diff options
Diffstat (limited to 'libSBRenc/src/env_est.cpp')
-rw-r--r-- | libSBRenc/src/env_est.cpp | 1991 |
1 files changed, 973 insertions, 1018 deletions
diff --git a/libSBRenc/src/env_est.cpp b/libSBRenc/src/env_est.cpp index 4fcda51..0eb8425 100644 --- a/libSBRenc/src/env_est.cpp +++ b/libSBRenc/src/env_est.cpp @@ -1,74 +1,85 @@ - -/* ----------------------------------------------------------------------------------------------------------- +/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android -© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. 2. COPYRIGHT LICENSE -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." 3. NO PATENT LICENSE -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION @@ -79,7 +90,15 @@ Am Wolfsmantel 33 www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ +----------------------------------------------------------------------------- */ + +/**************************** SBR encoder library ****************************** + + Author(s): + + Description: + +*******************************************************************************/ #include "env_est.h" #include "tran_det.h" @@ -89,20 +108,18 @@ amm-info@iis.fraunhofer.de #include "fram_gen.h" #include "bit_sbr.h" #include "cmondata.h" -#include "sbr_ram.h" - +#include "sbrenc_ram.h" #include "genericStds.h" #define QUANT_ERROR_THRES 200 #define Y_NRG_SCALE 5 /* noCols = 32 -> shift(5) */ +#define MAX_NRG_SLOTS_LD 16 - -static const UCHAR panTable[2][10] = { { 0, 2, 4, 6, 8,12,16,20,24}, - { 0, 2, 4, 8,12, 0, 0, 0, 0 } }; +static const UCHAR panTable[2][10] = {{0, 2, 4, 6, 8, 12, 16, 20, 24}, + {0, 2, 4, 8, 12, 0, 0, 0, 0}}; static const UCHAR maxIndex[2] = {9, 5}; - /****************************************************************************** Functionname: FDKsbrEnc_GetTonality ******************************************************************************/ @@ -124,64 +141,64 @@ static const UCHAR maxIndex[2] = {9, 5}; scaled by 2^(RELAXATION_SHIFT+2)*RELAXATION_FRACT ****************************************************************************/ -static FIXP_DBL FDKsbrEnc_GetTonality( - const FIXP_DBL *const *quotaMatrix, - const INT noEstPerFrame, - const INT startIndex, - const FIXP_DBL *const *Energies, - const UCHAR startBand, - const INT stopBand, - const INT numberCols - ) -{ +static FIXP_DBL FDKsbrEnc_GetTonality(const FIXP_DBL *const *quotaMatrix, + const INT noEstPerFrame, + const INT startIndex, + const FIXP_DBL *const *Energies, + const UCHAR startBand, const INT stopBand, + const INT numberCols) { UCHAR b, e, k; - INT no_enMaxBand[SBR_MAX_ENERGY_VALUES] = { -1, -1, -1, -1, -1 }; - FIXP_DBL energyMax[SBR_MAX_ENERGY_VALUES] = { FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f) }; + INT no_enMaxBand[SBR_MAX_ENERGY_VALUES] = {-1, -1, -1, -1, -1}; + FIXP_DBL energyMax[SBR_MAX_ENERGY_VALUES] = { + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f)}; FIXP_DBL energyMaxMin = MAXVAL_DBL; /* min. energy in energyMax array */ - UCHAR posEnergyMaxMin = 0; /* min. energy in energyMax array position */ - FIXP_DBL tonalityBand[SBR_MAX_ENERGY_VALUES] = { FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f) }; + UCHAR posEnergyMaxMin = 0; /* min. energy in energyMax array position */ + FIXP_DBL tonalityBand[SBR_MAX_ENERGY_VALUES] = { + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f)}; FIXP_DBL globalTonality = FL2FXCONST_DBL(0.0f); - FIXP_DBL energyBand[QMF_CHANNELS]; - INT maxNEnergyValues; /* max. number of max. energy values */ + FIXP_DBL energyBand[64]; + INT maxNEnergyValues; /* max. number of max. energy values */ /*** Sum up energies for each band ***/ - FDK_ASSERT(numberCols==15||numberCols==16); + FDK_ASSERT(numberCols == 15 || numberCols == 16); /* numberCols is always 15 or 16 for ELD. In case of 16 bands, the energyBands are initialized with the [15]th column. The rest of the column energies are added in the next step. */ - if (numberCols==15) { - for (b=startBand; b<stopBand; b++) { - energyBand[b]=FL2FXCONST_DBL(0.0f); + if (numberCols == 15) { + for (b = startBand; b < stopBand; b++) { + energyBand[b] = FL2FXCONST_DBL(0.0f); } } else { - for (b=startBand; b<stopBand; b++) { - energyBand[b]=Energies[15][b]>>4; + for (b = startBand; b < stopBand; b++) { + energyBand[b] = Energies[15][b] >> 4; } } - for (k=0; k<15; k++) { - for (b=startBand; b<stopBand; b++) { - energyBand[b] += Energies[k][b]>>4; + for (k = 0; k < 15; k++) { + for (b = startBand; b < stopBand; b++) { + energyBand[b] += Energies[k][b] >> 4; } } /*** Determine 5 highest band-energies ***/ - maxNEnergyValues = fMin(SBR_MAX_ENERGY_VALUES, stopBand-startBand); + maxNEnergyValues = fMin(SBR_MAX_ENERGY_VALUES, stopBand - startBand); /* Get min. value in energyMax array */ energyMaxMin = energyMax[0] = energyBand[startBand]; no_enMaxBand[0] = startBand; posEnergyMaxMin = 0; - for (k=1; k<maxNEnergyValues; k++) { - energyMax[k] = energyBand[startBand+k]; - no_enMaxBand[k] = startBand+k; + for (k = 1; k < maxNEnergyValues; k++) { + energyMax[k] = energyBand[startBand + k]; + no_enMaxBand[k] = startBand + k; if (energyMaxMin > energyMax[k]) { energyMaxMin = energyMax[k]; posEnergyMaxMin = k; } } - for (b=startBand+maxNEnergyValues; b<stopBand; b++) { + for (b = startBand + maxNEnergyValues; b < stopBand; b++) { if (energyBand[b] > energyMaxMin) { energyMax[posEnergyMaxMin] = energyBand[b]; no_enMaxBand[posEnergyMaxMin] = b; @@ -189,7 +206,7 @@ static FIXP_DBL FDKsbrEnc_GetTonality( /* Again, get min. value in energyMax array */ energyMaxMin = energyMax[0]; posEnergyMaxMin = 0; - for (k=1; k<maxNEnergyValues; k++) { + for (k = 1; k < maxNEnergyValues; k++) { if (energyMaxMin > energyMax[k]) { energyMaxMin = energyMax[k]; posEnergyMaxMin = k; @@ -200,12 +217,13 @@ static FIXP_DBL FDKsbrEnc_GetTonality( /*** End determine 5 highest band-energies ***/ /* Get tonality values for 5 highest energies */ - for (e=0; e<maxNEnergyValues; e++) { - tonalityBand[e]=FL2FXCONST_DBL(0.0f); - for (k=0; k<noEstPerFrame; k++) { + for (e = 0; e < maxNEnergyValues; e++) { + tonalityBand[e] = FL2FXCONST_DBL(0.0f); + for (k = 0; k < noEstPerFrame; k++) { tonalityBand[e] += quotaMatrix[startIndex + k][no_enMaxBand[e]] >> 1; } - globalTonality += tonalityBand[e] >> 2; /* headroom of 2+1 (max. 5 additions) */ + globalTonality += + tonalityBand[e] >> 2; /* headroom of 2+1 (max. 5 additions) */ } return globalTonality; @@ -221,34 +239,36 @@ static FIXP_DBL FDKsbrEnc_GetTonality( ****************************************************************************/ LNK_SECTION_CODE_L1 -static void -FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the result of the operation */ - FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */ - FIXP_DBL **RESTRICT imagValues, /*!< the imaginary part of the QMF subsamples */ - INT numberBands, /*!< number of QMF bands */ - INT numberCols, /*!< number of QMF subsamples */ - INT *qmfScale, /*!< sclefactor of QMF subsamples */ - INT *energyScale) /*!< scalefactor of energies */ +static void FDKsbrEnc_getEnergyFromCplxQmfData( + FIXP_DBL **RESTRICT energyValues, /*!< the result of the operation */ + FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */ + FIXP_DBL **RESTRICT + imagValues, /*!< the imaginary part of the QMF subsamples */ + INT numberBands, /*!< number of QMF bands */ + INT numberCols, /*!< number of QMF subsamples */ + INT *qmfScale, /*!< sclefactor of QMF subsamples */ + INT *energyScale) /*!< scalefactor of energies */ { int j, k; int scale; FIXP_DBL max_val = FL2FXCONST_DBL(0.0f); /* Get Scratch buffer */ - C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, QMF_CHANNELS*QMF_MAX_TIME_SLOTS/2); + C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, 32 * 64 / 2) /* Get max possible scaling of QMF data */ scale = DFRACT_BITS; - for (k=0; k<numberCols; k++) { - scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), getScalefactor(imagValues[k], numberBands))); + for (k = 0; k < numberCols; k++) { + scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), + getScalefactor(imagValues[k], numberBands))); } /* Tweak scaling stability for zero signal to non-zero signal transitions */ - if (scale >= DFRACT_BITS-1) { - scale = (FRACT_BITS-1-*qmfScale); + if (scale >= DFRACT_BITS - 1) { + scale = (FRACT_BITS - 1 - *qmfScale); } - /* prevent scaling of QFM values to -1.f */ - scale = fixMax(0,scale-1); + /* prevent scaling of QMF values to -1.f */ + scale = fixMax(0, scale - 1); /* Update QMF scale */ *qmfScale += scale; @@ -259,22 +279,23 @@ FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the res */ { FIXP_DBL *nrgValues = tmpNrg; - for (k=0; k<numberCols; k+=2) - { + for (k = 0; k < numberCols; k += 2) { /* Load band vector addresses of 2 consecutive timeslots */ FIXP_DBL *RESTRICT r0 = realValues[k]; FIXP_DBL *RESTRICT i0 = imagValues[k]; - FIXP_DBL *RESTRICT r1 = realValues[k+1]; - FIXP_DBL *RESTRICT i1 = imagValues[k+1]; - for (j=0; j<numberBands; j++) - { - FIXP_DBL energy; - FIXP_DBL tr0,tr1,ti0,ti1; + FIXP_DBL *RESTRICT r1 = realValues[k + 1]; + FIXP_DBL *RESTRICT i1 = imagValues[k + 1]; + for (j = 0; j < numberBands; j++) { + FIXP_DBL energy; + FIXP_DBL tr0, tr1, ti0, ti1; /* Read QMF values of 2 timeslots */ - tr0 = r0[j]; tr1 = r1[j]; ti0 = i0[j]; ti1 = i1[j]; + tr0 = r0[j]; + tr1 = r1[j]; + ti0 = i0[j]; + ti1 = i1[j]; - /* Scale QMF Values and Calc Energy of both timeslots */ + /* Scale QMF Values and Calc Energy average of both timeslots */ tr0 <<= scale; ti0 <<= scale; energy = fPow2AddDiv2(fPow2Div2(tr0), ti0) >> 1; @@ -288,18 +309,23 @@ FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the res max_val = fixMax(max_val, energy); /* Write back scaled QMF values */ - r0[j] = tr0; r1[j] = tr1; i0[j] = ti0; i1[j] = ti1; + r0[j] = tr0; + r1[j] = tr1; + i0[j] = ti0; + i1[j] = ti1; } } } /* energyScale: scalefactor energies of current frame */ - *energyScale = 2*(*qmfScale)-1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */ + *energyScale = + 2 * (*qmfScale) - + 1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */ /* Scale timeslot pair energies and write to output buffer */ scale = CountLeadingBits(max_val); { - FIXP_DBL *nrgValues = tmpNrg; - for (k=0; k<numberCols>>1; k++) { + FIXP_DBL *nrgValues = tmpNrg; + for (k = 0; k<numberCols>> 1; k++) { scaleValues(energyValues[k], nrgValues, numberBands, scale); nrgValues += numberBands; } @@ -307,41 +333,43 @@ FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the res } /* Free Scratch buffer */ - C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, QMF_CHANNELS*QMF_MAX_TIME_SLOTS/2); + C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, 32 * 64 / 2) } LNK_SECTION_CODE_L1 -static void -FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the result of the operation */ - FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */ - FIXP_DBL **RESTRICT imagValues, /*!