/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. All rights reserved. 1. INTRODUCTION The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. This FDK AAC Codec software is intended to be used on a wide variety of Android devices. AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part of the MPEG specifications. Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners individually for the purpose of encoding or decoding bit streams in products that are compliant with the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec software may already be covered under those patent licenses when it is used for those licensed purposes only. Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional applications information and documentation. 2. COPYRIGHT LICENSE Redistribution and use in source and binary forms, with or without modification, are permitted without payment of copyright license fees provided that you satisfy the following conditions: You must retain the complete text of this software license in redistributions of the FDK AAC Codec or your modifications thereto in source code form. You must retain the complete text of this software license in the documentation and/or other materials provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. You must make available free of charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. The name of Fraunhofer may not be used to endorse or promote products derived from this library without prior written permission. You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec software or your modifications thereto. Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software and the date of any change. For modified versions of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 3. NO PATENT LICENSE NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with respect to this software. You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, including but not limited to procurement of substitute goods or services; loss of use, data, or profits, or business interruption, however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence), arising in any way out of the use of this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION Fraunhofer Institute for Integrated Circuits IIS Attention: Audio and Multimedia Departments - FDK AAC LL Am Wolfsmantel 33 91058 Erlangen, Germany www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ----------------------------------------------------------------------------- */ /************************* MPEG-D DRC decoder library ************************** Author(s): Description: *******************************************************************************/ #include "drcDec_types.h" #include "drcDec_gainDecoder.h" #include "drcGainDec_preprocess.h" #include "drcDec_tools.h" #include "FDK_matrixCalloc.h" #include "drcDec_rom.h" #define SLOPE_FACTOR_DB_TO_LINEAR \ FL2FXCONST_DBL(0.1151f * (float)(1 << 3)) /* ln(10) / 20 */ typedef struct { int drcSetEffect; DUCKING_MODIFICATION* pDMod; GAIN_MODIFICATION* pGMod; int drcCharacteristicPresent; CHARACTERISTIC_FORMAT