {
#include "lib_crc.h"
}
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#define XSTR(x) #x
#define STR(x) XSTR(x)
#define MAXSEGLEN 8189 // Bytes (EN 301 234, ch. 5.1.1)
#define MAXDLS 128 // chars
#define MAXSLIDESIZE 50000 // Bytes
// Roll-over value for fidx
#define MAXSLIDEID 9999
// How many slides to keep in history
#define MAXHISTORYLEN 50
// Do not allow the image compressor to go below
// JPEG quality 40
#define MINQUALITY 40
// Charsets from TS 101 756
#define CHARSET_COMPLETE_EBU_LATIN 0 // Complete EBU Latin based repertoire
#define CHARSET_EBU_LATIN_CY_GR 1 // EBU Latin based common core, Cyrillic, Greek
#define CHARSET_EBU_LATIN_AR_HE_CY_GR 2 // EBU Latin based core, Arabic, Hebrew, Cyrillic and Greek
#define CHARSET_ISO_LATIN_ALPHABET_2 3 // ISO Latin Alphabet No 2
#define CHARSET_UCS2_BE 6 // ISO/IEC 10646 using UCS-2 transformation format, big endian byte order
#define CHARSET_UTF8 15 // ISO Latin Alphabet No 2
struct MSCDG {
// MSC Data Group Header (extension field not supported)
unsigned char extflag; // 1 bit
unsigned char crcflag; // 1 bit
unsigned char segflag; // 1 bit
unsigned char accflag; // 1 bit
unsigned char dgtype; // 4 bits
unsigned char cindex; // 4 bits
unsigned char rindex; // 4 bits
/// Session header - Segment field
unsigned char last; // 1 bit
unsigned short int segnum; // 16 bits
// Session header - User access field
unsigned char rfa; // 3 bits
unsigned char tidflag; // 1 bit
unsigned char lenid; // 4 bits - Fixed to value 2 in this implemntation
unsigned short int tid; // 16 bits
// MSC data group data field
// Mot Segmentation header
unsigned char rcount; // 3 bits
unsigned short int seglen; // 13 bits
// Mot segment
unsigned char* segdata;
// MSC data group CRC
unsigned short int crc; // 16 bits
};
/* Between collection of slides and transmission, the slide data is saved
* in this structure.
*/
struct slide_metadata_t {
// complete path to slide
std::string filepath;
// index, values from 0 to MAXSLIDEID, rolls over
int fidx;
// This is used to define the order in which several discovered
// slides are transmitted
bool operator<(const slide_metadata_t& other) const {
return this->fidx < other.fidx;
}
};
/* A simple fingerprint for each slide transmitted.
* Allows us to reuse the same fidx if the same slide
* is transmitted more than once.
*/
struct fingerprint_t {
// file name
std::string s_name;
// file size, in bytes
off_t s_size;
// time of last modification
unsigned long s_mtime;
// assigned fidx, -1 means invalid
int fidx;
// The comparison is not done on fidx, only
// on the file-specific data
bool operator==(const fingerprint_t& other) const {
return (((s_name == other.s_name &&
s_size == other.s_size) &&
s_mtime == other.s_mtime));
}
void disp(void) {
printf("%s_%ld_%lu:%d\n", s_name.c_str(), s_size, s_mtime, fidx);
}
void load_from_file(const char* filepath)
{
struct stat file_attribue;
const char * final_slash;
stat(filepath, &file_attribue);
final_slash = strrchr(filepath, '/');
// load filename, size and mtime
// Save only the basename of the filepath
this->s_name.assign((final_slash == NULL) ? filepath : final_slash + 1);
this->s_size = file_attribue.st_size;
this->s_mtime = file_attribue.st_mtime;
this->fidx = -1;
}
};
class History {
public:
History(size_t hist_size) :
m_hist_size(hist_size),
m_last_given_fidx(0) {}
void disp_database();
// controller of id base on database
int get_fidx(const char* filepath);
private:
std::deque m_database;
size_t m_hist_size;
int m_last_given_fidx;
// find the fingerprint fp in database.
