From 6cfabd35363c3ef5e3b209b867169a500b3ccc3c Mon Sep 17 00:00:00 2001 From: Fraunhofer IIS FDK Date: Mon, 26 Feb 2018 20:17:00 +0100 Subject: Upgrade to FDKv2 Bug: 71430241 Test: CTS DecoderTest and DecoderTestAacDrc original-Change-Id: Iaa20f749b8a04d553b20247cfe1a8930ebbabe30 Apply clang-format also on header files. original-Change-Id: I14de1ef16bbc79ec0283e745f98356a10efeb2e4 Fixes for MPEG-D DRC original-Change-Id: If1de2d74bbbac84b3f67de3b88b83f6a23b8a15c Catch unsupported tw_mdct at an early stage original-Change-Id: Ied9dd00d754162a0e3ca1ae3e6b854315d818afe Fixing PVC transition frames original-Change-Id: Ib75725abe39252806c32d71176308f2c03547a4e Move qmf bands sanity check original-Change-Id: Iab540c3013c174d9490d2ae100a4576f51d8dbc4 Initialize scaling variable original-Change-Id: I3c4087101b70e998c71c1689b122b0d7762e0f9e Add 16 qmf band configuration to getSlotNrgHQ() original-Change-Id: I49a5d30f703a1b126ff163df9656db2540df21f1 Always apply byte alignment at the end of the AudioMuxElement original-Change-Id: I42d560287506d65d4c3de8bfe3eb9a4ebeb4efc7 Setup SBR element only if no parse error exists original-Change-Id: I1915b73704bc80ab882b9173d6bec59cbd073676 Additional array index check in HCR original-Change-Id: I18cc6e501ea683b5009f1bbee26de8ddd04d8267 Fix fade-in index selection in concealment module original-Change-Id: Ibf802ed6ed8c05e9257e1f3b6d0ac1162e9b81c1 Enable explicit backward compatible parser for AAC_LD original-Change-Id: I27e9c678dcb5d40ed760a6d1e06609563d02482d Skip spatial specific config in explicit backward compatible ASC original-Change-Id: Iff7cc365561319e886090cedf30533f562ea4d6e Update flags description in decoder API original-Change-Id: I9a5b4f8da76bb652f5580cbd3ba9760425c43830 Add QMF domain reset function original-Change-Id: I4f89a8a2c0277d18103380134e4ed86996e9d8d6 DRC upgrade v2.1.0 original-Change-Id: I5731c0540139dab220094cd978ef42099fc45b74 Fix integer overflow in sqrtFixp_lookup() original-Change-Id: I429a6f0d19aa2cc957e0f181066f0ca73968c914 Fix integer overflow in invSqrtNorm2() original-Change-Id: I84de5cbf9fb3adeb611db203fe492fabf4eb6155 Fix integer overflow in GenerateRandomVector() original-Change-Id: I3118a641008bd9484d479e5b0b1ee2b5d7d44d74 Fix integer overflow in adjustTimeSlot_EldGrid() original-Change-Id: I29d503c247c5c8282349b79df940416a512fb9d5 Fix integer overflow in FDKsbrEnc_codeEnvelope() original-Change-Id: I6b34b61ebb9d525b0c651ed08de2befc1f801449 Follow-up on: Fix integer overflow in adjustTimeSlot_EldGrid() original-Change-Id: I6f8f578cc7089e5eb7c7b93e580b72ca35ad689a Fix integer overflow in get_pk_v2() original-Change-Id: I63375bed40d45867f6eeaa72b20b1f33e815938c Fix integer overflow in Syn_filt_zero() original-Change-Id: Ie0c02fdfbe03988f9d3b20d10cd9fe4c002d1279 Fix integer overflow in CFac_CalcFacSignal() original-Change-Id: Id2d767c40066c591b51768e978eb8af3b803f0c5 Fix integer overflow in FDKaacEnc_FDKaacEnc_calcPeNoAH() original-Change-Id: Idcbd0f4a51ae2550ed106aa6f3d678d1f9724841 Fix integer overflow in sbrDecoder_calculateGainVec() original-Change-Id: I7081bcbe29c5cede9821b38d93de07c7add2d507 Fix integer overflow in CLpc_SynthesisLattice() original-Change-Id: I4a95ddc18de150102352d4a1845f06094764c881 Fix integer overflow in Pred_Lt4() original-Change-Id: I4dbd012b2de7d07c3e70a47b92e3bfae8dbc750a Fix integer overflow in FDKsbrEnc_InitSbrFastTransientDetector() original-Change-Id: I788cbec1a4a00f44c2f3a72ad7a4afa219807d04 Fix unsigned integer overflow in FDKaacEnc_WriteBitstream() original-Change-Id: