/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/******************* Library for basic calculation routines ********************

   Author(s):   M. Lohwasser, M. Gayer

   Description: Flexible fixpoint library configuration

*******************************************************************************/

#ifndef COMMON_FIX_H
#define COMMON_FIX_H

#include "FDK_archdef.h"
#include "machine_type.h"

/* ***** Start of former fix.h ****** */

/* Define bit sizes of integer fixpoint fractional data types */
#define FRACT_BITS 16  /* single precision */
#define DFRACT_BITS 32 /* double precision */
#define ACCU_BITS 40   /* double precision plus overflow */

/* Fixpoint equivalent type fot PCM audio time domain data. */
#if defined(SAMPLE_BITS)
#if (SAMPLE_BITS == DFRACT_BITS)
#define FIXP_PCM FIXP_DBL
#define MAXVAL_FIXP_PCM MAXVAL_DBL
#define MINVAL_FIXP_PCM MINVAL_DBL
#define FX_PCM2FX_DBL(x) ((FIXP_DBL)(x))
#define FX_DBL2FX_PCM(x) ((INT_PCM)(x))
#elif (SAMPLE_BITS == FRACT_BITS)
#define FIXP_PCM FIXP_SGL
#define MAXVAL_FIXP_PCM MAXVAL_SGL
#define MINVAL_FIXP_PCM MINVAL_SGL
#define FX_PCM2FX_DBL(x) FX_SGL2FX_DBL((FIXP_SGL)(x))
#define FX_DBL2FX_PCM(x) FX_DBL2FX_SGL(x)
#else
#error SAMPLE_BITS different from FRACT_BITS or DFRACT_BITS not implemented!
#endif
#endif

/* ****** End of former fix.h ****** */

#define SGL_MASK ((1UL << FRACT_BITS) - 1) /* 16bit: (2^16)-1 = 0xFFFF */

#define MAX_SHIFT_SGL \
  (FRACT_BITS - 1) /* maximum possible shift for FIXP_SGL values */
#define MAX_SHIFT_DBL \
  (DFRACT_BITS - 1) /* maximum possible shift for FIXP_DBL values */

/* Scale factor from/to float/fixpoint values. DO NOT USE THESE VALUES AS
 * SATURATION LIMITS !! */
#define FRACT_FIX_SCALE ((INT64(1) << (FRACT_BITS - 1)))
#define DFRACT_FIX_SCALE ((INT64(1) << (DFRACT_BITS - 1)))

/* Max and Min values for saturation purposes. DO NOT USE THESE VALUES AS SCALE
 * VALUES !! */
#define MAXVAL_SGL \
  ((signed)0x00007FFF) /* this has to be synchronized to FRACT_BITS */
#define MINVAL_SGL \
  ((signed)0xFFFF8000) /* this has to be synchronized to FRACT_BITS */
#define MAXVAL_DBL \
  ((signed)0x7FFFFFFF) /* this has to be synchronized to DFRACT_BITS */
#define MINVAL_DBL \
  ((signed)0x80000000) /* this has to be synchronized to DFRACT_BITS */

#define FX_DBL2FXCONST_SGL(val)                                               \
  ((((((val) >> (DFRACT_BITS - FRACT_BITS - 1)) + 1) >                        \
     (((LONG)1 << FRACT_BITS) - 1)) &&                                        \
    ((LONG)(val) > 0))                                                        \
       ? (FIXP_SGL)(SHORT)(((LONG)1 << (FRACT_BITS - 1)) - 1)                 \
       : (FIXP_SGL)(SHORT)((((val) >> (DFRACT_BITS - FRACT_BITS - 1)) + 1) >> \
                           1))

#define shouldBeUnion union /* unions are possible */

typedef SHORT FIXP_SGL;
typedef LONG FIXP_DBL;

/* macros for compile-time conversion of constant float values to fixedpoint */
#define FL2FXCONST_SPC FL2FXCONST_DBL