// returns the fidx when found,
// or -1 if not found
int find(const fingerprint_t& fp) const;
// add a new fingerprint into database
// returns its fidx
void add(fingerprint_t& fp);
};
/*
typedef struct {
// MOT HEADER CUSTOMIZED FOR SLIDESHOW APP
unsigned int bodysize; // 28 bits
unsigned short int headsize; // 13 bits
unsigned char ctype; // 6 bits
unsigned char sctype; // 9 bits
unsigned char triggertime[5]; // 0x85 0x00 0x00 0x00 0x00 => NOW
unsigned char contname[14]; // 0xCC 0x0C 0x00 imgXXXX.jpg
} MOTSLIDEHDR;
*/
int encodeFile(int output_fd, std::string& fname, int fidx, bool raw_slides);
void createMotHeader(
size_t blobsize,
int fidx,
unsigned char* mothdr,
int* mothdrlen,
bool jfif_not_png);
void createMscDG(MSCDG* msc, unsigned short int dgtype, int *cindex, unsigned short int segnum,
unsigned short int lastseg, unsigned short int tid, unsigned char* data,
unsigned short int datalen);
struct DATA_GROUP;
DATA_GROUP* packMscDG(MSCDG* msc);
void prepend_dls_dgs(const std::string& text, uint8_t charset);
void writeDLS(int output_fd, const std::string& dls_file, uint8_t charset, bool raw_dls, bool remove_dls);
// PAD related
#define CRC_LEN 2
typedef std::vector uint8_vector_t;
struct DATA_GROUP {
uint8_vector_t data;
int apptype_start;
int apptype_cont;
size_t written;
DATA_GROUP(size_t len, int apptype_start, int apptype_cont) {
this->data.resize(len);
this->apptype_start = apptype_start;
this->apptype_cont = apptype_cont;
written = 0;
}
void AppendCRC() {
uint16_t crc = 0xFFFF;
for (size_t i = 0; i < data.size(); i++)
crc = update_crc_ccitt(crc, data[i]);
crc = ~crc;
#if DEBUG
fprintf(stderr, "crc=%04x ~crc=%04x\n", crc, ~crc);
#endif
data.push_back((crc & 0xFF00) >> 8);
data.push_back((crc & 0x00FF));
}
size_t Available() {
return data.size() - written;
}
int Write(uint8_t *write_data, size_t len, int *cont_apptype) {
size_t written_now = std::min(len, Available());
// fill up remaining bytes with zero padding
memcpy(write_data, &data[written], written_now);
memset(write_data + written_now, 0x00, len - written_now);
// set app type depending on progress
int apptype = written > 0 ? apptype_cont : apptype_start;
written += written_now;
// prevent continuation of a different DG having the same type
if (cont_apptype)
*cont_apptype = Available() > 0 ? apptype_cont : -1;
return apptype;
}
};
#define SHORT_PAD 6 // F-PAD + 1x CI + 1x 3 bytes data sub-field
#define VARSIZE_PAD_MIN 8 // F-PAD + 1x CI + end marker + 1x 4 bytes data sub-field
#define VARSIZE_PAD_MAX 196 // F-PAD + 4x CI + 4x 48 bytes data sub-field
#define ALLOWED_PADLEN "6 (short X-PAD), 8 to 196 (variable size X-PAD)"
// MOT Slideshow related
static int cindex_header = 0;
static int cindex_body = 0;
// DLS related
#define FPAD_LEN 2
#define DLS_SEG_LEN_PREFIX 2
#define DLS_SEG_LEN_CHAR_MAX 16
#define DLS_CMD_REMOVE_LABEL 0x01
CharsetConverter charset_converter;
typedef uint8_vector_t pad_t;
static bool dls_toggle = false;
static std::string dlstext_prev = "";
static bool dlstext_prev_set = false;
class PADPacketizer {
private:
static const size_t subfield_lens[];
const size_t xpad_size_max;
const bool short_xpad;
const size_t max_cis;
size_t xpad_size;
uint8_t subfields[4*48];
size_t subfields_size;
// PAD w/ CI list
int ci_type[4];
size_t ci_len_index[4];
size_t used_cis;
// PAD w/o CI list
int last_ci_type;
size_t last_ci_size;
size_t AddCINeededBytes();
void AddCI(int apptype, int len_index);
int OptimalSubFieldSizeIndex(size_t available_bytes);
int WriteDGToSubField(DATA_GROUP* dg, size_t len);
bool AppendDG(DATA_GROUP* dg);
void AppendDGWithCI(DATA_GROUP* dg);
void AppendDGWithoutCI(DATA_GROUP* dg);
void ResetPAD();
pad_t* FlushPAD();
public:
std::deque queue;
PADPacketizer(size_t pad_size);
~PADPacketizer();
pad_t* GetPAD();
// will be removed, when pull (instead of push) approach is implemented!
void WriteAllPADs(int output_fd);
};
const size_t PADPacketizer::subfield_lens[] = {4, 6, 8, 12, 16, 24, 32, 48};
PADPacketizer::PADPacketizer(size_t pad_size) :
xpad_size_max(pad_size - FPAD_LEN),
short_xpad(pad_size == SHORT_PAD),
max_cis(short_xpad ? 1 : 4),
last_ci_type(-1)
{
ResetPAD();
}
PADPacketizer::~PADPacketizer() {
while (!queue.empty()) {
delete queue.front();
queue.pop_front();
}
}
pad_t* PADPacketizer::GetPAD() {
bool pad_flushable = false;
// process DG queue
while (!pad_flushable && !queue.empty()) {
DATA_GROUP* dg = queue.front();
// repeatedly append DG
while (!pad_flushable && dg->Available() > 0)
pad_flushable = AppendDG(dg);
if (dg->Available() == 0) {
delete dg;
queue.pop_front();
}
}
// (possibly empty) PAD
return FlushPAD();
}
void PADPacketizer::WriteAllPADs(int output_fd) {
for (;;) {
pad_t* pad = GetPAD();
// if only F-PAD present, abort
