/* ----------------------------------------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android � Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V. All rights reserved. 1. INTRODUCTION The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. This FDK AAC Codec software is intended to be used on a wide variety of Android devices. AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part of the MPEG specifications. Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners individually for the purpose of encoding or decoding bit streams in products that are compliant with the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec software may already be covered under those patent licenses when it is used for those licensed purposes only. Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional applications information and documentation. 2. COPYRIGHT LICENSE Redistribution and use in source and binary forms, with or without modification, are permitted without payment of copyright license fees provided that you satisfy the following conditions: You must retain the complete text of this software license in redistributions of the FDK AAC Codec or your modifications thereto in source code form. You must retain the complete text of this software license in the documentation and/or other materials provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. You must make available free of charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. The name of Fraunhofer may not be used to endorse or promote products derived from this library without prior written permission. You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec software or your modifications thereto. Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software and the date of any change. For modified versions of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 3. NO PATENT LICENSE NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with respect to this software. You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, including but not limited to procurement of substitute goods or services; loss of use, data, or profits, or business interruption, however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence), arising in any way out of the use of this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION Fraunhofer Institute for Integrated Circuits IIS Attention: Audio and Multimedia Departments - FDK AAC LL Am Wolfsmantel 33 91058 Erlangen, Germany www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ----------------------------------------------------------------------------------------------------------- */ /************************** Fraunhofer IIS FDK SysLib ********************** Author(s): ******************************************************************************/ /** \file genericStds.h \brief Generic Run-Time Support function wrappers and heap allocation monitoring. */ #if !defined(__GENERICSTDS_H__) #define __GENERICSTDS_H__ #include "machine_type.h" /* Work around for broken android toolchain: sys/types.h:137: error: 'uint64_t' does not name a type */ #define _SYS_TYPES_H_ /* Always increase verbosity of memory allocation in case of a debug built. DEBUG is defined globally in that case. */ #if defined(DEBUG) || defined(FDK_DEBUG) //#define MEMORY_MEASUREMENT #endif #ifndef M_PI #define M_PI 3.14159265358979323846 /*! Pi. Only used in example projects. */ #endif /* #define _CRT_SECURE_NO_DEPRECATE */ /** * Identifiers for various memory locations. They are used along with memory allocation * functions like FDKcalloc_L() to specify the requested memory's location. */ typedef enum { /* Internal */ SECT_DATA_L1 = 0x2000, SECT_DATA_L2, SECT_DATA_L1_A, SECT_DATA_L1_B, SECT_CONSTDATA_L1, /* External */ SECT_DATA_EXTERN = 0x4000, SECT_CONSTDATA_EXTERN } MEMORY_SECTION; /** * The H_ prefix indicates header file version, the C_* prefix indicates the corresponding * object version. * * Declaring memory areas requires to specify a unique name and a data type. Use the H_ macro * for this purpose inside a header file. * * For defining a memory area your require additionally one or two sizes, depending if the * memory