< the imaginary part of the QMF subsamples */ - int numberBands, /*!< number of QMF bands */ - int numberCols, /*!< number of QMF subsamples */ - int *qmfScale, /*!< sclefactor of QMF subsamples */ - int *energyScale) /*!< scalefactor of energies */ +static void FDKsbrEnc_getEnergyFromCplxQmfDataFull( + FIXP_DBL **RESTRICT energyValues, /*!< the result of the operation */ + FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */ + FIXP_DBL **RESTRICT + imagValues, /*!< the imaginary part of the QMF subsamples */ + int numberBands, /*!< number of QMF bands */ + int numberCols, /*!< number of QMF subsamples */ + int *qmfScale, /*!< scalefactor of QMF subsamples */ + int *energyScale) /*!< scalefactor of energies */ { int j, k; int scale; FIXP_DBL max_val = FL2FXCONST_DBL(0.0f); /* Get Scratch buffer */ - C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, QMF_MAX_TIME_SLOTS*QMF_CHANNELS/2); + C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, MAX_NRG_SLOTS_LD * 64) - FDK_ASSERT(numberBands <= QMF_CHANNELS); - FDK_ASSERT(numberCols <= QMF_MAX_TIME_SLOTS/2); + FDK_ASSERT(numberCols <= MAX_NRG_SLOTS_LD); + FDK_ASSERT(numberBands <= 64); /* Get max possible scaling of QMF data */ scale = DFRACT_BITS; - for (k=0; k<numberCols; k++) { - scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), getScalefactor(imagValues[k], numberBands))); + for (k = 0; k < numberCols; k++) { + scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), + getScalefactor(imagValues[k], numberBands))); } /* Tweak scaling stability for zero signal to non-zero signal transitions */ - if (scale >= DFRACT_BITS-1) { - scale = (FRACT_BITS-1-*qmfScale); + if (scale >= DFRACT_BITS - 1) { + scale = (FRACT_BITS - 1 - *qmfScale); } /* prevent scaling of QFM values to -1.f */ - scale = fixMax(0,scale-1); + scale = fixMax(0, scale - 1); /* Update QMF scale */ *qmfScale += scale; @@ -352,20 +380,19 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the */ { FIXP_DBL *nrgValues = tmpNrg; - for (k=0; k<numberCols; k++) - { - /* Load band vector addresses of 2 consecutive timeslots */ + for (k = 0; k < numberCols; k++) { + /* Load band vector addresses of 1 timeslot */ FIXP_DBL *RESTRICT r0 = realValues[k]; FIXP_DBL *RESTRICT i0 = imagValues[k]; - for (j=0; j<numberBands; j++) - { - FIXP_DBL energy; - FIXP_DBL tr0,ti0; + for (j = 0; j < numberBands; j++) { + FIXP_DBL energy; + FIXP_DBL tr0, ti0; - /* Read QMF values of 2 timeslots */ - tr0 = r0[j]; ti0 = i0[j]; + /* Read QMF values of 1 timeslot */ + tr0 = r0[j]; + ti0 = i0[j]; - /* Scale QMF Values and Calc Energy of both timeslots */ + /* Scale QMF Values and Calc Energy */ tr0 <<= scale; ti0 <<= scale; energy = fPow2AddDiv2(fPow2Div2(tr0), ti0); @@ -374,18 +401,21 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the max_val = fixMax(max_val, energy); /* Write back scaled QMF values */ - r0[j] = tr0; i0[j] = ti0; + r0[j] = tr0; + i0[j] = ti0; } } } /* energyScale: scalefactor energies of current frame */ - *energyScale = 2*(*qmfScale)-1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */ + *energyScale = + 2 * (*qmfScale) - + 1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */ /* Scale timeslot pair energies and write to output buffer */ scale = CountLeadingBits(max_val); { - FIXP_DBL *nrgValues = tmpNrg; - for (k=0; k<numberCols; k++) { + FIXP_DBL *nrgValues = tmpNrg; + for (k = 0; k < numberCols; k++) { scaleValues(energyValues[k], nrgValues, numberBands, scale); nrgValues += numberBands; } @@ -393,7 +423,7 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the } /* Free Scratch buffer */ - C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, QMF_MAX_TIME_SLOTS*QMF_CHANNELS/2); + C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, MAX_NRG_SLOTS_LD * 64) } /***************************************************************************/ @@ -404,12 +434,10 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the \return the quantized pan value ****************************************************************************/ -static INT -mapPanorama(INT nrgVal, /*! integer value of the energy */ - INT ampRes, /*! amplitude resolution [1.5/3dB] */ - INT *quantError /*! quantization error of energy val*/ - ) -{ +static INT mapPanorama(INT nrgVal, /*! integer value of the energy */ + INT ampRes, /*! amplitude resolution [1.5/3dB] */ + INT *quantError /*! quantization error of energy val*/ +) { int i; INT min_val, val; UCHAR panIndex; @@ -422,7 +450,7 @@ mapPanorama(INT nrgVal, /*! integer value of the energy */ min_val = FDK_INT_MAX; panIndex = 0; for (i = 0; i < maxIndex[ampRes]; i++) { - val = fixp_abs ((nrgVal - (INT)panTable[ampRes][i])); + val = fixp_abs((nrgVal - (INT)panTable[ampRes][i])); if (val < min_val) { min_val = val; @@ -430,12 +458,12 @@ mapPanorama(INT nrgVal, /*! integer value of the energy */ } } - *quantError=min_val; + *quantError = min_val; - return panTable[ampRes][maxIndex[ampRes]-1] + sign * panTable[ampRes][panIndex]; + return panTable[ampRes][maxIndex[ampRes] - 1] + + sign * panTable[ampRes][panIndex]; } - /***************************************************************************/ /*! @@ -444,34 +472,37 @@ mapPanorama(INT nrgVal, /*! integer value of the energy */ \return void ****************************************************************************/ -static void -sbrNoiseFloorLevelsQuantisation(SCHAR *RESTRICT iNoiseLevels, /*! quantized noise levels */ - FIXP_DBL *RESTRICT NoiseLevels, /*! the noise levels */ - INT coupling /*! the coupling flag */ - ) -{ +static void sbrNoiseFloorLevelsQuantisation( + SCHAR *RESTRICT iNoiseLevels, /*! quantized noise levels */ + FIXP_DBL *RESTRICT + NoiseLevels, /*! the noise levels. Exponent = LD_DATA_SHIFT */ + INT coupling /*! the coupling flag */ +) { INT i; INT tmp, dummy; /* Quantisation, similar to sfb quant... */ for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) { - /* tmp = NoiseLevels[i] > (PFLOAT)30.0f ? 30: (INT) (NoiseLevels[i] + (PFLOAT)0.5); */ - /* 30>>6 = 0.46875 */ + /* tmp = NoiseLevels[i] > (PFLOAT)30.0f ? 30: (INT) (NoiseLevels[i] + + * (PFLOAT)0.5); */ + /* 30>>LD_DATA_SHIFT = 0.46875 */ if ((FIXP_DBL)NoiseLevels[i] > FL2FXCONST_DBL(0.46875f)) { tmp = 30; - } - else { - /* tmp = (INT)((FIXP_DBL)NoiseLevels[i] + (FL2FXCONST_DBL(0.5f)>>(*/ /* FRACT_BITS+ */ /* 6-1)));*/ - /* tmp = tmp >> (DFRACT_BITS-1-6); */ /* conversion to integer happens here */ - /* rounding is done by shifting one bit less than necessary to the right, adding '1' and then shifting the final bit */ - tmp = ((((INT)NoiseLevels[i])>>(DFRACT_BITS-1-LD_DATA_SHIFT)) ); /* conversion to integer */ - if (tmp != 0) - tmp += 1; + } else { + /* tmp = (INT)((FIXP_DBL)NoiseLevels[i] + (FL2FXCONST_DBL(0.5f)>>(*/ + /* FRACT_BITS+ */ /* 6-1)));*/ + /* tmp = tmp >> (DFRACT_BITS-1-LD_DATA_SHIFT); */ /* conversion to integer + happens here */ + /* rounding is done by shifting one bit less than necessary to the right, + * adding '1' and then shifting the final bit */ + tmp = ((((INT)NoiseLevels[i]) >> + (DFRACT_BITS - 1 - LD_DATA_SHIFT))); /* conversion to integer */ + if (tmp != 0) tmp += 1; } if (coupling) { tmp = tmp < -30 ? -30 : tmp; - tmp = mapPanorama (tmp,1,&dummy); + tmp = mapPanorama(tmp, 1, &dummy); } iNoiseLevels[i] = tmp; } @@ -485,60 +516,76 @@ sbrNoiseFloorLevelsQuantisation(SCHAR *RESTRICT iNoiseLevels, /*! quantized n \return void ****************************************************************************/ -static void -coupleNoiseFloor(FIXP_DBL *RESTRICT noise_level_left, /*! noise level left (modified)*/ - FIXP_DBL *RESTRICT noise_level_right /*! noise level right (modified)*/ - ) -{ - FIXP_DBL cmpValLeft,cmpValRight; +static void coupleNoiseFloor( + FIXP_DBL *RESTRICT noise_level_left, /*! noise level left (modified)*/ + FIXP_DBL *RESTRICT noise_level_right /*! noise level right (modified)*/ +) { + FIXP_DBL cmpValLeft, cmpValRight; INT i; - FIXP_DBL temp1,temp2; + FIXP_DBL temp1, temp2; for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) { - /* Calculation of the power function using ld64: z = x^y; z' = CalcLd64(z) = y*CalcLd64(x)/64; z = CalcInvLd64(z'); */ - cmpValLeft = NOISE_FLOOR_OFFSET_64 - noise_level_left[i]; + cmpValLeft = NOISE_FLOOR_OFFSET_64 - noise_level_left[i]; cmpValRight = NOISE_FLOOR_OFFSET_64 - noise_level_right[i]; if (cmpValRight < FL2FXCONST_DBL(0.0f)) { temp1 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_right[i]); - } - else { + } else { temp1 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_right[i]); - temp1 = temp1 << (DFRACT_BITS-1-LD_DATA_SHIFT-1); /* INT to fract conversion of result, if input of CalcInvLdData is positiv */ + temp1 = temp1 << (DFRACT_BITS - 1 - LD_DATA_SHIFT - + 1); /* INT to fract conversion of result, if input of + CalcInvLdData is positiv */ } if (cmpValLeft < FL2FXCONST_DBL(0.0f)) { temp2 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_left[i]); - } - else { + } else { temp2 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_left[i]); - temp2 = temp2 << (DFRACT_BITS-1-LD_DATA_SHIFT-1); /* INT to fract conversion of result, if input of CalcInvLdData is positiv */ + temp2 = temp2 << (DFRACT_BITS - 1 - LD_DATA_SHIFT - + 1); /* INT to fract conversion of result, if input of + CalcInvLdData is positiv */ } - - if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && (cmpValRight < FL2FXCONST_DBL(0.0f))) { - noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>1)))); /* no scaling needed! both values are dfract */ + if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && + (cmpValRight < FL2FXCONST_DBL(0.0f))) { + noise_level_left[i] = + NOISE_FLOOR_OFFSET_64 - + (CalcLdData( + ((temp1 >> 1) + + (temp2 >> 1)))); /* no scaling needed! both values are dfract */ noise_level_right[i] = CalcLdData(temp2) - CalcLdData(temp1); } - if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && (cmpValRight >= FL2FXCONST_DBL(0.0f))) { - noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>1))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ + if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && + (cmpValRight >= FL2FXCONST_DBL(0.0f))) { + noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - + (CalcLdData(((temp1 >> 1) + (temp2 >> 1))) + + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ noise_level_right[i] = CalcLdData(temp2) - CalcLdData(temp1); } - if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && (cmpValRight < FL2FXCONST_DBL(0.0f))) { - noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>(7+1)) + (temp2>>1))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ - noise_level_right[i] = (CalcLdData(temp2) + FL2FXCONST_DBL(0.109375f)) - CalcLdData(temp1); + if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && + (cmpValRight < FL2FXCONST_DBL(0.0f))) { + noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - + (CalcLdData(((temp1 >> (7 + 1)) + (temp2 >> 1))) + + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ + noise_level_right[i] = + (CalcLdData(temp2) + FL2FXCONST_DBL(0.109375f)) - CalcLdData(temp1); } - if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && (cmpValRight >= FL2FXCONST_DBL(0.0f))) { - noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>(7+1)))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ - noise_level_right[i] = CalcLdData(temp2) - (CalcLdData(temp1) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ + if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && + (cmpValRight >= FL2FXCONST_DBL(0.0f))) { + noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - + (CalcLdData(((temp1 >> 1) + (temp2 >> (7 + 1)))) + + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ + noise_level_right[i] = CalcLdData(temp2) - + (CalcLdData(temp1) + + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */ } } } @@ -546,22 +593,23 @@ coupleNoiseFloor(FIXP_DBL *RESTRICT noise_level_left, /*! noise level left (mod /***************************************************************************/ /*! - \brief Calculation of energy starting in lower band (li) up to upper band (ui) - over slots (start_pos) to (stop_pos) + \brief Calculation of energy starting in lower band (li) up to upper band +(ui) over slots (start_pos) to (stop_pos) \return void ****************************************************************************/ -static FIXP_DBL -getEnvSfbEnergy(INT li, /*! lower band */ - INT ui, /*! upper band */ - INT start_pos, /*! start slot */ - INT stop_pos, /*! stop slot */ - INT border_pos, /*! slots scaling border */ - FIXP_DBL **YBuffer, /*! sfb energy buffer */ - INT YBufferSzShift, /*! Energy buffer index scale */ - INT scaleNrg0, /*! scaling of lower slots */ - INT scaleNrg1) /*! scaling of upper slots */ + +static FIXP_DBL getEnvSfbEnergy( + INT li, /*! lower band */ + INT ui, /*! upper band */ + INT start_pos, /*! start slot */ + INT stop_pos, /*! stop slot */ + INT border_pos, /*! slots scaling border */ + FIXP_DBL **YBuffer, /*! sfb energy buffer */ + INT YBufferSzShift, /*! Energy buffer index scale */ + INT scaleNrg0, /*! scaling of lower slots */ + INT scaleNrg1) /*! scaling of upper slots */ { /* use dynamic scaling for outer energy loop; energies are critical and every bit is important */ @@ -569,30 +617,33 @@ getEnvSfbEnergy(INT li, /*! lower band */ FIXP_DBL nrgSum, nrg1, nrg2, accu1, accu2; INT dynScale, dynScale1, dynScale2; - if(ui-li==0) dynScale = DFRACT_BITS-1; + if (ui - li == 0) + dynScale = DFRACT_BITS - 1; else - dynScale = CalcLdInt(ui-li)>>(DFRACT_BITS-1-LD_DATA_SHIFT); + dynScale = CalcLdInt(ui - li) >> (DFRACT_BITS - 1 - LD_DATA_SHIFT); - sc0 = fixMin(scaleNrg0,Y_NRG_SCALE); sc1 = fixMin(scaleNrg1,Y_NRG_SCALE); + sc0 = fixMin(scaleNrg0, Y_NRG_SCALE); + sc1 = fixMin(scaleNrg1, Y_NRG_SCALE); /* dynScale{1,2} is set such that the right shift below is positive */ - dynScale1 = fixMin((scaleNrg0-sc0),dynScale); - dynScale2 = fixMin((scaleNrg1-sc1),dynScale); + dynScale1 = fixMin((scaleNrg0 - sc0), dynScale); + dynScale2 = fixMin((scaleNrg1 - sc1), dynScale); nrgSum = accu1 = accu2 = (FIXP_DBL)0; for (k = li; k < ui; k++) { nrg1 = nrg2 = (FIXP_DBL)0; for (l = start_pos; l < border_pos; l++) { - nrg1 += YBuffer[l>>YBufferSzShift][k] >> sc0; + nrg1 += YBuffer[l >> YBufferSzShift][k] >> sc0; } for (; l < stop_pos; l++) { - nrg2 += YBuffer[l>>YBufferSzShift][k] >> sc1; + nrg2 += YBuffer[l >> YBufferSzShift][k] >> sc1; } - accu1 += (nrg1>>dynScale1); - accu2 += (nrg2>>dynScale2); + accu1 += (nrg1 >> dynScale1); + accu2 += (nrg2 >> dynScale2); } /* This shift factor is always positive. See comment above. */ - nrgSum += ( accu1 >> fixMin((scaleNrg0-sc0-dynScale1),(DFRACT_BITS-1)) ) - + ( accu2 >> fixMin((scaleNrg1-sc1-dynScale2),(DFRACT_BITS-1)) ); + nrgSum += + (accu1 >> fixMin((scaleNrg0 - sc0 - dynScale1), (DFRACT_BITS - 1))) + + (accu2 >> fixMin((scaleNrg1 - sc1 - dynScale2), (DFRACT_BITS - 1))); return nrgSum; } @@ -605,27 +656,30 @@ getEnvSfbEnergy(INT li, /*! lower band */ \return void ****************************************************************************/ -static FIXP_DBL -mhLoweringEnergy(FIXP_DBL nrg, INT M) -{ +static FIXP_DBL mhLoweringEnergy(FIXP_DBL nrg, INT M) { /* - Compensating for the fact that we in the decoder map the "average energy to every QMF - band, and use this when we calculate the boost-factor. Since the mapped energy isn't - the average energy but the maximum energy in case of missing harmonic creation, we will - in the boost function calculate that too much limiting has been applied and hence we will - boost the signal although it isn't called for. Hence we need to compensate for this by - lowering the transmitted energy values for the sines so they will get the correct level + Compensating for the fact that we in the decoder map the "average energy to + every QMF band, and use this when we calculate the boost-factor. Since the + mapped energy isn't the average energy but the maximum energy in case of + missing harmonic creation, we will in the boost function calculate that too + much limiting has been applied and hence we will boost the signal although + it isn't called for. Hence we need to compensate for this by lowering the + transmitted energy values for the sines so they will get the correct level after the boost is applied. */ - if(M > 2){ + if (M > 2) { INT tmpScale; tmpScale = CountLeadingBits(nrg); nrg <<= tmpScale; - nrg = fMult(nrg, FL2FXCONST_DBL(0.398107267f)); /* The maximum boost is 1.584893, so the maximum attenuation should be square(1/1.584893) = 0.398107267 */ + nrg = fMult(nrg, FL2FXCONST_DBL(0.398107267f)); /* The maximum boost + is 1.584893, so the + maximum attenuation + should be + square(1/1.584893) = + 0.398107267 */ nrg >>= tmpScale; - } - else{ - if(M > 1){ + } else { + if (M > 1) { nrg >>= 1; } } @@ -641,22 +695,17 @@ mhLoweringEnergy(FIXP_DBL nrg, INT M) \return void ****************************************************************************/ -static FIXP_DBL nmhLoweringEnergy( - FIXP_DBL nrg, - const FIXP_DBL nrgSum, - const INT nrgSum_scale, - const INT M - ) -{ - if (nrg>FL2FXCONST_DBL(0)) { - int sc=0; +static FIXP_DBL nmhLoweringEnergy(FIXP_DBL nrg, const FIXP_DBL nrgSum, + const INT nrgSum_scale, const INT M) { + if (nrg > FL2FXCONST_DBL(0)) { + int sc = 0; /* gain = nrgSum / (nrg*(M+1)) */ - FIXP_DBL gain = fMult(fDivNorm(nrgSum, nrg, &sc), GetInvInt(M+1)); + FIXP_DBL gain = fMult(fDivNorm(nrgSum, nrg, &sc), GetInvInt(M + 1)); sc += nrgSum_scale; /* reduce nrg if gain smaller 1.f */ - if ( !((sc>=0) && ( gain > ((FIXP_DBL)MAXVAL_DBL>>sc) )) ) { - nrg = fMult(scaleValue(gain,sc), nrg); + if (!((sc >= 0) && (gain > ((FIXP_DBL)MAXVAL_DBL >> sc)))) { + nrg = fMult(scaleValue(gain, sc), nrg); } } return nrg; @@ -671,91 +720,92 @@ static FIXP_DBL nmhLoweringEnergy( \return void ****************************************************************************/ -static void -calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left */ - FIXP_DBL **RESTRICT YBufferRight, /*! energy buffer right */ - int *RESTRICT YBufferScaleLeft, /*! scale energy buffer left */ - int *RESTRICT YBufferScaleRight, /*! scale energy buffer right */ - const SBR_FRAME_INFO *frame_info, /*! frame info vector */ - SCHAR *RESTRICT sfb_nrgLeft, /*! sfb energy buffer left */ - SCHAR *RESTRICT sfb_nrgRight, /*! sfb energy buffer right */ - HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */ - HANDLE_ENV_CHANNEL h_sbr, /*! envelope channel handle */ - SBR_STEREO_MODE stereoMode, /*! stereo coding mode */ - INT* maxQuantError, /*! maximum quantization error, for panorama. */ - int YBufferSzShift) /*! Energy buffer index scale */ +static void calculateSbrEnvelope( + FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left */ + FIXP_DBL **RESTRICT YBufferRight, /*! energy buffer right */ + int *RESTRICT YBufferScaleLeft, /*! scale energy buffer left */ + int *RESTRICT YBufferScaleRight, /*! scale energy buffer right */ + const SBR_FRAME_INFO *frame_info, /*! frame info vector */ + SCHAR *RESTRICT sfb_nrgLeft, /*! sfb energy buffer left */ + SCHAR *RESTRICT sfb_nrgRight, /*! sfb energy buffer right */ + HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */ + HANDLE_ENV_CHANNEL h_sbr, /*! envelope channel handle */ + SBR_STEREO_MODE stereoMode, /*! stereo coding mode */ + INT *maxQuantError, /*! maximum quantization error, for panorama. */ + int YBufferSzShift) /*! Energy buffer index scale */ { - int i, j, m = 0; + int env, j, m = 0; INT no_of_bands, start_pos, stop_pos, li, ui; FREQ_RES freq_res; INT ca = 2 - h_sbr->encEnvData.init_sbr_amp_res; INT oneBitLess = 0; if (ca == 2) - oneBitLess = 1; /* LD_DATA_SHIFT => ld64 scaling; one bit less for rounding */ + oneBitLess = + 1; /* LD_DATA_SHIFT => ld64 scaling; one bit less for rounding */ INT quantError; INT nEnvelopes = frame_info->nEnvelopes; INT short_env = frame_info->shortEnv - 1; INT timeStep = h_sbr->sbrExtractEnvelope.time_step; - INT commonScale,scaleLeft0,scaleLeft1; - INT scaleRight0=0,scaleRight1=0; + INT commonScale, scaleLeft0, scaleLeft1; + INT scaleRight0 = 0, scaleRight1 = 0; - commonScale = fixMin(YBufferScaleLeft[0],YBufferScaleLeft[1]); + commonScale = fixMin(YBufferScaleLeft[0], YBufferScaleLeft[1]); if (stereoMode == SBR_COUPLING) { - commonScale = fixMin(commonScale,YBufferScaleRight[0]); - commonScale = fixMin(commonScale,YBufferScaleRight[1]); + commonScale = fixMin(commonScale, YBufferScaleRight[0]); + commonScale = fixMin(commonScale, YBufferScaleRight[1]); } commonScale = commonScale - 7; scaleLeft0 = YBufferScaleLeft[0] - commonScale; - scaleLeft1 = YBufferScaleLeft[1] - commonScale ; - FDK_ASSERT ((scaleLeft0 >= 0) && (scaleLeft1 >= 0)); + scaleLeft1 = YBufferScaleLeft[1] - commonScale; + FDK_ASSERT((scaleLeft0 >= 0) && (scaleLeft1 >= 0)); if (stereoMode == SBR_COUPLING) { scaleRight0 = YBufferScaleRight[0] - commonScale; scaleRight1 = YBufferScaleRight[1] - commonScale; - FDK_ASSERT ((scaleRight0 >= 0) && (scaleRight1 >= 0)); + FDK_ASSERT((scaleRight0 >= 0) && (scaleRight1 >= 0)); *maxQuantError = 0; } - for (i = 0; i < nEnvelopes; i++) { - - FIXP_DBL pNrgLeft[QMF_MAX_TIME_SLOTS]; - FIXP_DBL pNrgRight[QMF_MAX_TIME_SLOTS]; + for (env = 0; env < nEnvelopes; env++) { + FIXP_DBL pNrgLeft[32]; + FIXP_DBL pNrgRight[32]; int envNrg_scale; - FIXP_DBL envNrgLeft = FL2FXCONST_DBL(0.0f); + FIXP_DBL envNrgLeft = FL2FXCONST_DBL(0.0f); FIXP_DBL envNrgRight = FL2FXCONST_DBL(0.0f); - int missingHarmonic[QMF_MAX_TIME_SLOTS]; - int count[QMF_MAX_TIME_SLOTS]; + int missingHarmonic[32]; + int count[32]; - start_pos = timeStep * frame_info->borders[i]; - stop_pos = timeStep * frame_info->borders[i + 1]; - freq_res = frame_info->freqRes[i]; + start_pos = timeStep * frame_info->borders[env]; + stop_pos = timeStep * frame_info->borders[env + 1]; + freq_res = frame_info->freqRes[env]; no_of_bands = h_con->nSfb[freq_res]; - envNrg_scale = DFRACT_BITS-fNormz((FIXP_DBL)no_of_bands); - - if (i == short_env) { - stop_pos -= fixMax(2, timeStep); /* consider at least 2 QMF slots less for short envelopes (envelopes just before transients) */ + envNrg_scale = DFRACT_BITS - fNormz((FIXP_DBL)no_of_bands); + if (env == short_env) { + j = fMax(2, timeStep); /* consider at least 2 QMF slots less for short + envelopes (envelopes just before transients) */ + if ((stop_pos - start_pos - j) > 0) { + stop_pos = stop_pos - j; + } } - for (j = 0; j < no_of_bands; j++) { - FIXP_DBL nrgLeft = FL2FXCONST_DBL(0.0f); + FIXP_DBL nrgLeft = FL2FXCONST_DBL(0.0f); FIXP_DBL nrgRight = FL2FXCONST_DBL(0.0f); li = h_con->freqBandTable[freq_res][j]; ui = h_con->freqBandTable[freq_res][j + 1]; - if(freq_res == FREQ_RES_HIGH){ - if(j == 0 && ui-li > 1){ + if (freq_res == FREQ_RES_HIGH) { + if (j == 0 && ui - li > 1) { li++; } - } - else{ - if(j == 0 && ui-li > 2){ + } else { + if (j == 0 && ui - li > 2) { li++; } } @@ -766,25 +816,26 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left * */ missingHarmonic[j] = 0; - if(h_sbr->encEnvData.addHarmonicFlag){ - - if(freq_res == FREQ_RES_HIGH){ - if(h_sbr->encEnvData.addHarmonic[j]){ /*A missing sine in the current band*/ + if (h_sbr->encEnvData.addHarmonicFlag) { + if (freq_res == FREQ_RES_HIGH) { + if (h_sbr->encEnvData + .addHarmonic[j]) { /*A missing sine in the current band*/ missingHarmonic[j] = 1; } - } - else{ + } else { INT i; INT startBandHigh = 0; INT stopBandHigh = 0; - while(h_con->freqBandTable[FREQ_RES_HIGH][startBandHigh] < h_con->freqBandTable[FREQ_RES_LOW][j]) + while (h_con->freqBandTable[FREQ_RES_HIGH][startBandHigh] < + h_con->freqBandTable[FREQ_RES_LOW][j]) startBandHigh++; - while(h_con->freqBandTable[FREQ_RES_HIGH][stopBandHigh] < h_con->freqBandTable[FREQ_RES_LOW][j + 1]) + while (h_con->freqBandTable[FREQ_RES_HIGH][stopBandHigh] < + h_con->freqBandTable[FREQ_RES_LOW][j + 1]) stopBandHigh++; - for(i = startBandHigh; i<stopBandHigh; i++){ - if(h_sbr->encEnvData.addHarmonic[i]){ + for (i = startBandHigh; i < stopBandHigh; i++) { + if (h_sbr->encEnvData.addHarmonic[i]) { missingHarmonic[j] = 1; } } @@ -792,105 +843,82 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left * } /* - If a sine is missing in a scalefactorband, with more than one qmf channel - use the nrg from the channel with the largest nrg rather than the mean. - Compensate for the boost calculation in the decdoder. + If a sine is missing in a scalefactorband, with more than one qmf + channel use the nrg from the channel with the largest nrg rather than + the mean. Compensate for the boost calculation in the decdoder. */ - int border_pos = fixMin(stop_pos, h_sbr->sbrExtractEnvelope.YBufferWriteOffset<<YBufferSzShift); - - if(missingHarmonic[j]){ + int border_pos = + fixMin(stop_pos, h_sbr->sbrExtractEnvelope.YBufferWriteOffset + << YBufferSzShift); + if (missingHarmonic[j]) { int k; count[j] = stop_pos - start_pos; nrgLeft = FL2FXCONST_DBL(0.0f); for (k = li; k < ui; k++) { FIXP_DBL tmpNrg; - tmpNrg = getEnvSfbEnergy(k, - k+1, - start_pos, - stop_pos, - border_pos, - YBufferLeft, - YBufferSzShift, - scaleLeft0, + tmpNrg = getEnvSfbEnergy(k, k + 1, start_pos, stop_pos, border_pos, + YBufferLeft, YBufferSzShift, scaleLeft0, scaleLeft1); nrgLeft = fixMax(nrgLeft, tmpNrg); } /* Energy lowering compensation */ - nrgLeft = mhLoweringEnergy(nrgLeft, ui-li); + nrgLeft = mhLoweringEnergy(nrgLeft, ui - li); if (stereoMode == SBR_COUPLING) { - nrgRight = FL2FXCONST_DBL(0.0f); for (k = li; k < ui; k++) { FIXP_DBL tmpNrg; - tmpNrg = getEnvSfbEnergy(k, - k+1, - start_pos, - stop_pos, - border_pos, - YBufferRight, - YBufferSzShift, - scaleRight0, + tmpNrg = getEnvSfbEnergy(k, k + 1, start_pos, stop_pos, border_pos, + YBufferRight, YBufferSzShift, scaleRight0, scaleRight1); nrgRight = fixMax(nrgRight, tmpNrg); } /* Energy lowering compensation */ - nrgRight = mhLoweringEnergy(nrgRight, ui-li); + nrgRight = mhLoweringEnergy(nrgRight, ui - li); } } /* end missingHarmonic */ - else{ + else { count[j] = (stop_pos - start_pos) * (ui - li); - nrgLeft = getEnvSfbEnergy(li, - ui, - start_pos, - stop_pos, - border_pos, - YBufferLeft, - YBufferSzShift, - scaleLeft0, + nrgLeft = getEnvSfbEnergy(li, ui, start_pos, stop_pos, border_pos, + YBufferLeft, YBufferSzShift, scaleLeft0, scaleLeft1); if (stereoMode == SBR_COUPLING) { - nrgRight = getEnvSfbEnergy(li, - ui, - start_pos, - stop_pos, - border_pos, - YBufferRight, - YBufferSzShift, - scaleRight0, + nrgRight = getEnvSfbEnergy(li, ui, start_pos, stop_pos, border_pos, + YBufferRight, YBufferSzShift, scaleRight0, scaleRight1); } } /* !missingHarmonic */ /* save energies */ - pNrgLeft[j] = nrgLeft; + pNrgLeft[j] = nrgLeft; pNrgRight[j] = nrgRight; - envNrgLeft += (nrgLeft>>envNrg_scale); - envNrgRight += (nrgRight>>envNrg_scale); + envNrgLeft += (nrgLeft >> envNrg_scale); + envNrgRight += (nrgRight >> envNrg_scale); } /* j */ for (j = 0; j < no_of_bands; j++) { - FIXP_DBL nrgLeft2 = FL2FXCONST_DBL(0.0f); - FIXP_DBL nrgLeft = pNrgLeft[j]; + FIXP_DBL nrgLeft = pNrgLeft[j]; FIXP_DBL nrgRight = pNrgRight[j]; /* None missing harmonic Energy lowering compensation */ - if(!missingHarmonic[j] && h_sbr->fLevelProtect) { + if (!missingHarmonic[j] && h_sbr->fLevelProtect) { /* in case of missing energy in base band, reduce reference energy to prevent overflows in decoder output */ - nrgLeft = nmhLoweringEnergy(nrgLeft, envNrgLeft, envNrg_scale, no_of_bands); + nrgLeft = + nmhLoweringEnergy(nrgLeft, envNrgLeft, envNrg_scale, no_of_bands); if (stereoMode == SBR_COUPLING) { - nrgRight = nmhLoweringEnergy(nrgRight, envNrgRight, envNrg_scale, no_of_bands); + nrgRight = nmhLoweringEnergy(nrgRight, envNrgRight, envNrg_scale, + no_of_bands); } } @@ -900,31 +928,34 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left * nrgLeft = (nrgRight + nrgLeft) >> 1; } - /* nrgLeft = f20_log2(nrgLeft / (PFLOAT)(count * h_sbr->sbrQmf.no_channels))+(PFLOAT)44; */ + /* nrgLeft = f20_log2(nrgLeft / (PFLOAT)(count * 64))+(PFLOAT)44; */ /* If nrgLeft == 0 then the Log calculations below do fail. */ - if (nrgLeft > FL2FXCONST_DBL(0.0f)) - { - FIXP_DBL tmp0,tmp1,tmp2,tmp3; + if (nrgLeft > FL2FXCONST_DBL(0.0f)) { + FIXP_DBL tmp0, tmp1, tmp2, tmp3; INT tmpScale; tmpScale = CountLeadingBits(nrgLeft); nrgLeft = nrgLeft << tmpScale; - tmp0 = CalcLdData(nrgLeft); /* scaled by 1/64 */ - tmp1 = ((FIXP_DBL) (commonScale+tmpScale)) << (DFRACT_BITS-1-LD_DATA_SHIFT-1); /* scaled by 1/64 */ - tmp2 = ((FIXP_DBL)(count[j]*h_con->noQmfBands)) << (DFRACT_BITS-1-14-1); - tmp2 = CalcLdData(tmp2); /* scaled by 1/64 */ - tmp3 = FL2FXCONST_DBL(0.6875f-0.21875f-0.015625f)>>1; /* scaled by 1/64 */ + tmp0 = CalcLdData(nrgLeft); /* scaled by 1/64 */ + tmp1 = ((FIXP_DBL)(commonScale + tmpScale)) + << (DFRACT_BITS - 1 - LD_DATA_SHIFT - 1); /* scaled by 1/64 */ + tmp2 = ((FIXP_DBL)(count[j] * 64)) << (DFRACT_BITS - 1 - 14 - 1); + tmp2 = CalcLdData(tmp2); /* scaled by 1/64 */ + tmp3 = FL2FXCONST_DBL(0.6875f - 0.21875f - 0.015625f) >> + 1; /* scaled by 1/64 */ - nrgLeft = ((tmp0-tmp2)>>1) + (tmp3 - tmp1); + nrgLeft = ((tmp0 - tmp2) >> 1) + (tmp3 - tmp1); } else { nrgLeft = FL2FXCONST_DBL(-1.0f); } /* ld64 to integer conversion */ - nrgLeft = fixMin(fixMax(nrgLeft,FL2FXCONST_DBL(0.0f)),(FL2FXCONST_DBL(0.5f)>>oneBitLess)); - nrgLeft = (FIXP_DBL)(LONG)nrgLeft >> (DFRACT_BITS-1-LD_DATA_SHIFT-1-oneBitLess-1); - sfb_nrgLeft[m] = ((INT)nrgLeft+1)>>1; /* rounding */ + nrgLeft = fixMin(fixMax(nrgLeft, FL2FXCONST_DBL(0.0f)), + (FL2FXCONST_DBL(0.5f) >> oneBitLess)); + nrgLeft = (FIXP_DBL)(LONG)nrgLeft >> + (DFRACT_BITS - 1 - LD_DATA_SHIFT - 1 - oneBitLess - 1); + sfb_nrgLeft[m] = ((INT)nrgLeft + 1) >> 1; /* rounding */ if (stereoMode == SBR_COUPLING) { FIXP_DBL scaleFract; @@ -936,14 +967,20 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left * sc0 = CountLeadingBits(nrgLeft2); sc1 = CountLeadingBits(nrgRight); - scaleFract = ((FIXP_DBL)(sc0-sc1)) << (DFRACT_BITS-1-LD_DATA_SHIFT); /* scale value in ld64 representation */ - nrgRight = CalcLdData(nrgLeft2<<sc0) - CalcLdData(nrgRight<<sc1) - scaleFract; + scaleFract = + ((FIXP_DBL)(sc0 - sc1)) + << (DFRACT_BITS - 1 - + LD_DATA_SHIFT); /* scale value in ld64 representation */ + nrgRight = CalcLdData(nrgLeft2 << sc0) - CalcLdData(nrgRight << sc1) - + scaleFract; /* ld64 to integer conversion */ - nrgRight = (FIXP_DBL)(LONG)(nrgRight) >> (DFRACT_BITS-1-LD_DATA_SHIFT-1-oneBitLess); - nrgRight = (nrgRight+(FIXP_DBL)1)>>1; /* rounding */ + nrgRight = (FIXP_DBL)(LONG)(nrgRight) >> + (DFRACT_BITS - 1 - LD_DATA_SHIFT - 1 - oneBitLess); + nrgRight = (nrgRight + (FIXP_DBL)1) >> 1; /* rounding */ - sfb_nrgRight[m] = mapPanorama (nrgRight,h_sbr->encEnvData.init_sbr_amp_res,&quantError); + sfb_nrgRight[m] = mapPanorama( + nrgRight, h_sbr->encEnvData.init_sbr_amp_res, &quantError); *maxQuantError = fixMax(quantError, *maxQuantError); } @@ -951,21 +988,25 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left * m++; } /* j */ - /* Do energy compensation for sines that are present in two - QMF-bands in the original, but will only occur in one band in - the decoder due to the synthetic sine coding.*/ + /* Do energy compensation for sines that are present in two + QMF-bands in the original, but will only occur in one band in + the decoder due to the synthetic sine coding.