if (pad->back() == FPAD_LEN) {
delete pad;
break;
}
ssize_t dummy = write(output_fd, &(*pad)[0], pad->size());
delete pad;
}
}
size_t PADPacketizer::AddCINeededBytes() {
// returns the amount of additional bytes needed for the next CI
// special cases: end marker added/replaced
if (!short_xpad && used_cis == 0)
return 2;
if (!short_xpad && used_cis == (max_cis - 1))
return 0;
return 1;
}
void PADPacketizer::AddCI(int apptype, int len_index) {
ci_type[used_cis] = apptype;
ci_len_index[used_cis] = len_index;
xpad_size += AddCINeededBytes();
used_cis++;
}
int PADPacketizer::OptimalSubFieldSizeIndex(size_t available_bytes) {
/* Return the index of the optimal sub-field size by stepwise search (regards only Variable Size X-PAD):
* - find the smallest sub-field able to hold (at least) all available bytes
* - find the biggest regarding sub-field we have space for (which definitely exists - otherwise previously the PAD would have been flushed)
* - if the wasted space is at least as big as the smallest possible sub-field, use a sub-field one size smaller
*/
int len_index = 0;
while ((len_index + 1) < 8 && subfield_lens[len_index] < available_bytes)
len_index++;
while ((len_index - 1) >= 0 && (subfield_lens[len_index] + AddCINeededBytes()) > (xpad_size_max - xpad_size))
len_index--;
if ((len_index - 1) >= 0 && ((int) subfield_lens[len_index] - (int) available_bytes) >= (int) subfield_lens[0])
len_index--;
return len_index;
}
int PADPacketizer::WriteDGToSubField(DATA_GROUP* dg, size_t len) {
int apptype = dg->Write(&subfields[subfields_size], len, &last_ci_type);
subfields_size += len;
xpad_size += len;
return apptype;
}
bool PADPacketizer::AppendDG(DATA_GROUP* dg) {
/* use X-PAD w/o CIs instead of X-PAD w/ CIs, if we can save some bytes or at least do not waste additional bytes
*
* Omit CI list in case:
* 1. no pending data sub-fields
* 2. last CI type valid
* 3. last CI type matching current (continuity) CI type
* 4a. short X-PAD; OR
* 4ba. size of the last X-PAD being at least as big as the available X-PAD payload in case all CIs are used AND
* 4bb. the amount of available DG bytes being at least as big as the size of the last X-PAD in case all CIs are used
*/
if (
used_cis == 0 &&
last_ci_type != -1 &&
last_ci_type == dg->apptype_cont &&
(short_xpad ||
(last_ci_size >= (xpad_size_max - max_cis) &&
dg->Available() >= (last_ci_size - max_cis)))
) {
AppendDGWithoutCI(dg);
return true;
} else {
AppendDGWithCI(dg);
// if no further sub-fields could be added, PAD must be flushed
if (used_cis == max_cis || subfield_lens[0] + AddCINeededBytes() > (xpad_size_max - xpad_size))
return true;
}
return false;
}
void PADPacketizer::AppendDGWithCI(DATA_GROUP* dg) {
int len_index = short_xpad ? 0 : OptimalSubFieldSizeIndex(dg->Available());
size_t len_size = short_xpad ? 3 : subfield_lens[len_index];
int apptype = WriteDGToSubField(dg, len_size);
AddCI(apptype, len_index);
#if DEBUG
fprintf(stderr, "PADPacketizer: added sub-field w/ CI - type: %2d, size: %2zu\n", apptype, len_size);
#endif
}
void PADPacketizer::AppendDGWithoutCI(DATA_GROUP* dg) {
#if DEBUG
int old_last_ci_type = last_ci_type;
#endif
WriteDGToSubField(dg, last_ci_size);
#if DEBUG
fprintf(stderr, "PADPacketizer: added sub-field w/o CI - type: %2d, size: %2zu\n", old_last_ci_type, last_ci_size);
#endif
}
void PADPacketizer::ResetPAD() {
xpad_size = 0;
subfields_size = 0;
used_cis = 0;
}
pad_t* PADPacketizer::FlushPAD() {
pad_t* result = new pad_t(xpad_size_max + FPAD_LEN + 1);
pad_t &pad = *result;
size_t pad_offset = xpad_size_max;
if (subfields_size > 0) {
if (used_cis > 0) {
// X-PAD: CIs
for (int i = 0; i < used_cis; i++)
pad[--pad_offset] = (short_xpad ? 0 : ci_len_index[i]) << 5 | ci_type[i];
// X-PAD: end marker (if needed)
if (used_cis < max_cis)
pad[--pad_offset] = 0x00;
}
// X-PAD: sub-fields (reversed on-the-fly)
for (size_t off = 0; off < subfields_size; off++)
pad[--pad_offset] = subfields[off];
} else {
// no X-PAD
last_ci_type = -1;
}
// zero padding
memset(&pad[0], 0x00, pad_offset);
// F-PAD
pad[xpad_size_max + 0] = subfields_size > 0 ? (short_xpad ? 0x10 : 0x20) : 0x00;
pad[xpad_size_max + 1] = subfields_size > 0 ? (used_cis > 0 ? 0x02 : 0x00) : 0x00;
// used PAD len
pad[xpad_size_max + FPAD_LEN] = xpad_size + FPAD_LEN;
last_ci_size = xpad_size;
ResetPAD();
return result;
}
static PADPacketizer *pad_packetizer;
static int verbose = 0;
void usage(char* name)
{
fprintf(stderr, "DAB MOT encoder %s for slideshow and DLS\n\n"
"By CSP Innovazione nelle ICT s.c.a r.l. (http://rd.csp.it/) and\n"
"Opendigitalradio.org\n\n"
"Reads image data from the specified directory, DLS text from a file,\n"
"and outputs PAD data to the given FIFO.\n"
" http://opendigitalradio.org\n\n",
#if defined(GITVERSION)