should be organized into one or two dimensions. * * The macros containing the keyword AALLOC instead of ALLOC also do take care of returning * aligned memory addresses (beyond the natural alignment of its type). The preprocesor macro * ::ALIGNMENT_DEFAULT indicates the aligment to be used (this is hardware specific). * * The _L suffix indicates that the memory will be located in a specific section. This is * useful to allocate critical memory section into fast internal SRAM for example. * */ #define H_ALLOC_MEM(name,type) type * Get ## name(int n=0); void Free ## name(type** p); \ UINT GetRequiredMem ## name(void); /** See #H_ALLOC_MEM for description. */ #define H_ALLOC_MEM_OVERLAY(name,type) type * Get ## name(int n=0); void Free ## name(type** p); \ UINT GetRequiredMem ## name(void); /** See #H_ALLOC_MEM for description. */ #define C_ALLOC_MEM(name,type,num) \ type * Get ## name(int n) { FDK_ASSERT((n) == 0); return ((type*)FDKcalloc(num, sizeof(type))); } \ void Free ## name(type** p) { if (p != NULL) { FDKfree(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((num) * sizeof(type)); } /** See #H_ALLOC_MEM for description. */ #define C_ALLOC_MEM_STATIC(name,type,num) \ static type * Get ## name(int n) { FDK_ASSERT((n) == 0); return ((type*)FDKcalloc(num, sizeof(type))); } \ static void Free ## name(type** p) { if (p != NULL) { FDKfree(*p); *p=NULL; } } \ static UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((num) * sizeof(type)); } /** See #H_ALLOC_MEM for description. */ #define C_ALLOC_MEM2(name,type,n1,n2) \ type * Get ## name (int n) { FDK_ASSERT((n) < (n2)); return ((type*)FDKcalloc(n1, sizeof(type))); } \ void Free ## name(type** p) { if (p != NULL) { FDKfree(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((n1) * sizeof(type)) * (n2); } /** See #H_ALLOC_MEM for description. */ #define C_AALLOC_MEM(name,type,num) \ type * Get ## name(int n) { FDK_ASSERT((n) == 0); return ((type*)FDKaalloc((num)*sizeof(type), ALIGNMENT_DEFAULT)); } \ void Free ## name(type** p) { if (p != NULL) { FDKafree(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((num) * sizeof(type) + ALIGNMENT_DEFAULT + sizeof(void *)); } /** See #H_ALLOC_MEM for description. */ #define C_AALLOC_MEM2(name,type,n1,n2) \ type * Get ## name (int n) { FDK_ASSERT((n) < (n2)); return ((type*)FDKaalloc((n1)*sizeof(type), ALIGNMENT_DEFAULT)); } \ void Free ## name(type** p) { if (p != NULL) { FDKafree(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((n1) * sizeof(type) + ALIGNMENT_DEFAULT + sizeof(void *)) * (n2); } /** See #H_ALLOC_MEM for description. */ #define C_ALLOC_MEM_L(name,type,num,s) \ type * Get ## name(int n) { FDK_ASSERT((n) == 0); return ((type*)FDKcalloc_L(num, sizeof(type), s)); } \ void Free ## name(type** p) { if (p != NULL) { FDKfree_L(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((num) * sizeof(type)); } /** See #H_ALLOC_MEM for description. */ #define C_ALLOC_MEM2_L(name,type,n1,n2,s) \ type * Get ## name (int n) { FDK_ASSERT((n) < (n2)); return (type*)FDKcalloc_L(n1, sizeof(type), s); } \ void Free ## name(type** p) { if (p != NULL) { FDKfree_L(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((n1) * sizeof(type)) * (n2); } /** See #H_ALLOC_MEM for description. */ #define C_AALLOC_MEM_L(name,type,num,s) \ type * Get ## name(int n) { FDK_ASSERT((n) == 0); return ((type*)FDKaalloc_L((num)*sizeof(type), ALIGNMENT_DEFAULT, s)); } \ void Free ## name(type** p) { if (p != NULL) { FDKafree_L(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((num) * sizeof(type) + ALIGNMENT_DEFAULT + sizeof(void *)); } /** See #H_ALLOC_MEM for description. */ #define C_AALLOC_MEM2_L(name,type,n1,n2,s) \ type * Get ## name (int n) { FDK_ASSERT((n) < (n2)); return ((type*)FDKaalloc_L((n1)*sizeof(type), ALIGNMENT_DEFAULT, s)); } \ void Free ## name(type** p) { if (p != NULL) { FDKafree_L(*p); *p=NULL; } } \ UINT GetRequiredMem ## name(void) { return ALGN_SIZE_EXTRES((n1) * sizeof(type) + ALIGNMENT_DEFAULT + sizeof(void *)) * (n2); } /** See #H_ALLOC_MEM_OVERLAY for description. */ #define C_ALLOC_MEM_OVERLAY(name,type,num,sect,tag) C_AALLOC_MEM_L(name,type,num,sect) #define C_AALLOC_SCRATCH_START(name,type,n) \ type _ ## name[(n)+(ALIGNMENT_DEFAULT+sizeof(type)-1)]; \ type * name = (type*)ALIGN_PTR(_ ## name); \ #define C_ALLOC_SCRATCH_START(name,type,n) \ type name[n]; #define C_AALLOC_SCRATCH_END(name,type,n) #define C_ALLOC_SCRATCH_END(name,type,n) /*-------------------------------------------- * Runtime support declarations *---------------------------------------------*/ #ifdef __cplusplus extern "C" { #endif /** printf() using stdout. If ::ARCH_WA_FLUSH_CONSOLE defined, a flush is done additionally after printf(). */ void FDKprintf ( const char* szFmt, ...); /** printf() using stderr. If ::ARCH_WA_FLUSH_CONSOLE defined, a flush is done additionally after printf(). */ void FDKprintfErr ( const char* szFmt, ...); /** Wrapper for <stdio.h>'s getchar(). */ int FDKgetchar(void); INT FDKfprintf(void *stream, const char *format, ...); INT FDKsprintf(char *str, const char *format, ...); const char *FDKstrchr(const char *s, INT c); const char *FDKstrstr(const char *haystack, const char *needle); char *FDKstrcpy(char *dest, const char *src); char *FDKstrncpy(char *dest, const char *src, const UINT n); #define FDK_MAX_OVERLAYS 8 /**< Maximum number of memory overlays. */ void *FDKcalloc (const UINT n, const UINT size); void *FDKmalloc (const UINT size); void FDKfree (void *ptr); /** * Allocate and clear an aligned memory area. Use FDKafree() instead of FDKfree() for these memory areas. * * \param size Size of requested memory in bytes. * \param alignment Alignment of requested memory in bytes. * \return Pointer to allocated memory. */ void *FDKaalloc (const UINT size, const UINT alignment); /** * Free an aligned memory area. * * \param ptr Pointer to be freed. * \return void */ void FDKafree (void *ptr); /** * Allocate memory in a specific memory section. * Requests can be made for internal or external memory. If internal memory is * requested, FDKcalloc_L() first tries to use L1 memory, which sizes are defined * by ::DATA_L1_A_SIZE and ::DATA_L1_B_SIZE. If no L1 memory is available, then * FDKcalloc_L() tries to use L2 memory. If that fails as well, the requested * memory is allocated at an extern location using the fallback FDKcalloc(). * * \param n See MSDN documentation on calloc(). * \param size See MSDN documentation on calloc(). * \param s Memory section. * \return See MSDN documentation on calloc(). */ void *FDKcalloc_L(const UINT n, const UINT size, MEMORY_SECTION s); /** * Allocate aligned memory in a specific memory section. * See FDKcalloc_L() description for details - same applies here. */ void *FDKaalloc_L(const UINT size, const UINT alignment, MEMORY_SECTION s); /** * Free memory that was allocated in a specific memory section. */ void FDKfree_L(void *ptr); /** * Free aligned memory that was allocated in a specific memory section. */ void FDKafree_L(void *ptr); /** * Copy memory. Source and destination memory must not overlap. * Either use implementation from a Standard Library, or, if no Standard Library * is available, a generic implementation. * The define ::USE_BUILTIN_MEM_FUNCTIONS in genericStds.cpp controls what to use. * The function arguments correspond to the standard memcpy(). Please see MSDN * documentation for details on how to use it. */ void FDKmemcpy(void *dst, const void *src, const UINT size); /** * Copy memory. Source and destination memory are allowed to overlap. * Either use implementation from a Standard Library, or, if no Standard Library * is available, a generic implementation. * The define ::USE_BUILTIN_MEM_FUNCTIONS in genericStds.cpp controls what to use. * The function arguments correspond to the standard memmove(). Please see MSDN * documentation for details on how to use it. */ void FDKmemmove(void *dst, const void *src, const UINT size); /** * Clear memory. * Either use implementation from a Standard Library, or, if no Standard Library * is available, a generic implementation. * The define ::USE_BUILTIN_MEM_FUNCTIONS in genericStds.cpp controls what to use. * The function arguments correspond to the standard memclear(). Please see MSDN * documentation for details on how to use it. */ void FDKmemclear(void *memPtr, const UINT size); /** * Fill memory with