I68fc75166e7d2cd5cd45b18dbe3d8c2a92f1822a Fix unsigned integer overflow in FDK_MetadataEnc_Init() original-Change-Id: Ie8d025f9bcdb2442c704bd196e61065c03c10af4 Fix overflow in pseudo random number generators original-Change-Id: I3e2551ee01356297ca14e3788436ede80bd5513c Fix unsigned integer overflow in sbrDecoder_Parse() original-Change-Id: I3f231b2f437e9c37db4d5b964164686710eee971 Fix unsigned integer overflow in longsub() original-Change-Id: I73c2bc50415cac26f1f5a29e125bbe75f9180a6e Fix unsigned integer overflow in CAacDecoder_DecodeFrame() original-Change-Id: Ifce2db4b1454b46fa5f887e9d383f1cc43b291e4 Fix overflow at CLpdChannelStream_Read() original-Change-Id: Idb9d822ce3a4272e4794b643644f5434e2d4bf3f Fix unsigned integer overflow in Hcr_State_BODY_SIGN_ESC__ESC_WORD() original-Change-Id: I1ccf77c0015684b85534c5eb97162740a870b71c Fix unsigned integer overflow in UsacConfig_Parse() original-Change-Id: Ie6d27f84b6ae7eef092ecbff4447941c77864d9f Fix unsigned integer overflow in aacDecoder_drcParse() original-Change-Id: I713f28e883eea3d70b6fa56a7b8f8c22bcf66ca0 Fix unsigned integer overflow in aacDecoder_drcReadCompression() original-Change-Id: Ia34dfeb88c4705c558bce34314f584965cafcf7a Fix unsigned integer overflow in CDataStreamElement_Read() original-Change-Id: Iae896cc1d11f0a893d21be6aa90bd3e60a2c25f0 Fix unsigned integer overflow in transportDec_AdjustEndOfAccessUnit() original-Change-Id: I64cf29a153ee784bb4a16fdc088baabebc0007dc Fix unsigned integer overflow in transportDec_GetAuBitsRemaining() original-Change-Id: I975b3420faa9c16a041874ba0db82e92035962e4 Fix unsigned integer overflow in extractExtendedData() original-Change-Id: I2a59eb09e2053cfb58dfb75fcecfad6b85a80a8f Fix signed integer overflow in CAacDecoder_ExtPayloadParse() original-Change-Id: I4ad5ca4e3b83b5d964f1c2f8c5e7b17c477c7929 Fix unsigned integer overflow in CAacDecoder_DecodeFrame() original-Change-Id: I29a39df77d45c52a0c9c5c83c1ba81f8d0f25090 Follow-up on: Fix integer overflow in CLpc_SynthesisLattice() original-Change-Id: I8fb194ffc073a3432a380845be71036a272d388f Fix signed integer overflow in _interpolateDrcGain() original-Change-Id: I879ec9ab14005069a7c47faf80e8bc6e03d22e60 Fix unsigned integer overflow in FDKreadBits() original-Change-Id: I1f47a6a8037ff70375aa8844947d5681bb4287ad Fix unsigned integer overflow in FDKbyteAlign() original-Change-Id: Id5f3a11a0c9e50fc6f76ed6c572dbd4e9f2af766 Fix unsigned integer overflow in FDK_get32() original-Change-Id: I9d33b8e97e3d38cbb80629cb859266ca0acdce96 Fix unsigned integer overflow in FDK_pushBack() original-Change-Id: Ic87f899bc8c6acf7a377a8ca7f3ba74c3a1e1c19 Fix unsigned integer overflow in FDK_pushForward() original-Change-Id: I3b754382f6776a34be1602e66694ede8e0b8effc Fix unsigned integer overflow in ReadPsData() original-Change-Id: I25361664ba8139e32bbbef2ca8c106a606ce9c37 Fix signed integer overflow in E_UTIL_residu() original-Change-Id: I8c3abd1f437ee869caa8fb5903ce7d3d641b6aad REVERT: Follow-up on: Integer overflow in CLpc_SynthesisLattice(). original-Change-Id: I3d340099acb0414795c8dfbe6362bc0a8f045f9b Follow-up on: Fix integer overflow in CLpc_SynthesisLattice() original-Change-Id: I4aedb8b3a187064e9f4d985175aa55bb99cc7590 Follow-up on: Fix unsigned integer overflow in aacDecoder_drcParse() original-Change-Id: I2aa2e13916213bf52a67e8b0518e7bf7e57fb37d Fix integer overflow in acelp original-Change-Id: Ie6390c136d84055f8b728aefbe4ebef6e029dc77 Fix unsigned integer overflow in aacDecoder_UpdateBitStreamCounters() original-Change-Id: I391ffd97ddb0b2c184cba76139bfb356a3b4d2e2 