GITVERSION
#else
PACKAGE_VERSION
#endif
);
fprintf(stderr, "Usage: %s [OPTIONS...]\n", name);
fprintf(stderr, " -d, --dir=DIRNAME Directory to read images from.\n"
" -e, --erase Erase slides from DIRNAME once they have\n"
" been encoded.\n"
" -s, --sleep=DELAY Wait DELAY seconds between each slide\n"
" Default: " STR(SLEEPDELAY_DEFAULT) "\n"
" -o, --output=FILENAME Fifo to write PAD data into.\n"
" Default: /tmp/pad.fifo\n"
" -t, --dls=FILENAME Fifo or file to read DLS text from.\n"
" -p, --pad=LENGTH Set the pad length.\n"
" Possible values: " ALLOWED_PADLEN "\n"
" Default: 58\n"
" -c, --charset=ID ID of the character set encoding used for DLS text input.\n"
" ID = 0: Complete EBU Latin based repertoire\n"
" ID = 6: ISO/IEC 10646 using UCS-2 BE\n"
" ID = 15: ISO/IEC 10646 using UTF-8\n"
" Default: 15\n"
" -r, --remove-dls Always insert a DLS Remove Label command when replacing a DLS text.\n"
" -C, --raw-dls Do not convert DLS texts to Complete EBU Latin based repertoire\n"
" character set encoding.\n"
" -R, --raw-slides Do not process slides. Integrity checks and resizing\n"
" slides is skipped. Use this if you know what you are doing !\n"
" It is useful only when -d is used\n"
" -v, --verbose Print more information to the console\n"
);
}
#define no_argument 0
#define required_argument 1
#define optional_argument 2
int main(int argc, char *argv[])
{
int len, ret;
struct dirent *pDirent;
DIR *pDir = NULL;
int padlen = 58;
bool erase_after_tx = false;
int sleepdelay = SLEEPDELAY_DEFAULT;
bool raw_slides = false;
int charset = CHARSET_UTF8;
bool raw_dls = false;
bool remove_dls = false;
const char* dir = NULL;
const char* output = "/tmp/pad.fifo";
std::string dls_file;
const struct option longopts[] = {
{"charset", required_argument, 0, 'c'},
{"raw-dls", no_argument, 0, 'C'},
{"remove-dls", no_argument, 0, 'r'},
{"dir", required_argument, 0, 'd'},
{"erase", no_argument, 0, 'e'},
{"output", required_argument, 0, 'o'},
{"dls", required_argument, 0, 't'},
{"pad", required_argument, 0, 'p'},
{"sleep", required_argument, 0, 's'},
{"raw-slides", no_argument, 0, 'R'},
{"help", no_argument, 0, 'h'},
{"verbose", no_argument, 0, 'v'},
{0,0,0,0},
};
int ch=0;
int index;
while(ch != -1) {
ch = getopt_long(argc, argv, "eChRrc:d:o:p:s:t:v", longopts, &index);
switch (ch) {
case 'c':
charset = atoi(optarg);
break;
case 'C':
raw_dls = true;
break;
case 'r':
remove_dls = true;
break;
case 'd':
dir = optarg;
break;
case 'e':
erase_after_tx = true;
break;
case 'o':
output = optarg;
break;
case 's':
sleepdelay = atoi(optarg);
break;
case 't':
dls_file = optarg;
break;
case 'p':
padlen = atoi(optarg);
break;
case 'R':
raw_slides = true;
break;
case 'v':
verbose++;
break;
case '?':
case 'h':
usage(argv[0]);
return 0;
}
}
if (padlen != SHORT_PAD && (padlen < VARSIZE_PAD_MIN || padlen > VARSIZE_PAD_MAX)) {
fprintf(stderr, "mot-encoder Error: pad length %d invalid: Possible values: "
ALLOWED_PADLEN "\n",
padlen);
return 2;
}
if (dir && not dls_file.empty()) {
fprintf(stderr, "mot-encoder encoding Slideshow from %s and DLS from %s to %s\n",
dir, dls_file.c_str(), output);
}
else if (dir) {
fprintf(stderr, "mot-encoder encoding Slideshow from %s to %s. No DLS.\n",
dir, output);
}
else if (not dls_file.empty()) {
fprintf(stderr, "mot-encoder encoding DLS from %s to %s. No Slideshow.\n",
dls_file.c_str(), output);
}
else {
fprintf(stderr, "mot-encoder Error: No DLS nor slideshow to encode !\n");
usage(argv[0]);
return 1;
}
const char* user_charset;
switch (charset) {
case CHARSET_COMPLETE_EBU_LATIN:
user_charset = "Complete EBU Latin";
break;
case CHARSET_EBU_LATIN_CY_GR:
user_charset = "EBU Latin core, Cyrillic, Greek";
break;
case CHARSET_EBU_LATIN_AR_HE_CY_GR:
user_charset = "EBU Latin core, Arabic, Hebrew, Cyrillic, Greek";
break;
case CHARSET_ISO_LATIN_ALPHABET_2:
user_charset = "ISO Latin Alphabet 2";
break;
case CHARSET_UCS2_BE:
user_charset = "UCS-2 BE";
break;
case CHARSET_UTF8:
user_charset = "UTF-8";
break;
default:
user_charset = "Invalid";
charset = -1;
break;
}
if (charset == -1) {
fprintf(stderr, "mot-encoder Error: Invalid charset!\n");
usage(argv[0]);
return 1;
}
else {
fprintf(stderr, "mot-encoder using charset %s (%d)\n",
user_charset, charset);
}
if (not raw_dls) {
switch (charset) {
case CHARSET_COMPLETE_EBU_LATIN:
// no conversion needed
break;
case CHARSET_UTF8:
fprintf(stderr, "mot-encoder converting DLS texts to Complete EBU Latin\n");
break;
default:
fprintf(stderr, "mot-encoder Error: DLS conversion to EBU is currently only supported for UTF-8 input!\n");
return 1;
}
}
int output_fd = open(output, O_WRONLY);
if (output_fd == -1) {
perror("mot-encoder Error: failed to open output");
return 3;
}
#if HAVE_MAGICKWAND
MagickWandGenesis();