*/ if (h_con->useParametricCoding) { - m-=no_of_bands; + m -= no_of_bands; for (j = 0; j < no_of_bands; j++) { - if (freq_res==FREQ_RES_HIGH && h_sbr->sbrExtractEnvelope.envelopeCompensation[j]){ - sfb_nrgLeft[m] -= (ca * fixp_abs((INT)h_sbr->sbrExtractEnvelope.envelopeCompensation[j])); + if (freq_res == FREQ_RES_HIGH && + h_sbr->sbrExtractEnvelope.envelopeCompensation[j]) { + sfb_nrgLeft[m] -= + (ca * + fixp_abs( + (INT)h_sbr->sbrExtractEnvelope.envelopeCompensation[j])); } sfb_nrgLeft[m] = fixMax(0, sfb_nrgLeft[m]); m++; } } /* useParametricCoding */ - } /* i*/ + } /* env loop */ } /***************************************************************************/ @@ -984,96 +1025,73 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left * ****************************************************************************/ LNK_SECTION_CODE_L1 -void -FDKsbrEnc_extractSbrEnvelope1 ( - HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */ - HANDLE_SBR_HEADER_DATA sbrHeaderData, - HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData, - HANDLE_ENV_CHANNEL hEnvChan, - HANDLE_COMMON_DATA hCmonData, - SBR_ENV_TEMP_DATA *eData, - SBR_FRAME_TEMP_DATA *fData - ) -{ - +void FDKsbrEnc_extractSbrEnvelope1( + HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */ + HANDLE_SBR_HEADER_DATA sbrHeaderData, + HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData, HANDLE_ENV_CHANNEL hEnvChan, + HANDLE_COMMON_DATA hCmonData, SBR_ENV_TEMP_DATA *eData, + SBR_FRAME_TEMP_DATA *fData) { HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &hEnvChan->sbrExtractEnvelope; if (sbrExtrEnv->YBufferSzShift == 0) - FDKsbrEnc_getEnergyFromCplxQmfDataFull(&sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset], - sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset, - sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset, - h_con->noQmfBands, - sbrExtrEnv->no_cols, - &hEnvChan->qmfScale, - &sbrExtrEnv->YBufferScale[1]); + FDKsbrEnc_getEnergyFromCplxQmfDataFull( + &sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset], + sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset, + sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset, h_con->noQmfBands, + sbrExtrEnv->no_cols, &hEnvChan->qmfScale, &sbrExtrEnv->YBufferScale[1]); else - FDKsbrEnc_getEnergyFromCplxQmfData(&sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset], - sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset, - sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset, - h_con->noQmfBands, - sbrExtrEnv->no_cols, - &hEnvChan->qmfScale, - &sbrExtrEnv->YBufferScale[1]); - + FDKsbrEnc_getEnergyFromCplxQmfData( + &sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset], + sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset, + sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset, h_con->noQmfBands, + sbrExtrEnv->no_cols, &hEnvChan->qmfScale, &sbrExtrEnv->YBufferScale[1]); + /* Energie values = + * sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset][x].floatVal * + * (1<<2*7-sbrExtrEnv->YBufferScale[1]) */ /* Precalculation of Tonality Quotas COEFF Transform OK */ - FDKsbrEnc_CalculateTonalityQuotas(&hEnvChan->TonCorr, - sbrExtrEnv->rBuffer, - sbrExtrEnv->iBuffer, - h_con->freqBandTable[HI][h_con->nSfb[HI]], - hEnvChan->qmfScale); - - - if(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) { - FIXP_DBL tonality = FDKsbrEnc_GetTonality ( - hEnvChan->TonCorr.quotaMatrix, - hEnvChan->TonCorr.numberOfEstimatesPerFrame, - hEnvChan->TonCorr.startIndexMatrix, - sbrExtrEnv->YBuffer + sbrExtrEnv->YBufferWriteOffset, - h_con->freqBandTable[HI][0]+1, - h_con->noQmfBands, - sbrExtrEnv->no_cols - ); + FDKsbrEnc_CalculateTonalityQuotas( + &hEnvChan->TonCorr, sbrExtrEnv->rBuffer, sbrExtrEnv->iBuffer, + h_con->freqBandTable[HI][h_con->nSfb[HI]], hEnvChan->qmfScale); + + if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) { + FIXP_DBL tonality = FDKsbrEnc_GetTonality( + hEnvChan->TonCorr.quotaMatrix, + hEnvChan->TonCorr.numberOfEstimatesPerFrame, + hEnvChan->TonCorr.startIndexMatrix, + sbrExtrEnv->YBuffer + sbrExtrEnv->YBufferWriteOffset, + h_con->freqBandTable[HI][0] + 1, h_con->noQmfBands, + sbrExtrEnv->no_cols); hEnvChan->encEnvData.ton_HF[1] = hEnvChan->encEnvData.ton_HF[0]; hEnvChan->encEnvData.ton_HF[0] = tonality; /* tonality is scaled by 2^19/0.524288f (fract part of RELAXATION) */ - hEnvChan->encEnvData.global_tonality = (hEnvChan->encEnvData.ton_HF[0]>>1) + (hEnvChan->encEnvData.ton_HF[1]>>1); + hEnvChan->encEnvData.global_tonality = + (hEnvChan->encEnvData.ton_HF[0] >> 1) + + (hEnvChan->encEnvData.ton_HF[1] >> 1); } - - /* Transient detection COEFF Transform OK */ - if(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) - { - FDKsbrEnc_fastTransientDetect( - &hEnvChan->sbrFastTransientDetector, - sbrExtrEnv->YBuffer, - sbrExtrEnv->YBufferScale, - sbrExtrEnv->YBufferWriteOffset, - eData->transient_info - ); - - } - else - { - FDKsbrEnc_transientDetect(&hEnvChan->sbrTransientDetector, - sbrExtrEnv->YBuffer, - sbrExtrEnv->YBufferScale, - eData->transient_info, - sbrExtrEnv->YBufferWriteOffset, - sbrExtrEnv->YBufferSzShift, - sbrExtrEnv->time_step, - hEnvChan->SbrEnvFrame.frameMiddleSlot); - } + if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) { + FDKsbrEnc_fastTransientDetect(&hEnvChan->sbrFastTransientDetector, + sbrExtrEnv->YBuffer, sbrExtrEnv->YBufferScale, + sbrExtrEnv->YBufferWriteOffset, + eData->transient_info); + } else { + FDKsbrEnc_transientDetect( + &hEnvChan->sbrTransientDetector, sbrExtrEnv->YBuffer, + sbrExtrEnv->YBufferScale, eData->transient_info, + sbrExtrEnv->YBufferWriteOffset, sbrExtrEnv->YBufferSzShift, + sbrExtrEnv->time_step, hEnvChan->SbrEnvFrame.frameMiddleSlot); + } /* Generate flags for 2 env in a FIXFIX-frame. @@ -1083,19 +1101,12 @@ FDKsbrEnc_extractSbrEnvelope1 ( /* frame Splitter COEFF Transform OK */ - FDKsbrEnc_frameSplitter(sbrExtrEnv->YBuffer, - sbrExtrEnv->YBufferScale, - &hEnvChan->sbrTransientDetector, - h_con->freqBandTable[1], - eData->transient_info, - sbrExtrEnv->YBufferWriteOffset, - sbrExtrEnv->YBufferSzShift, - h_con->nSfb[1], - sbrExtrEnv->time_step, - sbrExtrEnv->no_cols, - &hEnvChan->encEnvData.global_tonality); - - + FDKsbrEnc_frameSplitter( + sbrExtrEnv->YBuffer, sbrExtrEnv->YBufferScale, + &hEnvChan->sbrTransientDetector, h_con->freqBandTable[1], + eData->transient_info, sbrExtrEnv->YBufferWriteOffset, + sbrExtrEnv->YBufferSzShift, h_con->nSfb[1], sbrExtrEnv->time_step, + sbrExtrEnv->no_cols, &hEnvChan->encEnvData.global_tonality); } /***************************************************************************/ @@ -1128,53 +1139,45 @@ FDKsbrEnc_extractSbrEnvelope1 ( ****************************************************************************/ LNK_SECTION_CODE_L1 -void -FDKsbrEnc_extractSbrEnvelope2 ( - HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */ - HANDLE_SBR_HEADER_DATA sbrHeaderData, - HANDLE_PARAMETRIC_STEREO hParametricStereo, - HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData, - HANDLE_ENV_CHANNEL h_envChan0, - HANDLE_ENV_CHANNEL h_envChan1, - HANDLE_COMMON_DATA hCmonData, - SBR_ENV_TEMP_DATA *eData, - SBR_FRAME_TEMP_DATA *fData, - int clearOutput - ) -{ +void FDKsbrEnc_extractSbrEnvelope2( + HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */ + HANDLE_SBR_HEADER_DATA sbrHeaderData, + HANDLE_PARAMETRIC_STEREO hParametricStereo, + HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData, HANDLE_ENV_CHANNEL h_envChan0, + HANDLE_ENV_CHANNEL h_envChan1, HANDLE_COMMON_DATA hCmonData, + SBR_ENV_TEMP_DATA *eData, SBR_FRAME_TEMP_DATA *fData, int clearOutput) { HANDLE_ENV_CHANNEL h_envChan[MAX_NUM_CHANNELS] = {h_envChan0, h_envChan1}; int ch, i, j, c, YSzShift = h_envChan[0]->sbrExtractEnvelope.YBufferSzShift; SBR_STEREO_MODE stereoMode = h_con->stereoMode; int nChannels = h_con->nChannels; const int *v_tuning; - static const int v_tuningHEAAC[6] = { 0, 2, 4, 0, 0, 0 }; + static const int v_tuningHEAAC[6] = {0, 2, 4, 0, 0, 0}; - static const int v_tuningELD[6] = { 0, 2, 3, 0, 0, 0 }; + static const int v_tuningELD[6] = {0, 2, 3, 0, 0, 0}; if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) v_tuning = v_tuningELD; else v_tuning = v_tuningHEAAC; - /* Select stereo mode. */ if (stereoMode == SBR_COUPLING) { if (eData[0].transient_info[1] && eData[1].transient_info[1]) { - eData[0].transient_info[0] = fixMin(eData[1].transient_info[0], eData[0].transient_info[0]); + eData[0].transient_info[0] = + fixMin(eData[1].transient_info[0], eData[0].transient_info[0]); eData[1].transient_info[0] = eData[0].transient_info[0]; - } - else { + } else { if (eData[0].transient_info[1] && !eData[1].transient_info[1]) { eData[1].transient_info[0] = eData[0].transient_info[0]; - } - else { + } else { if (!eData[0].transient_info[1] && eData[1].transient_info[1]) eData[0].transient_info[0] = eData[1].transient_info[0]; else { - eData[0].transient_info[0] = fixMax(eData[1].transient_info[0], eData[0].transient_info[0]); + eData[0].transient_info[0] = + fixMax(eData[1].transient_info[0], eData[0].transient_info[0]); eData[1].transient_info[0] = eData[0].transient_info[0]; } } @@ -1184,183 +1187,171 @@ FDKsbrEnc_extractSbrEnvelope2 ( /* Determine time/frequency division of current granule */ - eData[0].frame_info = FDKsbrEnc_frameInfoGenerator(&h_envChan[0]->SbrEnvFrame, - eData[0].transient_info, - h_envChan[0]->sbrExtractEnvelope.pre_transient_info, - h_envChan[0]->encEnvData.ldGrid, - v_tuning); + eData[0].frame_info = FDKsbrEnc_frameInfoGenerator( + &h_envChan[0]->SbrEnvFrame, eData[0].transient_info, + sbrBitstreamData->rightBorderFIX, + h_envChan[0]->sbrExtractEnvelope.pre_transient_info, + h_envChan[0]->encEnvData.ldGrid, v_tuning); h_envChan[0]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid; /* AAC LD patch for transient prediction */ if (h_envChan[0]->encEnvData.ldGrid && eData[0].transient_info[2]) { - /* if next frame will start with transient, set shortEnv to numEnvelopes(shortend Envelope = shortEnv-1)*/ - h_envChan[0]->SbrEnvFrame.SbrFrameInfo.shortEnv = h_envChan[0]->SbrEnvFrame.SbrFrameInfo.nEnvelopes; + /* if next frame will start with transient, set shortEnv to + * numEnvelopes(shortend Envelope = shortEnv-1)*/ + h_envChan[0]->SbrEnvFrame.SbrFrameInfo.shortEnv = + h_envChan[0]->SbrEnvFrame.SbrFrameInfo.nEnvelopes; } - switch (stereoMode) { - case SBR_LEFT_RIGHT: - case SBR_SWITCH_LRC: - eData[1].frame_info = FDKsbrEnc_frameInfoGenerator(&h_envChan[1]->SbrEnvFrame, - eData[1].transient_info, - h_envChan[1]->sbrExtractEnvelope.pre_transient_info, - h_envChan[1]->encEnvData.ldGrid, - v_tuning); - - h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[1]->SbrEnvFrame.SbrGrid; - - if (h_envChan[1]->encEnvData.ldGrid && eData[1].transient_info[2]) { - /* if next frame will start with transient, set shortEnv to numEnvelopes(shortend Envelope = shortEnv-1)*/ - h_envChan[1]->SbrEnvFrame.SbrFrameInfo.shortEnv = h_envChan[1]->SbrEnvFrame.SbrFrameInfo.nEnvelopes; - } + case SBR_LEFT_RIGHT: + case SBR_SWITCH_LRC: + eData[1].frame_info = FDKsbrEnc_frameInfoGenerator( + &h_envChan[1]->SbrEnvFrame, eData[1].transient_info, + sbrBitstreamData->rightBorderFIX, + h_envChan[1]->sbrExtractEnvelope.pre_transient_info, + h_envChan[1]->encEnvData.ldGrid, v_tuning); + + h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[1]->SbrEnvFrame.SbrGrid; + + if (h_envChan[1]->encEnvData.ldGrid && eData[1].transient_info[2]) { + /* if next frame will start with transient, set shortEnv to + * numEnvelopes(shortend Envelope = shortEnv-1)*/ + h_envChan[1]->SbrEnvFrame.SbrFrameInfo.shortEnv = + h_envChan[1]->SbrEnvFrame.SbrFrameInfo.nEnvelopes; + } - /* compare left and right frame_infos */ - if (eData[0].frame_info->nEnvelopes != eData[1].frame_info->nEnvelopes) { - stereoMode = SBR_LEFT_RIGHT; - } else { - for (i = 0; i < eData[0].frame_info->nEnvelopes + 1; i++) { - if (eData[0].frame_info->borders[i] != eData[1].frame_info->borders[i]) { - stereoMode = SBR_LEFT_RIGHT; - break; + /* compare left and right frame_infos */ + if (eData[0].frame_info->nEnvelopes != eData[1].frame_info->nEnvelopes) { + stereoMode = SBR_LEFT_RIGHT; + } else { + for (i = 0; i < eData[0].frame_info->nEnvelopes + 1; i++) { + if (eData[0].frame_info->borders[i] != + eData[1].frame_info->borders[i]) { + stereoMode = SBR_LEFT_RIGHT; + break; + } } - } - for (i = 0; i < eData[0].frame_info->nEnvelopes; i++) { - if (eData[0].frame_info->freqRes[i] != eData[1].frame_info->freqRes[i]) { + for (i = 0; i < eData[0].frame_info->nEnvelopes; i++) { + if (eData[0].frame_info->freqRes[i] != + eData[1].frame_info->freqRes[i]) { + stereoMode = SBR_LEFT_RIGHT; + break; + } + } + if (eData[0].frame_info->shortEnv != eData[1].frame_info->shortEnv) { stereoMode = SBR_LEFT_RIGHT; - break; } } - if (eData[0].frame_info->shortEnv != eData[1].frame_info->shortEnv) { - stereoMode = SBR_LEFT_RIGHT; - } - } - break; - case SBR_COUPLING: - eData[1].frame_info = eData[0].frame_info; - h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid; - break; - case SBR_MONO: - /* nothing to do */ - break; - default: - FDK_ASSERT (0); + break; + case SBR_COUPLING: + eData[1].frame_info = eData[0].frame_info; + h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid; + break; + case SBR_MONO: + /* nothing to do */ + break; + default: + FDK_ASSERT(0); } - - for (ch = 0; ch < nChannels;ch++) - { + for (ch = 0; ch < nChannels; ch++) { HANDLE_ENV_CHANNEL hEnvChan = h_envChan[ch]; HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &hEnvChan->sbrExtractEnvelope; SBR_ENV_TEMP_DATA *ed = &eData[ch]; - /* Send transient info to bitstream and store for next call */ - sbrExtrEnv->pre_transient_info[0] = ed->transient_info[0];/* tran_pos */ - sbrExtrEnv->pre_transient_info[1] = ed->transient_info[1];/* tran_flag */ - hEnvChan->encEnvData.noOfEnvelopes = ed->nEnvelopes = ed->frame_info->nEnvelopes; /* number of envelopes of current frame */ + sbrExtrEnv->pre_transient_info[0] = ed->transient_info[0]; /* tran_pos */ + sbrExtrEnv->pre_transient_info[1] = ed->transient_info[1]; /* tran_flag */ + hEnvChan->encEnvData.noOfEnvelopes = ed->nEnvelopes = + ed->frame_info->nEnvelopes; /* number of envelopes of current frame */ /* - Check if the current frame is divided into one envelope only. If so, set the amplitude - resolution to 1.5 dB, otherwise may set back to chosen value + Check if the current frame is divided into one envelope only. If so, set + the amplitude resolution to 1.5 dB, otherwise may set back to chosen value */ - if( ( hEnvChan->encEnvData.hSbrBSGrid->frameClass == FIXFIX ) - && ( ed->nEnvelopes == 1 ) ) - { - - if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) - { - /* Note: global_tonaliy_float_value == ((float)hEnvChan->encEnvData.global_tonality/((INT64)(1)<<(31-(19+2)))/0.524288*(2.0/3.0))); - threshold_float_value == ((float)h_con->thresholdAmpResFF_m/((INT64)(1)<<(31-(h_con->thresholdAmpResFF_e)))/0.524288*(2.0/3.0))); */ - /* decision of SBR_AMP_RES */ - if (fIsLessThan( /* global_tonality > threshold ? */ - h_con->thresholdAmpResFF_m, h_con->thresholdAmpResFF_e, - hEnvChan->encEnvData.global_tonality, RELAXATION_SHIFT+2 ) - ) - { - hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5; - } - else { - hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_3_0; - } - } else { - hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5; - } - - if ( hEnvChan->encEnvData.currentAmpResFF != hEnvChan->encEnvData.init_sbr_amp_res) { - - FDKsbrEnc_InitSbrHuffmanTables(&hEnvChan->encEnvData, - &hEnvChan->sbrCodeEnvelope, - &hEnvChan->sbrCodeNoiseFloor, - hEnvChan->encEnvData.currentAmpResFF); + if ((hEnvChan->encEnvData.hSbrBSGrid->frameClass == FIXFIX) && + (ed->nEnvelopes == 1)) { + if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) { + /* Note: global_tonaliy_float_value == + ((float)hEnvChan->encEnvData.global_tonality/((INT64)(1)<<(31-(19+2)))/0.524288*(2.0/3.0))); + threshold_float_value == + ((float)h_con->thresholdAmpResFF_m/((INT64)(1)<<(31-(h_con->thresholdAmpResFF_e)))/0.524288*(2.0/3.0))); + */ + /* decision of SBR_AMP_RES */ + if (fIsLessThan(/* global_tonality > threshold ? */ + h_con->thresholdAmpResFF_m, h_con->thresholdAmpResFF_e, + hEnvChan->encEnvData.global_tonality, + RELAXATION_SHIFT + 2)) { + hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5; + } else { + hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_3_0; + } + } else + hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5; + + if (hEnvChan->encEnvData.currentAmpResFF != + hEnvChan->encEnvData.init_sbr_amp_res) { + FDKsbrEnc_InitSbrHuffmanTables( + &hEnvChan->encEnvData, &hEnvChan->sbrCodeEnvelope, + &hEnvChan->sbrCodeNoiseFloor, hEnvChan->encEnvData.currentAmpResFF); } - } - else { - if(sbrHeaderData->sbr_amp_res != hEnvChan->encEnvData.init_sbr_amp_res ) { - - FDKsbrEnc_InitSbrHuffmanTables(&hEnvChan->encEnvData, - &hEnvChan->sbrCodeEnvelope, - &hEnvChan->sbrCodeNoiseFloor, - sbrHeaderData->sbr_amp_res); + } else { + if (sbrHeaderData->sbr_amp_res != hEnvChan->encEnvData.init_sbr_amp_res) { + FDKsbrEnc_InitSbrHuffmanTables( + &hEnvChan->encEnvData, &hEnvChan->sbrCodeEnvelope, + &hEnvChan->sbrCodeNoiseFloor, sbrHeaderData->sbr_amp_res); } } if (!clearOutput) { - /* - Tonality correction parameter extraction (inverse filtering level, noise floor additional sines). + Tonality correction parameter extraction (inverse filtering level, noise + floor additional sines). */ - FDKsbrEnc_TonCorrParamExtr(&hEnvChan->TonCorr, - hEnvChan->encEnvData.sbr_invf_mode_vec, - ed->noiseFloor, - &hEnvChan->encEnvData.addHarmonicFlag, - hEnvChan->encEnvData.addHarmonic, - sbrExtrEnv->envelopeCompensation, - ed->frame_info, - ed->transient_info, - h_con->freqBandTable[HI], - h_con->nSfb[HI], - hEnvChan->encEnvData.sbr_xpos_mode, - h_con->sbrSyntaxFlags); - + FDKsbrEnc_TonCorrParamExtr( + &hEnvChan->TonCorr, hEnvChan->encEnvData.sbr_invf_mode_vec, + ed->noiseFloor, &hEnvChan->encEnvData.addHarmonicFlag, + hEnvChan->encEnvData.addHarmonic, sbrExtrEnv->envelopeCompensation, + ed->frame_info, ed->transient_info, h_con->freqBandTable[HI], + h_con->nSfb[HI], hEnvChan->encEnvData.sbr_xpos_mode, + h_con->sbrSyntaxFlags); } /* Low energy in low band fix */ - if ( hEnvChan->sbrTransientDetector.prevLowBandEnergy < hEnvChan->sbrTransientDetector.prevHighBandEnergy - && hEnvChan->sbrTransientDetector.prevHighBandEnergy > FL2FX_DBL(0.03) - /* The fix needs the non-fast transient detector running. - It sets prevLowBandEnergy and prevHighBandEnergy. */ - && !(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) - ) - { - int i; - + if (hEnvChan->sbrTransientDetector.prevLowBandEnergy < + hEnvChan->sbrTransientDetector.prevHighBandEnergy && + hEnvChan->sbrTransientDetector.prevHighBandEnergy > FL2FX_DBL(0.03) + /* The fix needs the non-fast transient detector running. + It sets prevLowBandEnergy and prevHighBandEnergy. */ + && !(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)) { hEnvChan->fLevelProtect = 1; - for (i=0; i<MAX_NUM_NOISE_VALUES; i++) + for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) hEnvChan->encEnvData.sbr_invf_mode_vec[i] = INVF_HIGH_LEVEL; } else { hEnvChan->fLevelProtect = 0; } - hEnvChan->encEnvData.sbr_invf_mode = hEnvChan->encEnvData.sbr_invf_mode_vec[0]; - - hEnvChan->encEnvData.noOfnoisebands = hEnvChan->TonCorr.sbrNoiseFloorEstimate.noNoiseBands; + hEnvChan->encEnvData.sbr_invf_mode = + hEnvChan->encEnvData.sbr_invf_mode_vec[0]; + hEnvChan->encEnvData.noOfnoisebands = + hEnvChan->TonCorr.sbrNoiseFloorEstimate.noNoiseBands; } /* ch */ - - - /* - Save number of scf bands per envelope - */ - for (ch = 0; ch < nChannels;ch++) { - for (i = 0; i < eData[ch].nEnvelopes; i++){ + /* + Save number of scf bands per envelope + */ + for (ch = 0; ch < nChannels; ch++) { + for (i = 0; i < eData[ch].nEnvelopes; i++) { h_envChan[ch]->encEnvData.noScfBands[i] = - (eData[ch].frame_info->freqRes[i] == FREQ_RES_HIGH ? h_con->nSfb[FREQ_RES_HIGH] : h_con->nSfb[FREQ_RES_LOW]); + (eData[ch].frame_info->freqRes[i] == FREQ_RES_HIGH + ? h_con->nSfb[FREQ_RES_HIGH] + : h_con->nSfb[FREQ_RES_LOW]); } } @@ -1368,165 +1359,169 @@ FDKsbrEnc_extractSbrEnvelope2 ( Extract envelope of current frame. */ switch (stereoMode) { - case SBR_MONO: - calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL, - h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL, - eData[0].frame_info, eData[0].sfb_nrg, NULL, - h_con, h_envChan[0], SBR_MONO, NULL, YSzShift); - break; - case SBR_LEFT_RIGHT: - calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL, - h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL, - eData[0].frame_info, eData[0].sfb_nrg, NULL, - h_con, h_envChan[0], SBR_MONO, NULL, YSzShift); - calculateSbrEnvelope (h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL, - h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL, - eData[1].frame_info,eData[1].sfb_nrg, NULL, - h_con, h_envChan[1], SBR_MONO, NULL, YSzShift); - break; - case SBR_COUPLING: - calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, h_envChan[1]->sbrExtractEnvelope.YBuffer, - h_envChan[0]->sbrExtractEnvelope.YBufferScale, h_envChan[1]->sbrExtractEnvelope.YBufferScale, - eData[0].frame_info, eData[0].sfb_nrg, eData[1].sfb_nrg, - h_con, h_envChan[0], SBR_COUPLING, &fData->maxQuantError, YSzShift); - break; - case SBR_SWITCH_LRC: - calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL, - h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL, - eData[0].frame_info, eData[0].sfb_nrg, NULL, - h_con, h_envChan[0], SBR_MONO, NULL, YSzShift); - calculateSbrEnvelope (h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL, - h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL, - eData[1].frame_info, eData[1].sfb_nrg, NULL, - h_con, h_envChan[1], SBR_MONO,NULL, YSzShift); - calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, h_envChan[1]->sbrExtractEnvelope.YBuffer, - h_envChan[0]->sbrExtractEnvelope.YBufferScale, h_envChan[1]->sbrExtractEnvelope.YBufferScale, - eData[0].frame_info, eData[0].sfb_nrg_coupling, eData[1].sfb_nrg_coupling, - h_con, h_envChan[0], SBR_COUPLING, &fData->maxQuantError, YSzShift); - break; + case SBR_MONO: + calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL, + h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL, + eData[0].frame_info, eData[0].sfb_nrg, NULL, h_con, + h_envChan[0], SBR_MONO, NULL, YSzShift); + break; + case SBR_LEFT_RIGHT: + calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL, + h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL, + eData[0].frame_info, eData[0].sfb_nrg, NULL, h_con, + h_envChan[0], SBR_MONO, NULL, YSzShift); + calculateSbrEnvelope(h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL, + h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL, + eData[1].frame_info, eData[1].sfb_nrg, NULL, h_con, + h_envChan[1], SBR_MONO, NULL, YSzShift); + break; + case SBR_COUPLING: + calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, + h_envChan[1]->sbrExtractEnvelope.YBuffer, + h_envChan[0]->sbrExtractEnvelope.YBufferScale, + h_envChan[1]->sbrExtractEnvelope.YBufferScale, + eData[0].frame_info, eData[0].sfb_nrg, + eData[1].sfb_nrg, h_con, h_envChan[0], SBR_COUPLING, + &fData->maxQuantError, YSzShift); + break; + case SBR_SWITCH_LRC: + calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL, + h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL, + eData[0].frame_info, eData[0].sfb_nrg, NULL, h_con, + h_envChan[0], SBR_MONO, NULL, YSzShift); + calculateSbrEnvelope(h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL, + h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL, + eData[1].frame_info, eData[1].sfb_nrg, NULL, h_con, + h_envChan[1], SBR_MONO, NULL, YSzShift); + calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, + h_envChan[1]->sbrExtractEnvelope.YBuffer, + h_envChan[0]->sbrExtractEnvelope.YBufferScale, + h_envChan[1]->sbrExtractEnvelope.YBufferScale, + eData[0].frame_info, eData[0].sfb_nrg_coupling, + eData[1].sfb_nrg_coupling, h_con, h_envChan[0], + SBR_COUPLING, &fData->maxQuantError, YSzShift); + break; } - - /* Noise floor quantisation and coding. */ switch (stereoMode) { - case SBR_MONO: - sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, 0); - - FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res, - &h_envChan[0]->sbrCodeNoiseFloor, - h_envChan[0]->encEnvData.domain_vec_noise, 0, - (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); - - break; - case SBR_LEFT_RIGHT: - sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0); - - FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res, - &h_envChan[0]->sbrCodeNoiseFloor, - h_envChan[0]->encEnvData.domain_vec_noise, 0, - (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); - - sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 0); - - FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res, - &h_envChan[1]->sbrCodeNoiseFloor, - h_envChan[1]->encEnvData.domain_vec_noise, 0, - (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); - - break; - - case SBR_COUPLING: - coupleNoiseFloor(eData[0].noiseFloor,eData[1].noiseFloor); - - sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0); - - FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res, - &h_envChan[0]->sbrCodeNoiseFloor, - h_envChan[0]->encEnvData.domain_vec_noise, 1, - (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); - - sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 1); - - FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res, - &h_envChan[1]->sbrCodeNoiseFloor, - h_envChan[1]->encEnvData.domain_vec_noise, 1, - (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1, - sbrBitstreamData->HeaderActive); - - break; - case SBR_SWITCH_LRC: - sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0); - sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 0); - coupleNoiseFloor(eData[0].noiseFloor,eData[1].noiseFloor); - sbrNoiseFloorLevelsQuantisation(eData[0].noise_level_coupling,eData[0].noiseFloor, 0); - sbrNoiseFloorLevelsQuantisation(eData[1].noise_level_coupling,eData[1].noiseFloor, 1); - break; + case SBR_MONO: + sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, + 0); + + FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res, + &h_envChan[0]->sbrCodeNoiseFloor, + h_envChan[0]->encEnvData.domain_vec_noise, 0, + (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); + + break; + case SBR_LEFT_RIGHT: + sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, + 0); + + FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res, + &h_envChan[0]->sbrCodeNoiseFloor, + h_envChan[0]->encEnvData.domain_vec_noise, 0, + (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); + + sbrNoiseFloorLevelsQuantisation(eData[1].noise_level, eData[1].noiseFloor, + 0); + + FDKsbrEnc_codeEnvelope(eData[1].noise_level, fData->res, + &h_envChan[1]->sbrCodeNoiseFloor, + h_envChan[1]->encEnvData.domain_vec_noise, 0, + (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); + + break; + + case SBR_COUPLING: + coupleNoiseFloor(eData[0].noiseFloor, eData[1].noiseFloor); + + sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, + 0); + + FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res, + &h_envChan[0]->sbrCodeNoiseFloor, + h_envChan[0]->encEnvData.domain_vec_noise, 1, + (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); + + sbrNoiseFloorLevelsQuantisation(eData[1].noise_level, eData[1].noiseFloor, + 1); + + FDKsbrEnc_codeEnvelope(eData[1].noise_level, fData->res, + &h_envChan[1]->sbrCodeNoiseFloor, + h_envChan[1]->encEnvData.domain_vec_noise, 1, + (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1, + sbrBitstreamData->HeaderActive); + + break; + case SBR_SWITCH_LRC: + sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, + 0); + sbrNoiseFloorLevelsQuantisation(eData[1].noise_level, eData[1].noiseFloor, + 0); + coupleNoiseFloor(eData[0].noiseFloor, eData[1].noiseFloor); + sbrNoiseFloorLevelsQuantisation(eData[0].noise_level_coupling, + eData[0].noiseFloor, 0); + sbrNoiseFloorLevelsQuantisation(eData[1].noise_level_coupling, + eData[1].noiseFloor, 1); + break; } - - /* Encode envelope of current frame. */ switch (stereoMode) { - case SBR_MONO: - sbrHeaderData->coupling = 0; - h_envChan[0]->encEnvData.balance = 0; - FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes, - &h_envChan[0]->sbrCodeEnvelope, - h_envChan[0]->encEnvData.domain_vec, - sbrHeaderData->coupling, - eData[0].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); - break; - case SBR_LEFT_RIGHT: - sbrHeaderData->coupling = 0; - - h_envChan[0]->encEnvData.balance = 0; - h_envChan[1]->encEnvData.balance = 0; - - - FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes, - &h_envChan[0]->sbrCodeEnvelope, - h_envChan[0]->encEnvData.domain_vec, - sbrHeaderData->coupling, - eData[0].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); - FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes, - &h_envChan[1]->sbrCodeEnvelope, - h_envChan[1]->encEnvData.domain_vec, - sbrHeaderData->coupling, - eData[1].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); - break; - case SBR_COUPLING: - sbrHeaderData->coupling = 1; - h_envChan[0]->encEnvData.balance = 0; - h_envChan[1]->encEnvData.balance = 1; - - FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes, - &h_envChan[0]->sbrCodeEnvelope, - h_envChan[0]->encEnvData.domain_vec, - sbrHeaderData->coupling, - eData[0].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); - FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes, - &h_envChan[1]->sbrCodeEnvelope, - h_envChan[1]->encEnvData.domain_vec, - sbrHeaderData->coupling, - eData[1].frame_info->nEnvelopes, 1, - sbrBitstreamData->HeaderActive); - break; - case SBR_SWITCH_LRC: - { + case SBR_MONO: + sbrHeaderData->coupling = 0; + h_envChan[0]->encEnvData.balance = 0; + FDKsbrEnc_codeEnvelope( + eData[0].sfb_nrg, eData[0].frame_info->freqRes, + &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec, + sbrHeaderData->coupling, eData[0].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); + break; + case SBR_LEFT_RIGHT: + sbrHeaderData->coupling = 0; + + h_envChan[0]->encEnvData.balance = 0; + h_envChan[1]->encEnvData.balance = 0; + + FDKsbrEnc_codeEnvelope( + eData[0].sfb_nrg, eData[0].frame_info->freqRes, + &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec, + sbrHeaderData->coupling, eData[0].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope( + eData[1].sfb_nrg, eData[1].frame_info->freqRes, + &h_envChan[1]->sbrCodeEnvelope, h_envChan[1]->encEnvData.domain_vec, + sbrHeaderData->coupling, eData[1].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); + break; + case SBR_COUPLING: + sbrHeaderData->coupling = 1; + h_envChan[0]->encEnvData.balance = 0; + h_envChan[1]->encEnvData.balance = 1; + + FDKsbrEnc_codeEnvelope( + eData[0].sfb_nrg, eData[0].frame_info->freqRes, + &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec, + sbrHeaderData->coupling, eData[0].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope( + eData[1].sfb_nrg, eData[1].frame_info->freqRes, + &h_envChan[1]->sbrCodeEnvelope, h_envChan[1]->encEnvData.domain_vec, + sbrHeaderData->coupling, eData[1].frame_info->nEnvelopes, 1, + sbrBitstreamData->HeaderActive); + break; + case SBR_SWITCH_LRC: { INT payloadbitsLR; INT payloadbitsCOUPLING; @@ -1541,15 +1536,18 @@ FDKsbrEnc_extractSbrEnvelope2 ( INT tempFlagLeft = 0; /* - Store previous values, in order to be able to "undo" what is being done. + Store previous values, in order to be able to "undo" what is being + done. */ - for(ch = 0; ch < nChannels;ch++){ - FDKmemcpy (sfbNrgPrevTemp[ch], h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev, - MAX_FREQ_COEFFS * sizeof (SCHAR)); + for (ch = 0; ch < nChannels; ch++) { + FDKmemcpy(sfbNrgPrevTemp[ch], + h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev, + MAX_FREQ_COEFFS * sizeof(SCHAR)); - FDKmemcpy (noisePrevTemp[ch], h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev, - MAX_NUM_NOISE_COEFFS * sizeof (SCHAR)); + FDKmemcpy(noisePrevTemp[ch], + h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev, + MAX_NUM_NOISE_COEFFS * sizeof(SCHAR)); upDateNrgTemp[ch] = h_envChan[ch]->sbrCodeEnvelope.upDate; upDateNoiseTemp[ch] = h_envChan[ch]->sbrCodeNoiseFloor.upDate; @@ -1558,247 +1556,233 @@ FDKsbrEnc_extractSbrEnvelope2 ( forbid time coding in the first envelope in case of a different previous stereomode */ - if(sbrHeaderData->prev_coupling){ + if (sbrHeaderData->prev_coupling) { h_envChan[ch]->sbrCodeEnvelope.upDate = 0; h_envChan[ch]->sbrCodeNoiseFloor.upDate = 0; } } /* ch */ - /* Code ordinary Left/Right stereo */ - FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes, - &h_envChan[0]->sbrCodeEnvelope, - h_envChan[0]->encEnvData.domain_vec, 0, - eData[0].