characteristicFormatSource[2]; const CUSTOM_DRC_CHAR* pCCharSource[2]; CHARACTERISTIC_FORMAT characteristicFormatTarget[2]; const CUSTOM_DRC_CHAR* pCCharTarget[2]; int slopeIsNegative; int limiterPeakTargetPresent; FIXP_SGL limiterPeakTarget; FIXP_DBL loudnessNormalizationGainDb; FIXP_SGL compress; FIXP_SGL boost; } NODE_MODIFICATION; static DRC_ERROR _getCicpCharacteristic( const int cicpCharacteristic, CHARACTERISTIC_FORMAT pCharacteristicFormat[2], const CUSTOM_DRC_CHAR* pCCharSource[2]) { if ((cicpCharacteristic < 1) || (cicpCharacteristic > 11)) { return DE_NOT_OK; } if (cicpCharacteristic < 7) { /* sigmoid characteristic */ pCharacteristicFormat[CS_LEFT] = CF_SIGMOID; pCCharSource[CS_LEFT] = (const CUSTOM_DRC_CHAR*)(&cicpDrcCharSigmoidLeft[cicpCharacteristic - 1]); pCharacteristicFormat[CS_RIGHT] = CF_SIGMOID; pCCharSource[CS_RIGHT] = (const CUSTOM_DRC_CHAR*)(&cicpDrcCharSigmoidRight[cicpCharacteristic - 1]); } else { /* nodes characteristic */ pCharacteristicFormat[CS_LEFT] = CF_NODES; pCCharSource[CS_LEFT] = (const CUSTOM_DRC_CHAR*)(&cicpDrcCharNodesLeft[cicpCharacteristic - 7]); pCharacteristicFormat[CS_RIGHT] = CF_NODES; pCCharSource[CS_RIGHT] = (const CUSTOM_DRC_CHAR*)(&cicpDrcCharNodesRight[cicpCharacteristic - 7]); } return DE_OK; } static int _getSign(FIXP_SGL in) { if (in > (FIXP_DBL)0) return 1; if (in < (FIXP_DBL)0) return -1; return 0; } static DRC_ERROR _getSlopeSign(const CHARACTERISTIC_FORMAT drcCharFormat, const CUSTOM_DRC_CHAR* pCChar, int* pSlopeSign) { if (drcCharFormat == CF_SIGMOID) { *pSlopeSign = (pCChar->sigmoid.flipSign ? 1 : -1); } else { int k, slopeSign = 0, tmp_slopeSign; for (k = 0; k < pCChar->nodes.characteristicNodeCount; k++) { if (pCChar->nodes.nodeLevel[k + 1] > pCChar->nodes.nodeLevel[k]) { tmp_slopeSign = _getSign(pCChar->nodes.nodeGain[k + 1] - pCChar->nodes.nodeGain[k]); } else { tmp_slopeSign = -_getSign(pCChar->nodes.nodeGain[k + 1] - pCChar->nodes.nodeGain[k]); } if ((slopeSign || tmp_slopeSign) && (slopeSign == -tmp_slopeSign)) return DE_NOT_OK; /* DRC characteristic is not invertible */ else slopeSign = tmp_slopeSign; } *pSlopeSign = slopeSign; } return DE_OK; } static DRC_ERROR _isSlopeNegative(const CHARACTERISTIC_FORMAT drcCharFormat[2], const CUSTOM_DRC_CHAR* pCChar[2], int* pSlopeIsNegative) { DRC_ERROR err = DE_OK; int slopeSign[2] = {0, 0}; err = _getSlopeSign(drcCharFormat[CS_LEFT], pCChar[CS_LEFT], &slopeSign[CS_LEFT]); if (err) return err; err = _getSlopeSign(drcCharFormat[CS_RIGHT], pCChar[CS_RIGHT], &slopeSign[CS_RIGHT]); if (err) return err; if ((slopeSign[CS_LEFT] || slopeSign[CS_RIGHT]) && (slopeSign[CS_LEFT] == -slopeSign[CS_RIGHT])) return DE_NOT_OK; /* DRC characteristic is not invertible */ *pSlopeIsNegative = (slopeSign[CS_LEFT] < 0); return DE_OK; } static DRC_ERROR _prepareDrcCharacteristic(const DRC_CHARACTERISTIC* pDChar, DRC_COEFFICIENTS_UNI_DRC* pCoef, const int b, NODE_MODIFICATION* pNodeMod) { DRC_ERROR err = DE_OK; pNodeMod->drcCharacteristicPresent = pDChar->present; if (pNodeMod->drcCharacteristicPresent) { if (pDChar->isCICP == 1) { err = _getCicpCharacteristic(pDChar->cicpIndex, pNodeMod->characteristicFormatSource, pNodeMod->pCCharSource); if (err) return err; } else { pNodeMod->characteristicFormatSource[CS_LEFT] = (CHARACTERISTIC_FORMAT) pCoef->characteristicLeftFormat[pDChar->custom.left]; pNodeMod->pCCharSource[CS_LEFT] = &(pCoef->customCharacteristicLeft[pDChar->custom.left]); pNodeMod->characteristicFormatSource[CS_RIGHT] = (CHARACTERISTIC_FORMAT) pCoef->characteristicRightFormat[pDChar->custom.right]; pNodeMod->pCCharSource[CS_RIGHT] = &(pCoef->customCharacteristicRight[pDChar->custom.right]); } err = _isSlopeNegative(pNodeMod->characteristicFormatSource, pNodeMod->pCCharSource, &pNodeMod->slopeIsNegative); if (err) return err; if (pNodeMod->pGMod != NULL) { if (pNodeMod->pGMod[b].targetCharacteristicLeftPresent) { pNodeMod->characteristicFormatTarget[CS_LEFT] = (CHARACTERISTIC_FORMAT)pCoef->characteristicLeftFormat [pNodeMod->pGMod[b].targetCharacteristicLeftIndex]; pNodeMod->pCCharTarget[CS_LEFT] = &(pCoef->customCharacteristicLeft [pNodeMod->pGMod[b].targetCharacteristicLeftIndex]); } if (pNodeMod->pGMod[b].targetCharacteristicRightPresent) { pNodeMod->characteristicFormatTarget[CS_RIGHT] = (CHARACTERISTIC_FORMAT)pCoef->characteristicRightFormat [pNodeMod->pGMod[b].targetCharacteristicRightIndex]; pNodeMod->pCCharTarget[CS_RIGHT] = &(pCoef->customCharacteristicRight [pNodeMod->pGMod[b].targetCharacteristicRightIndex]); } } } return DE_OK; } static DRC_ERROR _compressorIO_sigmoid_common( const FIXP_DBL tmp, /* e = 7 */ const FIXP_DBL gainDbLimit, /* e = 6 */ const FIXP_DBL exp, /* e = 5 */ const int inverse, FIXP_DBL* out) /* e = 7 */ { FIXP_DBL x, tmp1, tmp2, invExp, denom; int e_x, e_tmp1, e_tmp2, e_invExp, e_denom, e_out; if (exp < FL2FXCONST_DBL(1.0f / (float)(1 << 5))) { return DE_NOT_OK; } /* x = tmp / gainDbLimit; */ x = fDivNormSigned(tmp, gainDbLimit, &e_x); e_x += 7 - 6; if (x < (FIXP_DBL)0) { return DE_NOT_OK; } /* out = tmp / pow(1.0f +/- pow(x, exp), 1.0f/exp); */ tmp1 = fPow(x, e_x, exp, 5, &e_tmp1); if (inverse) tmp1 = -tmp1; tmp2 = fAddNorm(FL2FXCONST_DBL(1.0f / (float)(1 << 1)), 1, tmp1, e_tmp1, &e_tmp2); invExp = fDivNorm(FL2FXCONST_DBL(1.0f / (float)(1 << 1)), exp, &e_invExp); e_invExp += 1 - 5; denom = fPow(tmp2, e_tmp2, invExp, e_invExp, &e_denom); *out = fDivNormSigned(tmp, denom, &e_out); e_out += 7 - e_denom; *out = scaleValueSaturate(*out, e_out - 7); return DE_OK; } static DRC_ERROR _compressorIO_sigmoid(const CUSTOM_DRC_CHAR_SIGMOID* pCChar, const FIXP_DBL inLevelDb, /* e = 7 */ FIXP_DBL* outGainDb) /* e = 7 */ { FIXP_DBL tmp; FIXP_SGL exp = pCChar->exp; DRC_ERROR err = DE_OK; tmp = fMultDiv2((DRC_INPUT_LOUDNESS_TARGET >> 1) - (inLevelDb >> 1), pCChar->ioRatio); tmp = SATURATE_LEFT_SHIFT(tmp, 2 + 1 + 1, DFRACT_BITS); if (exp < (FIXP_SGL)MAXVAL_SGL) { /* x = tmp / gainDbLimit; */ /* *outGainDb = tmp / pow(1.0f + pow(x, exp), 1.0f/exp); */ err = _compressorIO_sigmoid_common(tmp, FX_SGL2FX_DBL(pCChar->gain), FX_SGL2FX_DBL(exp), 0, outGainDb); if (err) return err; } else { *outGainDb = tmp; /* scaling of outGainDb (7) is equal to scaling of tmp (7) */ } if (pCChar->flipSign == 1) { *outGainDb = -*outGainDb; } return err; } static