#endif
pad_packetizer = new PADPacketizer(padlen);
std::list slides_to_transmit;
History slides_history(MAXHISTORYLEN);
while(1) {
if (dir) {
pDir = opendir(dir);
if (pDir == NULL) {
fprintf(stderr, "mot-encoder Error: cannot open directory '%s'\n", dir);
return 1;
}
// Add new slides to transmit to list
while ((pDirent = readdir(pDir)) != NULL) {
if (pDirent->d_name[0] != '.') {
char imagepath[256];
sprintf(imagepath, "%s/%s", dir, pDirent->d_name);
slide_metadata_t md;
md.filepath = imagepath;
md.fidx = slides_history.get_fidx(imagepath);
slides_to_transmit.push_back(md);
if (verbose) {
fprintf(stderr, "mot-encoder found slide %s, fidx %d\n", imagepath, md.fidx);
}
}
}
#if DEBUG
slides_history.disp_database();
#endif
// Sort the list in fidx order
slides_to_transmit.sort();
if (not dls_file.empty()) {
// Maybe we have no slides, always update DLS
writeDLS(output_fd, dls_file, charset, raw_dls, remove_dls);
sleep(sleepdelay);
}
// Encode the slides
std::list::iterator it;
for (it = slides_to_transmit.begin();
it != slides_to_transmit.end();
++it) {
ret = encodeFile(output_fd, it->filepath, it->fidx, raw_slides);
if (ret != 1) {
fprintf(stderr, "mot-encoder Error: cannot encode file %s\n", it->filepath.c_str());
}
if (erase_after_tx) {
if (unlink(it->filepath.c_str()) == -1) {
fprintf(stderr, "mot-encoder Error: erasing file %s failed: ", it->filepath.c_str());
perror("");
}
}
// Always retransmit DLS after each slide, we want it to be updated frequently
if (not dls_file.empty()) {
writeDLS(output_fd, dls_file, charset, raw_dls, remove_dls);
}
sleep(sleepdelay);
}
if (slides_to_transmit.empty()) {
sleep(sleepdelay);
}
slides_to_transmit.resize(0);
}
else if (not dls_file.empty()) { // only DLS
// Always retransmit DLS, we want it to be updated frequently
writeDLS(output_fd, dls_file, charset, raw_dls, remove_dls);
sleep(sleepdelay);
}
if (pDir) {
closedir(pDir);
}
}
delete pad_packetizer;
return 1;
}
DATA_GROUP* createDataGroupLengthIndicator(size_t len) {
DATA_GROUP* dg = new DATA_GROUP(2, 1, 1); // continuation never used (except for comparison at short X-PAD)
uint8_vector_t &data = dg->data;
// Data Group length
data[0] = (len & 0x3F00) >> 8;
data[1] = (len & 0x00FF);
// CRC
dg->AppendCRC();
return dg;
}
// Resize the image or add a black border around it
// so that it is 320x240 pixels.
// Automatically reduce the quality to make sure the
// blobsize is not too large.
//
// Returns: the blobsize
#if HAVE_MAGICKWAND
size_t resizeImage(MagickWand* m_wand, unsigned char** blob)
{
size_t blobsize;
size_t height = MagickGetImageHeight(m_wand);
size_t width = MagickGetImageWidth(m_wand);
MagickWand *bg_wand = NULL;
PixelWand *p_wand = NULL;
while (height > 240 || width > 320) {
if (height/240.0 > width/320.0) {
width = width * 240.0 / height;
height = 240;
}
else {
height = height * 320.0 / width;
width = 320;
}
MagickResizeImage(m_wand, width, height, LanczosFilter, 1);
}
height = MagickGetImageHeight(m_wand);
width = MagickGetImageWidth(m_wand);
// Make sure smaller images are 320x240 pixels, and
// add a black border
bg_wand = NewMagickWand();
p_wand = NewPixelWand();
PixelSetColor(p_wand, "black");
MagickNewImage(bg_wand, 320, 240, p_wand);
DestroyPixelWand(p_wand);
MagickCompositeImage(bg_wand, m_wand, OverCompositeOp, (320-width)/2, (240-height)/2);
height = MagickGetImageHeight(bg_wand);
width = MagickGetImageWidth(bg_wand);
MagickSetImageFormat(bg_wand, "jpg");
int quality = 100;
do {
quality -= 5;
MagickSetImageCompressionQuality(bg_wand, quality);
*blob = MagickGetImagesBlob(bg_wand, &blobsize);
} while (blobsize > MAXSLIDESIZE && quality > MINQUALITY);
if (blobsize > MAXSLIDESIZE) {
fprintf(stderr, "mot-encoder: Image Size too large after compression: %zu bytes\n",
blobsize);
return 0;
}
if (verbose) {
fprintf(stderr, "mot-encoder resized image to %zu x %zu. Size after compression %zu bytes (q=%d)\n",
width, height, blobsize, quality);
}
DestroyMagickWand(bg_wand);
return blobsize;
}
#endif
int encodeFile(int output_fd, std::string& fname, int fidx, bool raw_slides)
{
int ret = 0;
int fd=0, mothdrlen, nseg, lastseglen, i, last, curseglen;
unsigned char mothdr[32];
#if HAVE_MAGICKWAND
MagickWand *m_wand = NULL;
MagickBooleanType err;
#endif
size_t blobsize, height, width;
bool jpeg_progr;
unsigned char *blob = NULL;
unsigned char *curseg = NULL;
MSCDG msc;
DATA_GROUP* dgli;
DATA_GROUP* mscdg;
size_t orig_quality;
char* orig_format = NULL;
/* We handle JPEG differently, because we want to avoid recompressing the
* image if it is suitable as is
*/
bool orig_is_jpeg = false;
/* If the original is a PNG, we transmit it as is, if the resolution is correct
* and the file is not too large. Otherwise it gets resized and sent as JPEG.