#define MINVAL_DBL_CONST MINVAL_DBL
#define MINVAL_SGL_CONST MINVAL_SGL

#define FL2FXCONST_SGL(val)                                                  \
  (FIXP_SGL)(                                                                \
      ((val) >= 0)                                                           \
          ? ((((double)(val) * (FRACT_FIX_SCALE) + 0.5) >=                   \
              (double)(MAXVAL_SGL))                                          \
                 ? (SHORT)(MAXVAL_SGL)                                       \
                 : (SHORT)((double)(val) * (double)(FRACT_FIX_SCALE) + 0.5)) \
          : ((((double)(val) * (FRACT_FIX_SCALE)-0.5) <=                     \
              (double)(MINVAL_SGL_CONST))                                    \
                 ? (SHORT)(MINVAL_SGL_CONST)                                 \
                 : (SHORT)((double)(val) * (double)(FRACT_FIX_SCALE)-0.5)))

#define FL2FXCONST_DBL(val)                                                  \
  (FIXP_DBL)(                                                                \
      ((val) >= 0)                                                           \
          ? ((((double)(val) * (DFRACT_FIX_SCALE) + 0.5) >=                  \
              (double)(MAXVAL_DBL))                                          \
                 ? (LONG)(MAXVAL_DBL)                                        \
                 : (LONG)((double)(val) * (double)(DFRACT_FIX_SCALE) + 0.5)) \
          : ((((double)(val) * (DFRACT_FIX_SCALE)-0.5) <=                    \
              (double)(MINVAL_DBL_CONST))                                    \
                 ? (LONG)(MINVAL_DBL_CONST)                                  \
                 : (LONG)((double)(val) * (double)(DFRACT_FIX_SCALE)-0.5)))

/* macros for runtime conversion of float values to integer fixedpoint. NO
 * OVERFLOW CHECK!!! */
#define FL2FX_SPC FL2FX_DBL
#define FL2FX_SGL(val)                                             \
  ((val) > 0.0f ? (SHORT)((val) * (float)(FRACT_FIX_SCALE) + 0.5f) \
                : (SHORT)((val) * (float)(FRACT_FIX_SCALE)-0.5f))
#define FL2FX_DBL(val)                                             \
  ((val) > 0.0f ? (LONG)((val) * (float)(DFRACT_FIX_SCALE) + 0.5f) \
                : (LONG)((val) * (float)(DFRACT_FIX_SCALE)-0.5f))

/* macros for runtime conversion of fixedpoint values to other fixedpoint. NO
 * ROUNDING!!! */
#define FX_ACC2FX_SGL(val) ((FIXP_SGL)((val) >> (ACCU_BITS - FRACT_BITS)))
#define FX_ACC2FX_DBL(val) ((FIXP_DBL)((val) >> (ACCU_BITS - DFRACT_BITS)))
#define FX_SGL2FX_ACC(val) ((FIXP_ACC)((LONG)(val) << (ACCU_BITS - FRACT_BITS)))
#define FX_SGL2FX_DBL(val) \
  ((FIXP_DBL)((LONG)(val) << (DFRACT_BITS - FRACT_BITS)))
#define FX_DBL2FX_SGL(val) ((FIXP_SGL)((val) >> (DFRACT_BITS - FRACT_BITS)))

/* ############################################################# */

/* macros for runtime conversion of integer fixedpoint values to float. */

/* #define FX_DBL2FL(val)  ((float)(pow(2.,-31.)*(float)val)) */ /* version #1
                                                                  */
#define FX_DBL2FL(val)                                                      \
  ((float)((double)(val) / (double)DFRACT_FIX_SCALE)) /* version #2 -       \
                                                         identical to class \
                                                         dfract cast from   \
                                                         dfract to float */
#define FX_DBL2DOUBLE(val) (((double)(val) / (double)DFRACT_FIX_SCALE))

/* ############################################################# */
#include "fixmul.h"

FDK_INLINE LONG fMult(SHORT a, SHORT b) { return fixmul_SS(a, b); }
FDK_INLINE LONG fMult(SHORT a, LONG b) { return fixmul_SD(a, b); }
FDK_INLINE LONG fMult(LONG a, SHORT b) { return fixmul_DS(a, b); }
FDK_INLINE LONG fMult(LONG a, LONG b) { return fixmul_DD(a, b); }
FDK_INLINE LONG fPow2(LONG a) { return fixpow2_D(a); }
FDK_INLINE LONG fPow2(SHORT a) { return fixpow2_S(a); }