DRC_ERROR _compressorIO_sigmoid_inverse( const CUSTOM_DRC_CHAR_SIGMOID* pCChar, const FIXP_SGL gainDb, FIXP_DBL* inLev) { DRC_ERROR err = DE_OK; FIXP_SGL ioRatio = pCChar->ioRatio; FIXP_SGL exp = pCChar->exp; FIXP_DBL tmp = FX_SGL2FX_DBL(gainDb), tmp_out; int e_out; if (pCChar->flipSign == 1) { tmp = -tmp; } if (exp < (FIXP_SGL)MAXVAL_SGL) { /* x = tmp / gainDbLimit; */ /* tmp = tmp / pow(1.0f - pow(x, exp), 1.0f / exp); */ err = _compressorIO_sigmoid_common(tmp, FX_SGL2FX_DBL(pCChar->gain), FX_SGL2FX_DBL(exp), 1, &tmp); if (err) return err; } if (ioRatio == (FIXP_SGL)0) { return DE_NOT_OK; } tmp_out = fDivNormSigned(tmp, FX_SGL2FX_DBL(ioRatio), &e_out); e_out += 7 - 2; tmp_out = fAddNorm(DRC_INPUT_LOUDNESS_TARGET, 7, -tmp_out, e_out, &e_out); *inLev = scaleValueSaturate(tmp_out, e_out - 7); return err; } static DRC_ERROR _compressorIO_nodes(const CUSTOM_DRC_CHAR_NODES* pCChar, const FIXP_DBL inLevelDb, /* e = 7 */ FIXP_DBL* outGainDb) /* e = 7 */ { int n; FIXP_DBL w; const FIXP_SGL* nodeLevel = pCChar->nodeLevel; const FIXP_SGL* nodeGain = pCChar->nodeGain; if (inLevelDb < DRC_INPUT_LOUDNESS_TARGET) { for (n = 0; n < pCChar->characteristicNodeCount; n++) { if ((inLevelDb <= FX_SGL2FX_DBL(nodeLevel[n])) && (inLevelDb > FX_SGL2FX_DBL(nodeLevel[n + 1]))) { w = fDivNorm(inLevelDb - FX_SGL2FX_DBL(nodeLevel[n + 1]), FX_SGL2FX_DBL(nodeLevel[n] - nodeLevel[n + 1])); *outGainDb = fMult(w, nodeGain[n]) + fMult((FIXP_DBL)MAXVAL_DBL - w, nodeGain[n + 1]); /* *outGainDb = (w * nodeGain[n] + (1.0-w) * nodeGain[n+1]); */ return DE_OK; } } } else { for (n = 0; n < pCChar->characteristicNodeCount; n++) { if ((inLevelDb >= FX_SGL2FX_DBL(nodeLevel[n])) && (inLevelDb < FX_SGL2FX_DBL(nodeLevel[n + 1]))) { w = fDivNorm(FX_SGL2FX_DBL(nodeLevel[n + 1]) - inLevelDb, FX_SGL2FX_DBL(nodeLevel[n + 1] - nodeLevel[n])); *outGainDb = fMult(w, nodeGain[n]) + fMult((FIXP_DBL)MAXVAL_DBL - w, nodeGain[n + 1]); /* *outGainDb = (w * nodeGain[n] + (1.0-w) * nodeGain[n+1]); */ return DE_OK; } } } *outGainDb = FX_SGL2FX_DBL(nodeGain[pCChar->characteristicNodeCount]); return DE_OK; } static DRC_ERROR _compressorIO_nodes_inverse( const CUSTOM_DRC_CHAR_NODES* pCChar, const FIXP_SGL gainDb, /* e = 7 */ FIXP_DBL* inLev) /* e = 7 */ { int n; int k; FIXP_DBL w; int gainIsNegative = 0; const FIXP_SGL* nodeLevel = pCChar->nodeLevel; const FIXP_SGL* nodeGain = pCChar->nodeGain; int nodeCount = pCChar->characteristicNodeCount; for (k = 0; k < nodeCount; k++) { if (pCChar->nodeGain[k + 1] < (FIXP_SGL)0) { gainIsNegative = 1; } } if (gainIsNegative == 1) { if (gainDb <= nodeGain[nodeCount]) { *inLev = FX_SGL2FX_DBL(nodeLevel[nodeCount]); } else { if (gainDb >= (FIXP_SGL)0) { *inLev = DRC_INPUT_LOUDNESS_TARGET; } else { for (n = 0; n < nodeCount; n++) { if ((gainDb <= nodeGain[n]) && (gainDb > nodeGain[n + 1])) { FIXP_SGL gainDelta = nodeGain[n] - nodeGain[n + 1]; if (gainDelta == (FIXP_SGL)0) { *inLev = FX_SGL2FX_DBL(nodeLevel[n]); return DE_OK; } w = fDivNorm(gainDb - nodeGain[n + 1], gainDelta); *inLev = fMult(w, nodeLevel[n]) + fMult((FIXP_DBL)MAXVAL_DBL - w, nodeLevel[n + 1]); /* *inLev = (w * nodeLevel[n] + (1.0-w) * nodeLevel[n+1]); */ return DE_OK; } } *inLev = FX_SGL2FX_DBL(nodeLevel[nodeCount]); } } } else { if (gainDb >= nodeGain[nodeCount]) { *inLev = FX_SGL2FX_DBL(nodeLevel[nodeCount]); } else { if (gainDb <= (FIXP_SGL)0) { *inLev = DRC_INPUT_LOUDNESS_TARGET; } else { for (n = 0; n < nodeCount; n++) { if ((gainDb >= nodeGain[n]) && (gainDb < nodeGain[n + 1])) { FIXP_SGL gainDelta = nodeGain[n + 1] - nodeGain[n]; if (gainDelta == (FIXP_SGL)0) { *inLev = FX_SGL2FX_DBL(nodeLevel[n]); return DE_OK; } w = fDivNorm(nodeGain[n + 1] - gainDb, gainDelta); *inLev = fMult(w, nodeLevel[n]) + fMult((FIXP_DBL)MAXVAL_DBL - w, nodeLevel[n + 1]); /* *inLev = (w * nodeLevel[n] + (1.0-w) * nodeLevel[n+1]); */ return DE_OK; } } *inLev = FX_SGL2FX_DBL(nodeLevel[nodeCount]); } } } return DE_OK; } static DRC_ERROR _mapGain(const CHARACTERISTIC_FORMAT pCCharFormatSource, const CUSTOM_DRC_CHAR* pCCharSource, const CHARACTERISTIC_FORMAT pCCharFormatTarget, const CUSTOM_DRC_CHAR* pCCharTarget, const FIXP_SGL gainInDb, /* e = 7 */ FIXP_DBL* gainOutDb) /* e = 7 */ { FIXP_DBL inLevel = (FIXP_DBL)0; DRC_ERROR err = DE_OK; switch (pCCharFormatSource) { case CF_SIGMOID: err = _compressorIO_sigmoid_inverse( (const CUSTOM_DRC_CHAR_SIGMOID*)pCCharSource, gainInDb, &inLevel); if (err) return err; break; case CF_NODES: err = _compressorIO_nodes_inverse( (const CUSTOM_DRC_CHAR_NODES*)pCCharSource, gainInDb, &inLevel); if (err) return err; break; default: return DE_NOT_OK; } switch (pCCharFormatTarget) { case CF_SIGMOID: err = _compressorIO_sigmoid((const CUSTOM_DRC_CHAR_SIGMOID*)pCCharTarget, inLevel, gainOutDb); if (err) return err; break; case CF_NODES: err = _compressorIO_nodes((const CUSTOM_DRC_CHAR_NODES*)pCCharTarget, inLevel, gainOutDb); if (err) return err; break; default: break; } return DE_OK; } static DRC_ERROR _toLinear( const NODE_MODIFICATION* nodeMod, const int drcBand, const FIXP_SGL gainDb, /* in: gain value in dB, e = 7 */ const FIXP_SGL slopeDb, /* in: slope value in dB/deltaTmin, e = 2 */ FIXP_DBL* gainLin, /* out: linear gain value, e = 7 */ FIXP_DBL* slopeLin) /* out: linear slope value, e = 7 */ { FIXP_DBL gainRatio_m = FL2FXCONST_DBL(1.0f / (float)(1 << 1)); GAIN_MODIFICATION* pGMod = NULL; DUCKING_MODIFICATION* pDMod = nodeMod->pDMod; FIXP_DBL tmp_dbl, gainDb_modified, gainDb_offset, gainDb_out, gainLin_m, slopeLin_m; int gainLin_e, gainRatio_e = 1, gainDb_out_e; if (nodeMod->pGMod != NULL) { pGMod = &(nodeMod->pGMod[drcBand]); } if (((nodeMod->drcSetEffect & (EB_DUCK_OTHER | EB_DUCK_SELF)) == 0) && (nodeMod->drcSetEffect != EB_FADE) && (nodeMod->drcSetEffect != EB_CLIPPING)) { DRC_ERROR err = DE_OK; FIXP_DBL gainDbMapped; if ((pGMod != NULL) && (nodeMod->drcCharacteristicPresent)) { if (((gainDb > (FIXP_SGL)0) && nodeMod->slopeIsNegative) || ((gainDb < (FIXP_SGL)0) && !nodeMod->slopeIsNegative)) { /* left side */ if (pGMod->targetCharacteristicLeftPresent == 1) { err = _mapGain(nodeMod->characteristicFormatSource[CS_LEFT], nodeMod->pCCharSource[CS_LEFT], nodeMod->characteristicFormatTarget[CS_LEFT], nodeMod->pCCharTarget[CS_LEFT], gainDb, &gainDbMapped); if (err) return err; gainRatio_m = fDivNormSigned( gainDbMapped, FX_SGL2FX_DBL(gainDb), &gainRatio_e); /* target characteristic in payload */ } } else { /* if (((gainDb < (FIXP_SGL)0) && nodeMod->slopeIsNegative) || ((gainDb > (FIXP_SGL)0) && !nodeMod->slopeIsNegative)) */ /* right side */ if (pGMod->targetCharacteristicRightPresent == 1) { err = _mapGain(nodeMod->characteristicFormatSource[CS_RIGHT], nodeMod->pCCharSource[CS_RIGHT], nodeMod->characteristicFormatTarget[CS_RIGHT], nodeMod->pCCharTarget[CS_RIGHT], gainDb, &gainDbMapped); if (err) return err; gainRatio_m = fDivNormSigned( gainDbMapped, FX_SGL2FX_DBL(gainDb), &gainRatio_e); /* target characteristic in payload */ } } } if (gainDb < (FIXP_SGL)0) { gainRatio_m = fMultDiv2(gainRatio_m, nodeMod->compress); } else { gainRatio_m = fMultDiv2(gainRatio_m, nodeMod->boost); } gainRatio_e += 2; } if ((pGMod != NULL) && (pGMod->gainScalingPresent == 1)) { if (gainDb < (FIXP_SGL)0) { gainRatio_m = fMultDiv2(gainRatio_m, pGMod->attenuationScaling); } else { gainRatio_m = fMultDiv2(gainRatio_m, pGMod->amplificationScaling); } gainRatio_e += 3; } if ((pDMod != NULL) && (nodeMod->drcSetEffect & (EB_DUCK_OTHER | EB_DUCK_SELF)) && (pDMod->duckingScalingPresent == 1)) { gainRatio_m = fMultDiv2(gainRatio_m, pDMod->duckingScaling); gainRatio_e += 3; } gainDb_modified = fMultDiv2(gainDb, gainRatio_m); /* resulting e: 7 + gainRatio_e + 1*/ gainDb_offset = (FIXP_DBL)0; if ((pGMod != NULL) && (pGMod->gainOffsetPresent == 1)) { /* *gainLin *= (float)pow(2.0, (double)(pGMod->gainOffset/6.0f)); */ gainDb_offset += FX_SGL2FX_DBL(pGMod->gainOffset) >> 4; /* resulting e: 8 */ } if ((nodeMod->limiterPeakTargetPresent == 1) && (nodeMod->drcSetEffect == EB_CLIPPING)) { /* The only drcSetEffect is "clipping prevention" */ /* loudnessNormalizationGainModificationDb is included in * loudnessNormalizationGainDb */ /* *gainLin *= (float)pow(2.0, max(0.0, -nodeModification->limiterPeakTarget * - nodeModification->loudnessNormalizationGainDb)/6.0); */ gainDb_offset += fMax( (FIXP_DBL)0, (FX_SGL2FX_DBL(-nodeMod->limiterPeakTarget) >> 3) - (nodeMod->loudnessNormalizationGainDb >> 1)); /* resulting e: 8 */ } if (gainDb_offset != (FIXP_DBL)0) { gainDb_out = fAddNorm(gainDb_modified, 7 + gainRatio_e + 1, gainDb_offset, 8, &gainDb_out_e); } else { gainDb_out = gainDb_modified; gainDb_out_e = 7 + gainRatio_e + 1; } /* *gainLin = (float)pow(2.0, (double)(gainDb_modified[1] / 6.0f)); */ gainLin_m = approxDb2lin(gainDb_out, gainDb_out_e, &gainLin_e); *gainLin = scaleValueSaturate(gainLin_m, gainLin_e - 7); /* *slopeLin = SLOPE_FACTOR_DB_TO_LINEAR * gainRatio * *gainLin * slopeDb; */ if (slopeDb == (FIXP_SGL)0) { *slopeLin = (FIXP_DBL)0; } else { tmp_dbl = fMult(slopeDb, SLOPE_FACTOR_DB_TO_LINEAR); /* resulting e: 2 - 3 = -1 */ tmp_dbl = fMult(tmp_dbl, gainRatio_m); /* resulting e: -1 + gainRatio_e */ if (gainDb_offset != (FIXP_DBL)0) { /* recalculate gainLin from gainDb that wasn't modified by gainOffset and limiterPeakTarget */ gainLin_m = approxDb2lin(gainDb_modified, 7 + gainRatio_e, &gainLin_e); } slopeLin_m = fMult(tmp_dbl, gainLin_m); *slopeLin = scaleValueSaturate(slopeLin_m, -1 + gainRatio_e + gainLin_e - 7); } if ((nodeMod->limiterPeakTargetPresent == 1) && (nodeMod->drcSetEffect == EB_CLIPPING)) { if (*gainLin >= FL2FXCONST_DBL(1.0f / (float)(1 << 7))) { *gainLin = FL2FXCONST_DBL(1.0f / (float)(1 << 7)); *slopeLin = (FIXP_DBL)0; } } return DE_OK; } /* prepare buffers containing linear nodes for each gain sequence */ DRC_ERROR prepareDrcGain(HANDLE_DRC_GAIN_DECODER hGainDec, HANDLE_UNI_DRC_GAIN hUniDrcGain, const FIXP_SGL compress, const FIXP_SGL boost, const FIXP_DBL loudnessNormalizationGainDb, const int activeDrcIndex) { int b, g, gainElementIndex; DRC_GAIN_BUFFERS* drcGainBuffers = &(hGainDec->drcGainBuffers); NODE_MODIFICATION nodeMod; FDKmemclear(&nodeMod, sizeof(NODE_MODIFICATION)); ACTIVE_DRC* pActiveDrc = &(hGainDec->activeDrc[activeDrcIndex]); DRC_INSTRUCTIONS_UNI_DRC* pInst = pActiveDrc->pInst; if (pInst == NULL) return DE_NOT_OK; nodeMod.drcSetEffect = pInst->drcSetEffect; nodeMod.compress = compress; nodeMod.boost = boost; nodeMod.loudnessNormalizationGainDb = loudnessNormalizationGainDb; nodeMod.limiterPeakTargetPresent = pInst->limiterPeakTargetPresent; nodeMod.limiterPeakTarget = pInst->limiterPeakTarget; gainElementIndex = 0; for (g = 0; g < pInst->nDrcChannelGroups; g++) { int gainSetIndex = 0; int nDrcBands = 0; DRC_COEFFICIENTS_UNI_DRC* pCoef = pActiveDrc->pCoef; if (pCoef == NULL) return DE_NOT_OK; if (!pActiveDrc->channelGroupIsParametricDrc[g]) { gainSetIndex = pInst->gainSetIndexForChannelGroup[g]; if (nodeMod.drcSetEffect & (EB_DUCK_OTHER | EB_DUCK_SELF)) { nodeMod.pDMod = &(pActiveDrc->duckingModificationForChannelGroup[g]); nodeMod.pGMod = NULL; } else { nodeMod.pGMod = pInst->gainModificationForChannelGroup[g]; nodeMod.pDMod = NULL; } nDrcBands = pActiveDrc->bandCountForChannelGroup[g]; for (b = 0; b < nDrcBands; b++) { DRC_ERROR err = DE_OK; if (gainSetIndex >= 12) return DE_PARAM_OUT_OF_RANGE; GAIN_SET* pGainSet = &(pCoef->gainSet[gainSetIndex]); int seq = pGainSet->gainSequenceIndex[b]; DRC_CHARACTERISTIC* pDChar = &(pGainSet->drcCharacteristic[b]); /* linearNodeBuffer contains a copy of the gain sequences (consisting of nodes) that are relevant for decoding. It also contains gain sequences of previous frames. */ LINEAR_NODE_BUFFER* pLnb = &(drcGainBuffers->linearNodeBuffer[pActiveDrc->activeDrcOffset + gainElementIndex]); int i, lnbp; lnbp = drcGainBuffers->lnbPointer; pLnb->gainInterpolationType = (GAIN_INTERPOLATION_TYPE)pGainSet->gainInterpolationType; err = _prepareDrcCharacteristic(pDChar, pCoef, b, &nodeMod); if (err) return err; if (seq >= 12) return DE_PARAM_OUT_OF_RANGE; /* copy a node buffer and convert from dB to linear */ pLnb->nNodes[lnbp] = fMin((int)hUniDrcGain->nNodes[seq], 16); for (i = 0; i < pLnb->nNodes[lnbp]; i++) { FIXP_DBL gainLin, slopeLin; err = _toLinear(&nodeMod, b, hUniDrcGain->gainNode[seq][i].gainDb, (FIXP_SGL)0, &gainLin, &slopeLin); if (err) return err; pLnb->linearNode[lnbp][i].gainLin = gainLin; pLnb->linearNode[lnbp][i].time = hUniDrcGain->gainNode[seq][i].time; } gainElementIndex++; } } else { /* parametric DRC not supported */ gainElementIndex++; } } return DE_OK; }