*/
bool orig_is_png = false;
/* By default, we do resize the image to 320x240, with a quality such that
* the blobsize is at most MAXSLIDESIZE.
*
* For JPEG input files that are already at the right resolution and at the
* right blobsize, we disable this to avoid quality loss due to recompression
*
* As device support of this feature is optional, we furthermore require JPEG input
* files to not have progressive coding.
*/
bool resize_required = true;
bool jfif_not_png = true;
if (!raw_slides) {
#if HAVE_MAGICKWAND
m_wand = NewMagickWand();
err = MagickReadImage(m_wand, fname.c_str());
if (err == MagickFalse) {
fprintf(stderr, "mot-encoder Error: Unable to load image %s\n",
fname.c_str());
goto encodefile_out;
}
height = MagickGetImageHeight(m_wand);
width = MagickGetImageWidth(m_wand);
orig_format = MagickGetImageFormat(m_wand);
jpeg_progr = MagickGetImageInterlaceScheme(m_wand) == JPEGInterlace;
// By default assume that the image has full quality and can be reduced
orig_quality = 100;
// strip unneeded information (profiles, meta data)
MagickStripImage(m_wand);
if (orig_format) {
if (strcmp(orig_format, "JPEG") == 0) {
orig_quality = MagickGetImageCompressionQuality(m_wand);
orig_is_jpeg = true;
if (verbose) {
fprintf(stderr, "mot-encoder image: %s (id=%d)."
" Original size: %zu x %zu. (%s, q=%zu, progr=%s)\n",
fname.c_str(), fidx, width, height, orig_format, orig_quality, jpeg_progr ? "y" : "n");
}
}
else if (strcmp(orig_format, "PNG") == 0) {
orig_is_png = true;
jfif_not_png = false;
if (verbose) {
fprintf(stderr, "mot-encoder image: %s (id=%d)."
" Original size: %zu x %zu. (%s)\n",
fname.c_str(), fidx, width, height, orig_format);
}
}
else if (verbose) {
fprintf(stderr, "mot-encoder image: %s (id=%d)."
" Original size: %zu x %zu. (%s)\n",
fname.c_str(), fidx, width, height, orig_format);
}
free(orig_format);
}
else {
fprintf(stderr, "mot-encoder Warning: Unable to detect image format %s\n",
fname.c_str());
fprintf(stderr, "mot-encoder image: %s (id=%d). Original size: %zu x %zu.\n",
fname.c_str(), fidx, width, height);
}
if ((orig_is_jpeg || orig_is_png) && height == 240 && width == 320 && not jpeg_progr) {
// Don't recompress the image and check if the blobsize is suitable
blob = MagickGetImagesBlob(m_wand, &blobsize);
if (blobsize < MAXSLIDESIZE) {
if (verbose) {
fprintf(stderr, "mot-encoder image: %s (id=%d). No resize needed: %zu Bytes\n",
fname.c_str(), fidx, blobsize);
}
resize_required = false;
}
}
if (resize_required) {
blobsize = resizeImage(m_wand, &blob);
// resizeImage always creates a jpg output
jfif_not_png = true;
}
#else
fprintf(stderr, "mot-encoder has not been compiled with MagickWand, only RAW slides are supported!\n");
ret = -1;
goto encodefile_out;
#endif
}
else { // Use RAW data, it might not even be a jpg !
// read file
FILE* pFile = fopen(fname.c_str(), "rb");
if (pFile == NULL) {
fprintf(stderr, "mot-encoder Error: Unable to load file %s\n",
fname.c_str());
goto encodefile_out;
}
// obtain file size:
fseek(pFile, 0, SEEK_END);
blobsize = ftell(pFile);
rewind(pFile);
if (blobsize > MAXSLIDESIZE) {
fprintf(stderr, "mot-encoder Warning: blob in raw-slide %s too large\n",
fname.c_str());
}
// allocate memory to contain the whole file:
blob = (unsigned char*)malloc(sizeof(char) * blobsize);
if (blob == NULL) {
fprintf(stderr, "mot-encoder Error: Memory allocation error \n");
goto encodefile_out;
}
// copy the file into the buffer:
size_t dummy = fread(blob, 1, blobsize, pFile);
size_t last_dot = fname.rfind(".");
// default:
jfif_not_png = true; // This is how we did it in the past.