FDK_INLINE LONG fMultDiv2(SHORT a, SHORT b) { return fixmuldiv2_SS(a, b); }
FDK_INLINE LONG fMultDiv2(SHORT a, LONG b) { return fixmuldiv2_SD(a, b); }
FDK_INLINE LONG fMultDiv2(LONG a, SHORT b) { return fixmuldiv2_DS(a, b); }
FDK_INLINE LONG fMultDiv2(LONG a, LONG b) { return fixmuldiv2_DD(a, b); }
FDK_INLINE LONG fPow2Div2(LONG a) { return fixpow2div2_D(a); }
FDK_INLINE LONG fPow2Div2(SHORT a) { return fixpow2div2_S(a); }

FDK_INLINE LONG fMultDiv2BitExact(LONG a, LONG b) {
  return fixmuldiv2BitExact_DD(a, b);
}
FDK_INLINE LONG fMultDiv2BitExact(SHORT a, LONG b) {
  return fixmuldiv2BitExact_SD(a, b);
}
FDK_INLINE LONG fMultDiv2BitExact(LONG a, SHORT b) {
  return fixmuldiv2BitExact_DS(a, b);
}
FDK_INLINE LONG fMultBitExact(LONG a, LONG b) {
  return fixmulBitExact_DD(a, b);
}
FDK_INLINE LONG fMultBitExact(SHORT a, LONG b) {
  return fixmulBitExact_SD(a, b);
}
FDK_INLINE LONG fMultBitExact(LONG a, SHORT b) {
  return fixmulBitExact_DS(a, b);
}

/* ********************************************************************************
 */
#include "abs.h"

FDK_INLINE FIXP_DBL fAbs(FIXP_DBL x) { return fixabs_D(x); }
FDK_INLINE FIXP_SGL fAbs(FIXP_SGL x) { return fixabs_S(x); }

#if !defined(__LP64__)
FDK_INLINE INT fAbs(INT x) { return fixabs_I(x); }
#endif

  /* ********************************************************************************
   */

#include "clz.h"

FDK_INLINE INT fNormz(INT64 x) {
  INT clz = fixnormz_D((INT)(x >> 32));
  if (clz == 32) clz += fixnormz_D((INT)x);
  return clz;
}
FDK_INLINE INT fNormz(FIXP_DBL x) { return fixnormz_D(x); }
FDK_INLINE INT fNormz(FIXP_SGL x) { return fixnormz_S(x); }
FDK_INLINE INT fNorm(FIXP_DBL x) { return fixnorm_D(x); }
FDK_INLINE INT fNorm(FIXP_SGL x) { return fixnorm_S(x); }

  /* ********************************************************************************
   */
  /* ********************************************************************************
   */
  /* ********************************************************************************
   */

#include "clz.h"
#define fixp_abs(x) fAbs(x)
#define fixMin(a, b) fMin(a, b)
#define fixMax(a, b) fMax(a, b)
#define CntLeadingZeros(x) fixnormz_D(x)
#define CountLeadingBits(x) fixnorm_D(x)

#include "fixmadd.h"

/* y = (x+0.5*a*b) */
FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) {
  return fixmadddiv2_DD(x, a, b);
}
FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) {
  return fixmadddiv2_SD(x, a, b);
}
FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) {
  return fixmadddiv2_DS(x, a, b);
}
FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) {
  return fixmadddiv2_SS(x, a, b);
}

FDK_INLINE FIXP_DBL fPow2AddDiv2(FIXP_DBL x, FIXP_DBL a) {
  return fixpadddiv2_D(x, a);
}
FDK_INLINE FIXP_DBL fPow2AddDiv2(FIXP_DBL x, FIXP_SGL a) {
  return fixpadddiv2_S(x, a);
}