Adjust concealment default settings original-Change-Id: I6a95db935a327c47df348030bcceafcb29f54b21 Saturate estimatedStartPos original-Change-Id: I27be2085e0ae83ec9501409f65e003f6bcba1ab6 Negative shift exponent in _interpolateDrcGain() original-Change-Id: I18edb26b26d002aafd5e633d4914960f7a359c29 Negative shift exponent in calculateICC() original-Change-Id: I3dcd2ae98d2eb70ee0d59750863cbb2a6f4f8aba Too large shift exponent in FDK_put() original-Change-Id: Ib7d9aaa434d2d8de4a13b720ca0464b31ca9b671 Too large shift exponent in CalcInvLdData() original-Change-Id: I43e6e78d4cd12daeb1dcd5d82d1798bdc2550262 Member access within null pointer of type SBR_CHANNEL original-Change-Id: Idc5e4ea8997810376d2f36bbdf628923b135b097 Member access within null pointer of type CpePersistentData original-Change-Id: Ib6c91cb0d37882768e5baf63324e429589de0d9d Member access within null pointer FDKaacEnc_psyMain() original-Change-Id: I7729b7f4479970531d9dc823abff63ca52e01997 Member access within null pointer FDKaacEnc_GetPnsParam() original-Change-Id: I9aa3b9f3456ae2e0f7483dbd5b3dde95fc62da39 Member access within null pointer FDKsbrEnc_EnvEncodeFrame() original-Change-Id: I67936f90ea714e90b3e81bc0dd1472cc713eb23a Add HCR sanity check original-Change-Id: I6c1d9732ebcf6af12f50b7641400752f74be39f7 Fix memory issue for HBE edge case with 8:3 SBR original-Change-Id: I11ea58a61e69fbe8bf75034b640baee3011e63e9 Additional SBR parametrization sanity check for ELD original-Change-Id: Ie26026fbfe174c2c7b3691f6218b5ce63e322140 Add MPEG-D DRC channel layout check original-Change-Id: Iea70a74f171b227cce636a9eac4ba662777a2f72 Additional out-of-bounds checks in MPEG-D DRC original-Change-Id: Ife4a8c3452c6fde8a0a09e941154a39a769777d4 Change-Id: Ic63cb2f628720f54fe9b572b0cb528e2599c624e --- libSACenc/src/sacenc_dmx_tdom_enh.cpp | 639 ++++++++++++++++++++++++++++++++++ 1 file changed, 639 insertions(+) create mode 100644 libSACenc/src/sacenc_dmx_tdom_enh.cpp (limited to 'libSACenc/src/sacenc_dmx_tdom_enh.cpp') diff --git a/libSACenc/src/sacenc_dmx_tdom_enh.cpp b/libSACenc/src/sacenc_dmx_tdom_enh.cpp new file mode 100644 index 0000000..be66c83 --- /dev/null +++ b/libSACenc/src/sacenc_dmx_tdom_enh.cpp @@ -0,0 +1,639 @@ +/* ----------------------------------------------------------------------------- +Software License for The Fraunhofer FDK AAC Codec Library for Android + +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. + + 1. INTRODUCTION +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. + +2. COPYRIGHT LICENSE + +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: + +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. + +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your +modifications thereto to recipients of copies in binary form. + +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. + +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. + +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." + +3. NO PATENT LICENSE + +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. + +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. + +4. DISCLAIMER + +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. + +5. CONTACT INFORMATION + +Fraunhofer Institute for Integrated Circuits IIS +Attention: Audio and Multimedia Departments - FDK AAC LL +Am Wolfsmantel 33 +91058 Erlangen, Germany + +www.iis.fraunhofer.de/amm +amm-info@iis.fraunhofer.de +----------------------------------------------------------------------------- */ + +/*********************** MPEG surround encoder library ************************* + + Author(s): M. Luis Valero + + Description: Enhanced Time Domain Downmix + +*******************************************************************************/ + +/* Includes ******************************************************************/ +#include "sacenc_dmx_tdom_enh.h" + +#include "FDK_matrixCalloc.h" +#include "FDK_trigFcts.h" +#include "fixpoint_math.h" + +/* Defines *******************************************************************/ +#define PI_FLT 3.1415926535897931f +#define ALPHA_FLT 0.0001f + +#define PI_E (2) +#define PI_M (FL2FXCONST_DBL(PI_FLT / (1 << PI_E))) + +#define ALPHA_E (13) +#define ALPHA_M (FL2FXCONST_DBL(ALPHA_FLT * (1 << ALPHA_E))) + +enum { L = 0, R = 1 }; + +/* Data Types ****************************************************************/ +typedef struct T_ENHANCED_TIME_DOMAIN_DMX { + int maxFramelength; + + int framelength; + + FIXP_DBL prev_gain_m[2]; + INT prev_gain_e; + FIXP_DBL prev_H1_m[2]; + INT prev_H1_e; + + FIXP_DBL *sinusWindow_m; + SCHAR sinusWindow_e; + + FIXP_DBL prev_Left_m; + INT prev_Left_e; + FIXP_DBL prev_Right_m; + INT prev_Right_e; + FIXP_DBL prev_XNrg_m; + INT prev_XNrg_e; + + FIXP_DBL lin_bbCld_weight_m; + INT lin_bbCld_weight_e; + FIXP_DBL gain_weight_m[2]; + INT gain_weight_e; + +} ENHANCED_TIME_DOMAIN_DMX; + +/* Constants *****************************************************************/ + +/* Function / Class Declarations *********************************************/ +static void calculateRatio(const FIXP_DBL sqrt_linCld_m, + const INT sqrt_linCld_e, const FIXP_DBL lin_Cld_m, + const INT lin_Cld_e, const FIXP_DBL Icc_m, + const INT Icc_e, FIXP_DBL G_m[2], INT *G_e); + +static void calculateDmxGains(const FIXP_DBL lin_Cld_m, const INT lin_Cld_e, + const FIXP_DBL lin_Cld2_m, const INT lin_Cld2_e, + const FIXP_DBL Icc_m, const INT Icc_e, + const FIXP_DBL G_m[2], const INT G_e, + FIXP_DBL H1_m[2], INT *pH1_e); + +/* Function / Class Definition ***********************************************/ +static FIXP_DBL invSqrtNorm2(const FIXP_DBL op_m, const INT op_e, + INT *const result_e) { + FIXP_DBL src_m = op_m; + int src_e = op_e; + + if (src_e & 1) { + src_m >>= 1; + src_e += 1; + } + + src_m = invSqrtNorm2(src_m, result_e); + *result_e = (*result_e) - (src_e >> 1); + + return src_m; +} + +static FIXP_DBL sqrtFixp(const FIXP_DBL op_m, const INT op_e, + INT *const result_e) { + FIXP_DBL src_m = op_m; + int src_e = op_e; + + if (src_e & 1) { + src_m >>= 1; + src_e += 1; + } + + *result_e = (src_e >> 1); + return sqrtFixp(src_m); +} + +static FIXP_DBL fixpAdd(const FIXP_DBL src1_m, const INT src1_e, + const FIXP_DBL src2_m, const INT src2_e, + INT *const dst_e) { + FIXP_DBL dst_m; + + if (src1_m == FL2FXCONST_DBL(0.f)) { + *dst_e = src2_e; + dst_m = src2_m; + } else if (src2_m == FL2FXCONST_DBL(0.f)) { + *dst_e = src1_e; + dst_m = src1_m; + } else { + *dst_e = fixMax(src1_e, src2_e) + 1; + dst_m = + scaleValue(src1_m, fixMax((src1_e - (*dst_e)), -(DFRACT_BITS - 1))) + + scaleValue(src2_m, fixMax((src2_e - (*dst_e)), -(DFRACT_BITS - 1))); + } + return dst_m; +} + +/** + * \brief Sum up fixpoint values with best possible accuracy. + * + * \param value1 First input value. + * \param q1 Scaling factor of first input value. + * \param pValue2 Pointer to second input value, will be modified on + * return. + * \param pQ2 Pointer to second scaling factor, will be modified on + * return. + * + * \return void + */ +static void fixpAddNorm(const FIXP_DBL value1, const INT q1, + FIXP_DBL *const pValue2, INT *const pQ2) { + const