// It's wrong anyway, so we're at least compatible
if (last_dot != std::string::npos) {
std::string file_extension = fname.substr(last_dot, std::string::npos);
std::transform(file_extension.begin(), file_extension.end(), file_extension.begin(), ::tolower);
if (file_extension == ".png") {
jfif_not_png = false;
}
}
if (pFile != NULL) {
fclose(pFile);
}
}
if (blobsize) {
nseg = blobsize / MAXSEGLEN;
lastseglen = blobsize % MAXSEGLEN;
if (lastseglen != 0) {
nseg++;
}
createMotHeader(blobsize, fidx, mothdr, &mothdrlen, jfif_not_png);
// Create the MSC Data Group C-Structure
createMscDG(&msc, 3, &cindex_header, 0, 1, fidx, mothdr, mothdrlen);
// Generate the MSC DG frame (Figure 9 en 300 401)
mscdg = packMscDG(&msc);
dgli = createDataGroupLengthIndicator(mscdg->data.size());
pad_packetizer->queue.push_back(dgli);
pad_packetizer->queue.push_back(mscdg);
for (i = 0; i < nseg; i++) {
curseg = blob + i * MAXSEGLEN;
if (i == nseg-1) {
curseglen = lastseglen;
last = 1;
}
else {
curseglen = MAXSEGLEN;
last = 0;
}
createMscDG(&msc, 4, &cindex_body, i, last, fidx, curseg, curseglen);
mscdg = packMscDG(&msc);
dgli = createDataGroupLengthIndicator(mscdg->data.size());
pad_packetizer->queue.push_back(dgli);
pad_packetizer->queue.push_back(mscdg);
}
pad_packetizer->WriteAllPADs(output_fd);
ret = 1;
}
encodefile_out:
#if HAVE_MAGICKWAND
if (m_wand) {
m_wand = DestroyMagickWand(m_wand);
}
#endif
if (blob) {
free(blob);
}
return ret;
}
void createMotHeader(size_t blobsize, int fidx, unsigned char* mothdr, int* mothdrlen, bool jfif_not_png)
{
struct stat s;
uint8_t MotHeaderCore[7] = {0x00,0x00,0x00,0x00,0x0D,0x04,0x00};
uint8_t MotHeaderExt[19] = {0x85,0x00,0x00,0x00,0x00,0xcc,0x0c,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
char cntemp[12];
int i;
// Set correct content subtype
// ETSI TS 101 756 V1.2.1 Clause 6.1 Table 17
if (jfif_not_png) {
MotHeaderCore[6] = 0x01;
}
else {
MotHeaderCore[6] = 0x03;
}
MotHeaderCore[0] = (blobsize<<4 & 0xFF000000) >> 24;
MotHeaderCore[1] = (blobsize<<4 & 0x00FF0000) >> 16;
MotHeaderCore[2] = (blobsize<<4 & 0x0000FF00) >> 8;
MotHeaderCore[3] = (blobsize<<4 & 0x000000FF);
sprintf(cntemp,
"img%04d.%s",
fidx,
jfif_not_png ? "jpg" : "png" );
for (i = 0; i < strlen(cntemp); i++) {
MotHeaderExt[8+i] = cntemp[i];
}
*mothdrlen = 26;
for (i = 0; i < 7; i++)
mothdr[i] = MotHeaderCore[i];
for (i = 0; i < 19; i++)
mothdr[7+i] = MotHeaderExt[i];
return;
}
void createMscDG(MSCDG* msc, unsigned short int dgtype,
int *cindex, unsigned short int segnum, unsigned short int lastseg,
unsigned short int tid, unsigned char* data,
unsigned short int datalen)
{
msc->extflag = 0;
msc->crcflag = 1;
msc->segflag = 1;
msc->accflag = 1;
msc->dgtype = dgtype;
msc->cindex = *cindex;
msc->rindex = 0;
msc->last = lastseg;
msc->segnum = segnum;
msc->rfa = 0;
msc->tidflag = 1;
msc->lenid = 2;
msc->tid = tid;
msc->segdata = data;
msc->rcount = 0;
msc->seglen = datalen;
*cindex = (*cindex + 1) % 16; // increment continuity index
}
DATA_GROUP* packMscDG(MSCDG* msc)
{
DATA_GROUP* dg = new DATA_GROUP(9 + msc->seglen, 12, 13);
uint8_vector_t &b = dg->data;
// headers
b[0] = (msc->extflag<<7) | (msc->crcflag<<6) | (msc->segflag<<5) |
(msc->accflag<<4) | msc->dgtype;
b[1] = (msc->cindex<<4) | msc->rindex;
b[2] = (msc->last<<7) | ((msc->segnum & 0x7F00) >> 8);
b[3] = msc->segnum & 0x00FF;
b[4] = 0;
b[4] = (msc->rfa << 5) | (msc->tidflag << 4) | msc->lenid;
b[5] = (msc->tid & 0xFF00) >> 8;
b[6] = msc->tid & 0x00FF;
b[7] = (msc->rcount << 5) | ((msc->seglen & 0x1F00)>>8);
b[8] = msc->seglen & 0x00FF;
// data field
memcpy(&b[9], msc->segdata, msc->seglen);
// CRC
dg->AppendCRC();
return dg;
}
DATA_GROUP* createDynamicLabelCommand(uint8_t command) {
DATA_GROUP* dg = new DATA_GROUP(2, 2, 3);
uint8_vector_t &seg_data = dg->data;
// prefix: toggle? + first seg + last seg + command flag + command
seg_data[0] =
(dls_toggle ? (1 << 7) : 0) +
(1 << 6) +
(1 << 5) +
(1 << 4) +
command;
// prefix: charset (though irrelevant here)
seg_data[1] = CHARSET_COMPLETE_EBU_LATIN;
// CRC
dg->AppendCRC();
return dg;
}
void writeDLS(int output_fd, const std::string& dls_file, uint8_t charset, bool raw_dls, bool remove_dls)
{
std::ifstream dls_fstream(dls_file.c_str());
if (!dls_fstream.is_open()) {
std::cerr << "Could not open " << dls_file << std::endl;