/* y = 2*(x+0.5*a*b) = (2x+a*b) */
FDK_INLINE FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) {
  return fixmadd_DD(x, a, b);
}
inline FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) {
  return fixmadd_SD(x, a, b);
}
inline FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) {
  return fixmadd_DS(x, a, b);
}
inline FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) {
  return fixmadd_SS(x, a, b);
}

inline FIXP_DBL fPow2Add(FIXP_DBL x, FIXP_DBL a) { return fixpadd_D(x, a); }
inline FIXP_DBL fPow2Add(FIXP_DBL x, FIXP_SGL a) { return fixpadd_S(x, a); }

/* y = (x-0.5*a*b) */
inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) {
  return fixmsubdiv2_DD(x, a, b);
}
inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) {
  return fixmsubdiv2_SD(x, a, b);
}
inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) {
  return fixmsubdiv2_DS(x, a, b);
}
inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) {
  return fixmsubdiv2_SS(x, a, b);
}

/* y = 2*(x-0.5*a*b) = (2*x-a*b) */
FDK_INLINE FIXP_DBL fMultSub(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) {
  return fixmsub_DD(x, a, b);
}
inline FIXP_DBL fMultSub(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) {
  return fixmsub_SD(x, a, b);
}
inline FIXP_DBL fMultSub(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) {
  return fixmsub_DS(x, a, b);
}
inline FIXP_DBL fMultSub(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) {
  return fixmsub_SS(x, a, b);
}

FDK_INLINE FIXP_DBL fMultAddDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) {
  return fixmadddiv2BitExact_DD(x, a, b);
}
FDK_INLINE FIXP_DBL fMultAddDiv2BitExact(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) {
  return fixmadddiv2BitExact_SD(x, a, b);
}
FDK_INLINE FIXP_DBL fMultAddDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) {
  return fixmadddiv2BitExact_DS(x, a, b);
}
FDK_INLINE FIXP_DBL fMultSubDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) {
  return fixmsubdiv2BitExact_DD(x, a, b);
}
FDK_INLINE FIXP_DBL fMultSubDiv2BitExact(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) {
  return fixmsubdiv2BitExact_SD(x, a, b);
}
FDK_INLINE FIXP_DBL fMultSubDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) {
  return fixmsubdiv2BitExact_DS(x, a, b);
}

#include "fixminmax.h"

FDK_INLINE FIXP_DBL fMin(FIXP_DBL a, FIXP_DBL b) { return fixmin_D(a, b); }
FDK_INLINE FIXP_DBL fMax(FIXP_DBL a, FIXP_DBL b) { return fixmax_D(a, b); }

FDK_INLINE FIXP_SGL fMin(FIXP_SGL a, FIXP_SGL b) { return fixmin_S(a, b); }
FDK_INLINE FIXP_SGL fMax(FIXP_SGL a, FIXP_SGL b) { return fixmax_S(a, b); }

#if !defined(__LP64__)
FDK_INLINE INT fMax(INT a, INT b) { return fixmax_I(a, b); }
FDK_INLINE INT fMin(INT a, INT b) { return fixmin_I(a, b); }
#endif

inline UINT fMax(UINT a, UINT b) { return fixmax_UI(a, b); }
inline UINT fMin(UINT a, UINT b) { return fixmin_UI(a, b); }

inline UCHAR fMax(UCHAR a, UCHAR b) {
  return (UCHAR)fixmax_UI((UINT)a, (UINT)b);
}
inline UCHAR fMin(UCHAR a, UCHAR b) {
  return (UCHAR)fixmin_UI((UINT)a, (UINT)b);
}

/* Complex data types */
typedef shouldBeUnion {
  /* vector representation for arithmetic */
  struct {
    FIXP_SGL re;
    FIXP_SGL im;
  } v;
  /* word representation for memory move */
  LONG w;
}
FIXP_SPK;

typedef shouldBeUnion {
  /* vector representation for arithmetic */
  struct {
    FIXP_DBL re;
    FIXP_DBL im;
  } v;
  /* word representation for memory move */
  INT64 w;
}
FIXP_DPK;

#include "fixmul.h"
#include "fixmadd.h"
#include "cplx_mul.h"
#include "fixpoint_math.h"

#endif