values. * The function arguments correspond to the standard memset(). Please see MSDN * documentation for details on how to use it. */ void FDKmemset(void *memPtr, const INT value, const UINT size); /* Compare function wrappers */ INT FDKmemcmp(const void *s1, const void *s2, const UINT size); INT FDKstrcmp(const char *s1, const char *s2); INT FDKstrncmp(const char *s1, const char *s2, const UINT size); UINT FDKstrlen(const char *s); #define FDKmax(a,b) ( (a) > (b) ? (a):(b)) #define FDKmin(a,b) ( (a) < (b) ? (a):(b)) #define FDK_INT_MAX ((INT)0x7FFFFFFF) #define FDK_INT_MIN ((INT)0x80000000) /* Math function wrappers. Only intended for compatibility, not to be highly optimized. */ /* Used for debugging, dev code .. */ INT FDKabs(INT j); double FDKfabs(double x); double FDKpow(double x, double y); double FDKsqrt(double x); double FDKatan(double x); double FDKlog(double x); double FDKsin(double x); double FDKcos(double x); double FDKexp(double x); #define FDKlog2(a) (FDKlog(a)*1.442695041) /* log(2.0) = 1.442695041 */ #define FDKlog10(a) (FDKlog(a)*0.434294482) /* 1.0/log(10.0) = 0.434294482 */ double FDKatan2(double y, double x); double FDKacos(double x); double FDKtan(double x); double FDKfloor(double x); double FDKceil(double x); INT FDKatoi(const char *nptr); long FDKatol(const char *nptr); float FDKatof(const char *nptr); /* LONG LONG FDKatoll(const char *nptr); */ /* LONG LONG FDKatoq(const char *nptr); */ /* FILE I/O */ /*! * Check platform for endianess. * * \return 1 if platform is little endian, non-1 if platform is big endian. */ #ifdef __cplusplus inline #else static #endif int IS_LITTLE_ENDIAN(void) { int __dummy = 1; return ( *( (UCHAR*)(&(__dummy) ) ) ); } /*! * Convert input value to little endian format. * * \param val Value to be converted. It may be in both big or little endian. * \return Value in little endian format. */ #define TO_LITTLE_ENDIAN(val) \ ( (IS_LITTLE_ENDIAN()) ? \ (val) \ : ( (((val) & 0xff) << 24) || (((val) & 0xff00)<< 8) || (((val) & 0xff0000)>>8) || (((val) & 0xff000000) >> 24) ) ) /*! * \fn FDKFILE *FDKfopen(const char *filename, const char *mode); * Standard fopen() wrapper. * \fn INT FDKfclose(FDKFILE *FP); * Standard fclose() wrapper. * \fn INT FDKfseek(FDKFILE *FP, LONG OFFSET, int WHENCE); * Standard fseek() wrapper. * \fn INT FDKftell(FDKFILE *FP); * Standard ftell() wrapper. * \fn INT FDKfflush(FDKFILE *fp); * Standard fflush() wrapper. * \fn UINT FDKfwrite(void *ptrf, INT size, UINT nmemb, FDKFILE *fp); * Standard fwrite() wrapper. * \fn UINT FDKfread(void *dst, INT size, UINT nmemb, FDKFILE *fp); * Standard fread() wrapper. */ typedef void FDKFILE; extern const INT FDKSEEK_SET, FDKSEEK_CUR, FDKSEEK_END; FDKFILE *FDKfopen(const char *filename, const char *mode); INT FDKfclose(FDKFILE *FP); INT FDKfseek(FDKFILE *FP, LONG OFFSET, int WHENCE); INT FDKftell(FDKFILE *FP); INT FDKfflush(FDKFILE *fp); UINT FDKfwrite(void *ptrf, INT size, UINT nmemb, FDKFILE *fp); UINT FDKfread(void *dst, INT size, UINT nmemb, FDKFILE *fp); char* FDKfgets(void *dst, INT size, FDKFILE *fp); void FDKrewind(FDKFILE *fp); INT FDKfeof(FDKFILE *fp); /** * \brief Write each member in little endian order. Convert automatically to host endianess. * \param ptrf Pointer to memory where to read data from. * \param size Size of each item to be written. * \param nmemb Number of items to be written. * \param fp File pointer of type FDKFILE. * \return Number of items read on success and fread() error on failure. */ UINT FDKfwrite_EL(void *ptrf, INT size, UINT nmemb, FDKFILE *fp); /** * \brief Read variable of size "size" as little endian. Convert automatically to host endianess. * 4-byte alignment is enforced for 24 bit data, at 32 bit full scale. * \param dst Pointer to memory where to store data into. * \param size Size of each item to be read. * \param nmemb Number of items to be read. * \param fp File pointer of type FDKFILE. * \return Number of items read on success and fread() error on failure. */ UINT FDKfread_EL(void *dst, INT size, UINT nmemb, FDKFILE *fp); /** * \brief Print FDK software disclaimer. */ void FDKprintDisclaimer(void); #ifdef __cplusplus } #endif #endif /* __GENERICSTDS_H__ */