return;
}
std::vector dls_lines;
std::string line;
// Read and convert lines one by one because the converter doesn't understand
// line endings
while (std::getline(dls_fstream, line)) {
if (not line.empty()) {
if (not raw_dls && charset == CHARSET_UTF8) {
dls_lines.push_back(charset_converter.convert(line));
}
else {
dls_lines.push_back(line);
}
// TODO handle the other charsets accordingly
}
}
std::stringstream ss;
for (size_t i = 0; i < dls_lines.size(); i++) {
if (i != 0) {
if (charset == CHARSET_UCS2_BE)
ss << '\0' << '\n';
else
ss << '\n';
}
// UCS-2 BE: if from file the first byte of \0\n remains, remove it
if (charset == CHARSET_UCS2_BE && dls_lines[i].size() % 2) {
dls_lines[i].resize(dls_lines[i].size() - 1);
}
ss << dls_lines[i];
}
std::string dlstext = ss.str();
if (dlstext.size() > MAXDLS)
dlstext.resize(MAXDLS);
if (not raw_dls)
charset = CHARSET_COMPLETE_EBU_LATIN;
// Toggle the toggle bit only on (first call or) new text
bool dlstext_is_new = !dlstext_prev_set || (dlstext != dlstext_prev);
if (verbose) {
fprintf(stderr, "mot-encoder writing %s DLS text \"%s\"\n", dlstext_is_new ? "new" : "old", dlstext.c_str());
}
DATA_GROUP *remove_label_dg = NULL;
if (dlstext_is_new) {
if (remove_dls)
remove_label_dg = createDynamicLabelCommand(DLS_CMD_REMOVE_LABEL);
dls_toggle = !dls_toggle; // indicate changed text
dlstext_prev = dlstext;
dlstext_prev_set = true;
}
prepend_dls_dgs(dlstext, charset);
if (remove_label_dg)
pad_packetizer->queue.push_front(remove_label_dg);
pad_packetizer->WriteAllPADs(output_fd);
}
int dls_count(const std::string& text) {
size_t text_len = text.size();
return text_len / DLS_SEG_LEN_CHAR_MAX + (text_len % DLS_SEG_LEN_CHAR_MAX ? 1 : 0);
}
DATA_GROUP* dls_get(const std::string& text, uint8_t charset, unsigned int seg_index) {
bool first_seg = seg_index == 0;
bool last_seg = seg_index == dls_count(text) - 1;
int seg_text_offset = seg_index * DLS_SEG_LEN_CHAR_MAX;
const char *seg_text_start = text.c_str() + seg_text_offset;
size_t seg_text_len = MIN(text.size() - seg_text_offset, DLS_SEG_LEN_CHAR_MAX);
DATA_GROUP* dg = new DATA_GROUP(DLS_SEG_LEN_PREFIX + seg_text_len, 2, 3);
uint8_vector_t &seg_data = dg->data;
// prefix: toggle? + first seg? + last seg? + (seg len - 1)
seg_data[0] =
(dls_toggle ? (1 << 7) : 0) +
(first_seg ? (1 << 6) : 0) +
(last_seg ? (1 << 5) : 0) +
(seg_text_len - 1);
// prefix: charset / seg index
seg_data[1] = (first_seg ? charset : seg_index) << 4;
// character field
memcpy(&seg_data[DLS_SEG_LEN_PREFIX], seg_text_start, seg_text_len);
// CRC
dg->AppendCRC();
#if DEBUG
fprintf(stderr, "DL segment:");
for (int i = 0; i < seg_data.size(); i++)
fprintf(stderr, " %02x", seg_data[i]);
fprintf(stderr, "\n");
#endif
return dg;
}
void prepend_dls_dgs(const std::string& text, uint8_t charset) {
// process all DL segments
int seg_count = dls_count(text);
std::vector segs;
for (int seg_index = 0; seg_index < seg_count; seg_index++) {
#if DEBUG
fprintf(stderr, "Segment number %d\n", seg_index + 1);
#endif
segs.push_back(dls_get(text, charset, seg_index));
}
// prepend to packetizer
pad_packetizer->queue.insert(pad_packetizer->queue.begin(), segs.begin(), segs.end());
#if DEBUG
fprintf(stderr, "PAD length: %d\n", padlen);
fprintf(stderr, "DLS text: %s\n", text.c_str());
fprintf(stderr, "Number of DL segments: %d\n", seg_count);
#endif
}
int History::find(const fingerprint_t& fp) const
{
size_t i;
for (i = 0; i < m_database.size(); i++) {
if (m_database[i] == fp) {
// return the id of fingerprint found
return m_database[i].fidx;
}
}
// return -1 when the database doesn't contain this fingerprint
return -1;
}
void History::add(fingerprint_t& fp)
{
m_database.push_back(fp);
if (m_database.size() > m_hist_size) {
m_database.pop_front();
}
}
void History::disp_database()
{
size_t id;
printf("HISTORY DATABASE:\n");
if (m_database.empty()) {
printf(" empty\n");
}
else {
for (id = 0; id < m_database.size(); id++) {
printf(" id %4zu: ", id);
m_database[id].disp();
}
}
printf("-----------------\n");
}
int History::get_fidx(const char* filepath)
{
fingerprint_t fp;
fp.load_from_file(filepath);
int idx = find(fp);
if (idx < 0) {
idx = m_last_given_fidx++;
fp.fidx = idx;
if (m_last_given_fidx > MAXSLIDEID) {
m_last_given_fidx = 0;
}
add(fp);
}
return idx;
}