int headroom1 = fNormz(fixp_abs(value1)) - 1; + const int headroom2 = fNormz(fixp_abs(*pValue2)) - 1; + int resultScale = fixMax(q1 - headroom1, (*pQ2) - headroom2); + + if ((value1 != FL2FXCONST_DBL(0.f)) && (*pValue2 != FL2FXCONST_DBL(0.f))) { + resultScale++; + } + + *pValue2 = + scaleValue(value1, q1 - resultScale) + + scaleValue(*pValue2, fixMax(-(DFRACT_BITS - 1), ((*pQ2) - resultScale))); + *pQ2 = (*pValue2 != (FIXP_DBL)0) ? resultScale : DFRACT_BITS - 1; +} + +FDK_SACENC_ERROR fdk_sacenc_open_enhancedTimeDomainDmx( + HANDLE_ENHANCED_TIME_DOMAIN_DMX *phEnhancedTimeDmx, const INT framelength) { + FDK_SACENC_ERROR error = SACENC_OK; + HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx = NULL; + + if (NULL == phEnhancedTimeDmx) { + error = SACENC_INVALID_HANDLE; + } else { + FDK_ALLOCATE_MEMORY_1D(hEnhancedTimeDmx, 1, ENHANCED_TIME_DOMAIN_DMX); + FDK_ALLOCATE_MEMORY_1D(hEnhancedTimeDmx->sinusWindow_m, 1 + framelength, + FIXP_DBL); + hEnhancedTimeDmx->maxFramelength = framelength; + *phEnhancedTimeDmx = hEnhancedTimeDmx; + } + return error; + +bail: + fdk_sacenc_close_enhancedTimeDomainDmx(&hEnhancedTimeDmx); + return ((SACENC_OK == error) ? SACENC_MEMORY_ERROR : error); +} + +FDK_SACENC_ERROR fdk_sacenc_init_enhancedTimeDomainDmx( + HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx, + const FIXP_DBL *const pInputGain_m, const INT inputGain_e, + const FIXP_DBL outputGain_m, const INT outputGain_e, + const INT framelength) { + FDK_SACENC_ERROR error = SACENC_OK; + + if (hEnhancedTimeDmx == NULL) { + error = SACENC_INVALID_HANDLE; + } else { + int smp; + if (framelength > hEnhancedTimeDmx->maxFramelength) { + error = SACENC_INIT_ERROR; + goto bail; + } + + hEnhancedTimeDmx->framelength = framelength; + + INT deltax_e; + FIXP_DBL deltax_m; + + deltax_m = fDivNormHighPrec( + PI_M, (FIXP_DBL)(2 * hEnhancedTimeDmx->framelength), &deltax_e); + deltax_m = scaleValue(deltax_m, PI_E + deltax_e - (DFRACT_BITS - 1) - 1); + deltax_e = 1; + + for (smp = 0; smp < hEnhancedTimeDmx->framelength + 1; smp++) { + hEnhancedTimeDmx->sinusWindow_m[smp] = + fMult(ALPHA_M, fPow2(fixp_sin(smp * deltax_m, deltax_e))); + } + hEnhancedTimeDmx->sinusWindow_e = -ALPHA_E; + + hEnhancedTimeDmx->prev_Left_m = hEnhancedTimeDmx->prev_Right_m = + hEnhancedTimeDmx->prev_XNrg_m = FL2FXCONST_DBL(0.f); + hEnhancedTimeDmx->prev_Left_e = hEnhancedTimeDmx->prev_Right_e = + hEnhancedTimeDmx->prev_XNrg_e = DFRACT_BITS - 1; + + hEnhancedTimeDmx->lin_bbCld_weight_m = + fDivNormHighPrec(fPow2(pInputGain_m[L]), fPow2(pInputGain_m[R]), + &hEnhancedTimeDmx->lin_bbCld_weight_e); + + hEnhancedTimeDmx->gain_weight_m[L] = fMult(pInputGain_m[L], outputGain_m); + hEnhancedTimeDmx->gain_weight_m[R] = fMult(pInputGain_m[R], outputGain_m); + hEnhancedTimeDmx->gain_weight_e = + -fNorm(fixMax(hEnhancedTimeDmx->gain_weight_m[L], + hEnhancedTimeDmx->gain_weight_m[R])); + + hEnhancedTimeDmx->gain_weight_m[L] = scaleValue( + hEnhancedTimeDmx->gain_weight_m[L], -hEnhancedTimeDmx->gain_weight_e); + hEnhancedTimeDmx->gain_weight_m[R] = scaleValue( + hEnhancedTimeDmx->gain_weight_m[R], -hEnhancedTimeDmx->gain_weight_e); + hEnhancedTimeDmx->gain_weight_e += inputGain_e + outputGain_e; + + hEnhancedTimeDmx->prev_gain_m[L] = hEnhancedTimeDmx->gain_weight_m[L] >> 1; + hEnhancedTimeDmx->prev_gain_m[R] = hEnhancedTimeDmx->gain_weight_m[R] >> 1; + hEnhancedTimeDmx->prev_gain_e = hEnhancedTimeDmx->gain_weight_e + 1; + + hEnhancedTimeDmx->prev_H1_m[L] = + scaleValue(hEnhancedTimeDmx->gain_weight_m[L], -4); + hEnhancedTimeDmx->prev_H1_m[R] = + scaleValue(hEnhancedTimeDmx->gain_weight_m[R], -4); + hEnhancedTimeDmx->prev_H1_e = 2 + 2 + hEnhancedTimeDmx->gain_weight_e; + } +bail: + return error; +} + +FDK_SACENC_ERROR fdk_sacenc_apply_enhancedTimeDomainDmx( + HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx, + const INT_PCM *const *const inputTime, INT_PCM *const outputTimeDmx, + const INT InputDelay) { + FDK_SACENC_ERROR error = SACENC_OK; + + if ((NULL == hEnhancedTimeDmx) || (NULL == inputTime) || + (NULL == inputTime[L]) || (NULL == inputTime[R]) || + (NULL == outputTimeDmx)) { + error = SACENC_INVALID_HANDLE; + } else { + int smp; + FIXP_DBL lin_bbCld_m, lin_Cld_m, bbCorr_m, sqrt_linCld_m, G_m[2], H1_m[2], + gainLeft_m, gainRight_m; + FIXP_DBL bbNrgLeft_m, bbNrgRight_m, bbXNrg_m, nrgLeft_m, nrgRight_m, nrgX_m; + INT lin_bbCld_e, lin_Cld_e, bbCorr_e, sqrt_linCld_e, G_e, H1_e; + INT bbNrgLeft_e, bbNrgRight_e, bbXNrg_e, nrgLeft_e, nrgRight_e, nrgX_e; + + /* Increase energy time resolution with shorter processing blocks. 128 is an + * empiric value. */ + const int granuleLength = fixMin(128, hEnhancedTimeDmx->framelength); + int granuleShift = + (granuleLength > 1) + ? ((DFRACT_BITS - 1) - fNorm((FIXP_DBL)(granuleLength - 1))) + : 0; + granuleShift = fixMax( + 3, granuleShift + + 1); /* one bit more headroom for worst case accumulation */ + + smp = 0; + + /* Prevent division by zero. */ + bbNrgLeft_m = bbNrgRight_m = bbXNrg_m = (FIXP_DBL)(1); + bbNrgLeft_e = bbNrgRight_e = bbXNrg_e = 0; + + do { + const int offset = smp; + FIXP_DBL partialL, partialR, partialX; + partialL = partialR = partialX = FL2FXCONST_DBL(0.f); + + int in_margin = FDKmin( + getScalefactorPCM( + &inputTime[L][offset], + fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength) - + offset, + 1), + getScalefactorPCM( + &inputTime[R][offset], + fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength) - + offset, + 1)); + + /* partial energy */ + for (smp = offset; + smp < fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength); + smp++) { + FIXP_PCM inputL = + scaleValue((FIXP_PCM)inputTime[L][smp], in_margin - 1); + FIXP_PCM inputR = + scaleValue((FIXP_PCM)inputTime[R][smp], in_margin - 1); + + partialL += fPow2Div2(inputL) >> (granuleShift - 3); + partialR += fPow2Div2(inputR) >> (granuleShift - 3); + partialX += fMultDiv2(inputL, inputR) >> (granuleShift - 3); + } + + fixpAddNorm(partialL, granuleShift - 2 * in_margin, &bbNrgLeft_m, + &bbNrgLeft_e); + fixpAddNorm(partialR, granuleShift - 2 * in_margin, &bbNrgRight_m, + &bbNrgRight_e); + fixpAddNorm(partialX, granuleShift - 2 * in_margin, &bbXNrg_m, &bbXNrg_e); + } while (smp < hEnhancedTimeDmx->framelength); + + nrgLeft_m = + fixpAdd(hEnhancedTimeDmx->prev_Left_m, hEnhancedTimeDmx->prev_Left_e, + bbNrgLeft_m, bbNrgLeft_e, &nrgLeft_e); + nrgRight_m = + fixpAdd(hEnhancedTimeDmx->prev_Right_m, hEnhancedTimeDmx->prev_Right_e, + bbNrgRight_m, bbNrgRight_e, &nrgRight_e); + nrgX_m = + fixpAdd(hEnhancedTimeDmx->prev_XNrg_m, hEnhancedTimeDmx->prev_XNrg_e, + bbXNrg_m, bbXNrg_e, &nrgX_e); + + lin_bbCld_m = fMult(hEnhancedTimeDmx->lin_bbCld_weight_m, + fDivNorm(nrgLeft_m, nrgRight_m, &lin_bbCld_e)); + lin_bbCld_e += + hEnhancedTimeDmx->lin_bbCld_weight_e + nrgLeft_e - nrgRight_e; + + bbCorr_m = fMult(nrgX_m, invSqrtNorm2(fMult(nrgLeft_m, nrgRight_m), + nrgLeft_e + nrgRight_e, &bbCorr_e)); + bbCorr_e += nrgX_e; + + hEnhancedTimeDmx->prev_Left_m = bbNrgLeft_m; + hEnhancedTimeDmx->prev_Left_e = bbNrgLeft_e; + hEnhancedTimeDmx->prev_Right_m = bbNrgRight_m; + hEnhancedTimeDmx->prev_Right_e = bbNrgRight_e; + hEnhancedTimeDmx->prev_XNrg_m = bbXNrg_m; + hEnhancedTimeDmx->prev_XNrg_e = bbXNrg_e; + + /* + bbCld = 10.f*log10(lin_bbCld) + + lin_Cld = pow(10,bbCld/20) + = pow(10,10.f*log10(lin_bbCld)/20.f) + = sqrt(lin_bbCld) + + lin_Cld2 = lin_Cld*lin_Cld + = sqrt(lin_bbCld)*sqrt(lin_bbCld) + = lin_bbCld + */ + lin_Cld_m = sqrtFixp(lin_bbCld_m, lin_bbCld_e, &lin_Cld_e); + sqrt_linCld_m = sqrtFixp(lin_Cld_m, lin_Cld_e, &sqrt_linCld_e); + + /*calculate how much right and how much left signal, to avoid signal + * cancellations*/ + calculateRatio(sqrt_linCld_m, sqrt_linCld_e, lin_Cld_m, lin_Cld_e, bbCorr_m, + bbCorr_e, G_m, &G_e); + + /*calculate downmix gains*/ + calculateDmxGains(lin_Cld_m, lin_Cld_e, lin_bbCld_m, lin_bbCld_e, bbCorr_m, + bbCorr_e, G_m, G_e, H1_m, &H1_e); + + /*adapt output gains*/ + H1_m[L] = fMult(H1_m[L], hEnhancedTimeDmx->gain_weight_m[L]); + H1_m[R] = fMult(H1_m[R], hEnhancedTimeDmx->gain_weight_m[R]); + H1_e += hEnhancedTimeDmx->gain_weight_e; + + gainLeft_m = hEnhancedTimeDmx->prev_gain_m[L]; + gainRight_m = hEnhancedTimeDmx->prev_gain_m[R]; + + INT intermediate_gain_e = + +hEnhancedTimeDmx->sinusWindow_e + H1_e - hEnhancedTimeDmx->prev_gain_e; + + for (smp = 0; smp < hEnhancedTimeDmx->framelength; smp++) { + const INT N = hEnhancedTimeDmx->framelength; + FIXP_DBL intermediate_gainLeft_m, intermediate_gainRight_m, tmp; + + intermediate_gainLeft_m = + scaleValue((fMult(hEnhancedTimeDmx->sinusWindow_m[smp], H1_m[L]) + + fMult(hEnhancedTimeDmx->sinusWindow_m[N - smp], + hEnhancedTimeDmx->prev_H1_m[L])), + intermediate_gain_e); + intermediate_gainRight_m = + scaleValue((fMult(hEnhancedTimeDmx->sinusWindow_m[smp], H1_m[R]) + + fMult(hEnhancedTimeDmx->sinusWindow_m[N - smp], + hEnhancedTimeDmx->prev_H1_m[R])), + intermediate_gain_e); + + gainLeft_m = intermediate_gainLeft_m + + fMult(FL2FXCONST_DBL(1.f - ALPHA_FLT), gainLeft_m); + gainRight_m = intermediate_gainRight_m + + fMult(FL2FXCONST_DBL(1.f - ALPHA_FLT), gainRight_m); + + tmp = fMultDiv2(gainLeft_m, (FIXP_PCM)inputTime[L][smp + InputDelay]) + + fMultDiv2(gainRight_m, (FIXP_PCM)inputTime[R][smp + InputDelay]); + outputTimeDmx[smp] = (INT_PCM)SATURATE_SHIFT( + tmp, + -(hEnhancedTimeDmx->prev_gain_e + 1 - (DFRACT_BITS - SAMPLE_BITS)), + SAMPLE_BITS); + } + + hEnhancedTimeDmx->prev_gain_m[L] = gainLeft_m; + hEnhancedTimeDmx->prev_gain_m[R] = gainRight_m; + + hEnhancedTimeDmx->prev_H1_m[L] = H1_m[L]; + hEnhancedTimeDmx->prev_H1_m[R] = H1_m[R]; + hEnhancedTimeDmx->prev_H1_e = H1_e; + } + + return error; +} + +static void calculateRatio(const FIXP_DBL sqrt_linCld_m, + const INT sqrt_linCld_e, const FIXP_DBL lin_Cld_m, + const INT lin_Cld_e, const FIXP_DBL Icc_m, + const INT Icc_e, FIXP_DBL G_m[2], INT *G_e) { +#define G_SCALE_FACTOR (2) + + if (Icc_m >= FL2FXCONST_DBL(0.f)) { + G_m[0] = G_m[1] = FL2FXCONST_DBL(1.f / (float)(1 << G_SCALE_FACTOR)); + G_e[0] = G_SCALE_FACTOR; + } else { + const FIXP_DBL max_gain_factor = + FL2FXCONST_DBL(2.f / (float)(1 << G_SCALE_FACTOR)); + FIXP_DBL tmp1_m, tmp2_m, numerator_m, denominator_m, r_m, r4_m, q; + INT tmp1_e, tmp2_e, numerator_e, denominator_e, r_e, r4_e; + + /* r = (lin_Cld + 1 + 2*Icc*sqrt_linCld) / (lin_Cld + 1 - + * 2*Icc*sqrt_linCld) = (tmp1 + tmp2) / (tmp1 - tmp2) + */ + tmp1_m = + fixpAdd(lin_Cld_m, lin_Cld_e, FL2FXCONST_DBL(1.f / 2.f), 1, &tmp1_e); + + tmp2_m = fMult(Icc_m, sqrt_linCld_m); + tmp2_e = 1 + Icc_e + sqrt_linCld_e; + numerator_m = fixpAdd(tmp1_m, tmp1_e, tmp2_m, tmp2_e, &numerator_e); + denominator_m = fixpAdd(tmp1_m, tmp1_e, -tmp2_m, tmp2_e, &denominator_e); + + if ((numerator_m > FL2FXCONST_DBL(0.f)) && + (denominator_m > FL2FXCONST_DBL(0.f))) { + r_m = fDivNorm(numerator_m, denominator_m, &r_e); + r_e += numerator_e - denominator_e; + + /* r_4 = sqrt( sqrt( r ) ) */ + r4_m = sqrtFixp(r_m, r_e, &r4_e); + r4_m = sqrtFixp(r4_m, r4_e, &r4_e); + + r4_e -= G_SCALE_FACTOR; + + /* q = min(r4_m, max_gain_factor) */ + q = ((r4_e >= 0) && (r4_m >= (max_gain_factor >> r4_e))) + ? max_gain_factor + : scaleValue(r4_m, r4_e); + } else { + q = FL2FXCONST_DBL(0.f); + } + + G_m[0] = max_gain_factor - q; + G_m[1] = q; + + *G_e = G_SCALE_FACTOR; + } +} + +static void calculateDmxGains(const FIXP_DBL lin_Cld_m, const INT lin_Cld_e, + const FIXP_DBL lin_Cld2_m, const INT lin_Cld2_e, + const FIXP_DBL Icc_m, const INT Icc_e, + const FIXP_DBL G_m[2], const INT G_e, + FIXP_DBL H1_m[2], INT *pH1_e) { +#define H1_SCALE_FACTOR (2) + const FIXP_DBL max_gain_factor = + FL2FXCONST_DBL(2.f / (float)(1 << H1_SCALE_FACTOR)); + + FIXP_DBL nrgRight_m, nrgLeft_m, crossNrg_m, inv_weight_num_m, + inv_weight_denom_m, inverse_weight_m, inverse_weight_limited; + INT nrgRight_e, nrgLeft_e, crossNrg_e, inv_weight_num_e, inv_weight_denom_e, + inverse_weight_e; + + /* nrgRight = sqrt(1/(lin_Cld2 + 1) */ + nrgRight_m = fixpAdd(lin_Cld2_m, lin_Cld2_e, FL2FXCONST_DBL(1.f / 2.f), 1, + &nrgRight_e); + nrgRight_m = invSqrtNorm2(nrgRight_m, nrgRight_e, &nrgRight_e); + + /* nrgLeft = lin_Cld * nrgRight */ + nrgLeft_m = fMult(lin_Cld_m, nrgRight_m); + nrgLeft_e = lin_Cld_e + nrgRight_e; + + /* crossNrg = sqrt(nrgLeft*nrgRight) */ + crossNrg_m = sqrtFixp(fMult(nrgLeft_m, nrgRight_m), nrgLeft_e + nrgRight_e, + &crossNrg_e); + + /* inverse_weight = sqrt((nrgLeft + nrgRight) / ( (G[0]*G[0]*nrgLeft) + + * (G[1]*G[1]*nrgRight) + 2*G[0]*G[1]*Icc*crossNrg)) = sqrt(inv_weight_num / + * inv_weight_denom) + */ + inv_weight_num_m = + fixpAdd(nrgRight_m, nrgRight_e, nrgLeft_m, nrgLeft_e, &inv_weight_num_e); + + inv_weight_denom_m = + fixpAdd(fMult(fPow2(G_m[0]), nrgLeft_m), 2 * G_e + nrgLeft_e, + fMult(fPow2(G_m[1]), nrgRight_m), 2 * G_e + nrgRight_e, + &inv_weight_denom_e); + + inv_weight_denom_m = + fixpAdd(fMult(fMult(fMult(G_m[0], G_m[1]), crossNrg_m), Icc_m), + 1 + 2 * G_e + crossNrg_e + Icc_e, inv_weight_denom_m, + inv_weight_denom_e, &inv_weight_denom_e); + + if (inv_weight_denom_m > FL2FXCONST_DBL(0.f)) { + inverse_weight_m = + fDivNorm(inv_weight_num_m, inv_weight_denom_m, &inverse_weight_e); + inverse_weight_m = + sqrtFixp(inverse_weight_m, + inverse_weight_e + inv_weight_num_e - inv_weight_denom_e, + &inverse_weight_e); + inverse_weight_e -= H1_SCALE_FACTOR; + + /* inverse_weight_limited = min(max_gain_factor, inverse_weight) */ + inverse_weight_limited = + ((inverse_weight_e >= 0) && + (inverse_weight_m >= (max_gain_factor >> inverse_weight_e))) + ? max_gain_factor + : scaleValue(inverse_weight_m, inverse_weight_e); + } else { + inverse_weight_limited = max_gain_factor; + } + + H1_m[0] = fMult(G_m[0], inverse_weight_limited); + H1_m[1] = fMult(G_m[1], inverse_weight_limited); + + *pH1_e = G_e + H1_SCALE_FACTOR; +} + +FDK_SACENC_ERROR fdk_sacenc_close_enhancedTimeDomainDmx( + HANDLE_ENHANCED_TIME_DOMAIN_DMX *phEnhancedTimeDmx) { + FDK_SACENC_ERROR error = SACENC_OK; + + if (phEnhancedTimeDmx == NULL) { + error = SACENC_INVALID_HANDLE; + } else { + if (*phEnhancedTimeDmx != NULL) { + if ((*phEnhancedTimeDmx)->sinusWindow_m != NULL) { + FDK_FREE_MEMORY_1D((*phEnhancedTimeDmx)->sinusWindow_m); + } + FDK_FREE_MEMORY_1D(*phEnhancedTimeDmx); + } + } + return error; +} -- cgit v1.2.3