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); - FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes, - &h_envChan[1]->sbrCodeEnvelope, - h_envChan[1]->encEnvData.domain_vec, 0, - eData[1].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope(eData[0].sfb_nrg, eData[0].frame_info->freqRes, + &h_envChan[0]->sbrCodeEnvelope, + h_envChan[0]->encEnvData.domain_vec, 0, + eData[0].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope(eData[1].sfb_nrg, eData[1].frame_info->freqRes, + &h_envChan[1]->sbrCodeEnvelope, + h_envChan[1]->encEnvData.domain_vec, 0, + eData[1].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); c = 0; for (i = 0; i < eData[0].nEnvelopes; i++) { - for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++) - { - h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg[c]; - h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg[c]; - c++; - } + for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++) { + h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg[c]; + h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg[c]; + c++; + } } - - - FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res, - &h_envChan[0]->sbrCodeNoiseFloor, - h_envChan[0]->encEnvData.domain_vec_noise, 0, - (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); - + FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res, + &h_envChan[0]->sbrCodeNoiseFloor, + h_envChan[0]->encEnvData.domain_vec_noise, 0, + (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) h_envChan[0]->encEnvData.sbr_noise_levels[i] = eData[0].noise_level[i]; - - FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res, - &h_envChan[1]->sbrCodeNoiseFloor, - h_envChan[1]->encEnvData.domain_vec_noise, 0, - (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope(eData[1].noise_level, fData->res, + &h_envChan[1]->sbrCodeNoiseFloor, + h_envChan[1]->encEnvData.domain_vec_noise, 0, + (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) h_envChan[1]->encEnvData.sbr_noise_levels[i] = eData[1].noise_level[i]; - sbrHeaderData->coupling = 0; h_envChan[0]->encEnvData.balance = 0; h_envChan[1]->encEnvData.balance = 0; - payloadbitsLR = FDKsbrEnc_CountSbrChannelPairElement (sbrHeaderData, - hParametricStereo, - sbrBitstreamData, - &h_envChan[0]->encEnvData, - &h_envChan[1]->encEnvData, - hCmonData, - h_con->sbrSyntaxFlags); + payloadbitsLR = FDKsbrEnc_CountSbrChannelPairElement( + sbrHeaderData, hParametricStereo, sbrBitstreamData, + &h_envChan[0]->encEnvData, &h_envChan[1]->encEnvData, hCmonData, + h_con->sbrSyntaxFlags); /* swap saved stored with current values */ - for(ch = 0; ch < nChannels;ch++){ - INT itmp; - for(i=0;i<MAX_FREQ_COEFFS;i++){ + for (ch = 0; ch < nChannels; ch++) { + INT itmp; + for (i = 0; i < MAX_FREQ_COEFFS; i++) { /* swap sfb energies */ - itmp = h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i]; - h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i]=sfbNrgPrevTemp[ch][i]; - sfbNrgPrevTemp[ch][i]=itmp; + itmp = h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i]; + h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i] = + sfbNrgPrevTemp[ch][i]; + sfbNrgPrevTemp[ch][i] = itmp; } - for(i=0;i<MAX_NUM_NOISE_COEFFS;i++){ + for (i = 0; i < MAX_NUM_NOISE_COEFFS; i++) { /* swap noise energies */ - itmp = h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i]; - h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i]=noisePrevTemp[ch][i]; - noisePrevTemp[ch][i]=itmp; - } + itmp = h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i]; + h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i] = + noisePrevTemp[ch][i]; + noisePrevTemp[ch][i] = itmp; + } /* swap update flags */ - itmp = h_envChan[ch]->sbrCodeEnvelope.upDate; - h_envChan[ch]->sbrCodeEnvelope.upDate=upDateNrgTemp[ch]; + itmp = h_envChan[ch]->sbrCodeEnvelope.upDate; + h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch]; upDateNrgTemp[ch] = itmp; - itmp = h_envChan[ch]->sbrCodeNoiseFloor.upDate; - h_envChan[ch]->sbrCodeNoiseFloor.upDate=upDateNoiseTemp[ch]; - upDateNoiseTemp[ch]=itmp; + itmp = h_envChan[ch]->sbrCodeNoiseFloor.upDate; + h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch]; + upDateNoiseTemp[ch] = itmp; /* save domain vecs */ - FDKmemcpy(domainVecTemp[ch],h_envChan[ch]->encEnvData.domain_vec,sizeof(INT)*MAX_ENVELOPES); - FDKmemcpy(domainVecNoiseTemp[ch],h_envChan[ch]->encEnvData.domain_vec_noise,sizeof(INT)*MAX_ENVELOPES); + FDKmemcpy(domainVecTemp[ch], h_envChan[ch]->encEnvData.domain_vec, + sizeof(INT) * MAX_ENVELOPES); + FDKmemcpy(domainVecNoiseTemp[ch], + h_envChan[ch]->encEnvData.domain_vec_noise, + sizeof(INT) * MAX_ENVELOPES); /* forbid time coding in the first envelope in case of a different previous stereomode */ - if(!sbrHeaderData->prev_coupling){ + if (!sbrHeaderData->prev_coupling) { h_envChan[ch]->sbrCodeEnvelope.upDate = 0; h_envChan[ch]->sbrCodeNoiseFloor.upDate = 0; } } /* ch */ - /* Coupling */ - FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg_coupling, eData[0].frame_info->freqRes, - &h_envChan[0]->sbrCodeEnvelope, - h_envChan[0]->encEnvData.domain_vec, 1, - eData[0].frame_info->nEnvelopes, 0, - sbrBitstreamData->HeaderActive); - - FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg_coupling, eData[1].frame_info->freqRes, - &h_envChan[1]->sbrCodeEnvelope, - h_envChan[1]->encEnvData.domain_vec, 1, - eData[1].frame_info->nEnvelopes, 1, - sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope( + eData[0].sfb_nrg_coupling, eData[0].frame_info->freqRes, + &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec, + 1, eData[0].frame_info->nEnvelopes, 0, + sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope( + eData[1].sfb_nrg_coupling, eData[1].frame_info->freqRes, + &h_envChan[1]->sbrCodeEnvelope, h_envChan[1]->encEnvData.domain_vec, + 1, eData[1].frame_info->nEnvelopes, 1, + sbrBitstreamData->HeaderActive); c = 0; for (i = 0; i < eData[0].nEnvelopes; i++) { for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++) { - h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg_coupling[c]; - h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg_coupling[c]; + h_envChan[0]->encEnvData.ienvelope[i][j] = + eData[0].sfb_nrg_coupling[c]; + h_envChan[1]->encEnvData.ienvelope[i][j] = + eData[1].sfb_nrg_coupling[c]; c++; } } - FDKsbrEnc_codeEnvelope (eData[0].noise_level_coupling, fData->res, - &h_envChan[0]->sbrCodeNoiseFloor, - h_envChan[0]->encEnvData.domain_vec_noise, 1, - (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, - sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope(eData[0].noise_level_coupling, fData->res, + &h_envChan[0]->sbrCodeNoiseFloor, + h_envChan[0]->encEnvData.domain_vec_noise, 1, + (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0, + sbrBitstreamData->HeaderActive); for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) - h_envChan[0]->encEnvData.sbr_noise_levels[i] = eData[0].noise_level_coupling[i]; - + h_envChan[0]->encEnvData.sbr_noise_levels[i] = + eData[0].noise_level_coupling[i]; - FDKsbrEnc_codeEnvelope (eData[1].noise_level_coupling, fData->res, - &h_envChan[1]->sbrCodeNoiseFloor, - h_envChan[1]->encEnvData.domain_vec_noise, 1, - (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1, - sbrBitstreamData->HeaderActive); + FDKsbrEnc_codeEnvelope(eData[1].noise_level_coupling, fData->res, + &h_envChan[1]->sbrCodeNoiseFloor, + h_envChan[1]->encEnvData.domain_vec_noise, 1, + (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1, + sbrBitstreamData->HeaderActive); for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) - h_envChan[1]->encEnvData.sbr_noise_levels[i] = eData[1].noise_level_coupling[i]; + h_envChan[1]->encEnvData.sbr_noise_levels[i] = + eData[1].noise_level_coupling[i]; sbrHeaderData->coupling = 1; - h_envChan[0]->encEnvData.balance = 0; - h_envChan[1]->encEnvData.balance = 1; + h_envChan[0]->encEnvData.balance = 0; + h_envChan[1]->encEnvData.balance = 1; - tempFlagLeft = h_envChan[0]->encEnvData.addHarmonicFlag; + tempFlagLeft = h_envChan[0]->encEnvData.addHarmonicFlag; tempFlagRight = h_envChan[1]->encEnvData.addHarmonicFlag; - payloadbitsCOUPLING = - FDKsbrEnc_CountSbrChannelPairElement (sbrHeaderData, - hParametricStereo, - sbrBitstreamData, - &h_envChan[0]->encEnvData, - &h_envChan[1]->encEnvData, - hCmonData, - h_con->sbrSyntaxFlags); - + payloadbitsCOUPLING = FDKsbrEnc_CountSbrChannelPairElement( + sbrHeaderData, hParametricStereo, sbrBitstreamData, + &h_envChan[0]->encEnvData, &h_envChan[1]->encEnvData, hCmonData, + h_con->sbrSyntaxFlags); h_envChan[0]->encEnvData.addHarmonicFlag = tempFlagLeft; h_envChan[1]->encEnvData.addHarmonicFlag = tempFlagRight; if (payloadbitsCOUPLING < payloadbitsLR) { + /* + copy coded coupling envelope and noise data to l/r + */ + for (ch = 0; ch < nChannels; ch++) { + SBR_ENV_TEMP_DATA *ed = &eData[ch]; + FDKmemcpy(ed->sfb_nrg, ed->sfb_nrg_coupling, + MAX_NUM_ENVELOPE_VALUES * sizeof(SCHAR)); + FDKmemcpy(ed->noise_level, ed->noise_level_coupling, + MAX_NUM_NOISE_VALUES * sizeof(SCHAR)); + } - /* - copy coded coupling envelope and noise data to l/r - */ - for(ch = 0; ch < nChannels;ch++){ - SBR_ENV_TEMP_DATA *ed = &eData[ch]; - FDKmemcpy (ed->sfb_nrg, ed->sfb_nrg_coupling, - MAX_NUM_ENVELOPE_VALUES * sizeof (SCHAR)); - FDKmemcpy (ed->noise_level, ed->noise_level_coupling, - MAX_NUM_NOISE_VALUES * sizeof (SCHAR)); - } - - sbrHeaderData->coupling = 1; - h_envChan[0]->encEnvData.balance = 0; - h_envChan[1]->encEnvData.balance = 1; - } - else{ - /* - restore saved l/r items - */ - for(ch = 0; ch < nChannels;ch++){ - - FDKmemcpy (h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev, - sfbNrgPrevTemp[ch], MAX_FREQ_COEFFS * sizeof (SCHAR)); - - h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch]; + sbrHeaderData->coupling = 1; + h_envChan[0]->encEnvData.balance = 0; + h_envChan[1]->encEnvData.balance = 1; + } else { + /* + restore saved l/r items + */ + for (ch = 0; ch < nChannels; ch++) { + FDKmemcpy(h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev, + sfbNrgPrevTemp[ch], MAX_FREQ_COEFFS * sizeof(SCHAR)); - FDKmemcpy (h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev, - noisePrevTemp[ch], MAX_NUM_NOISE_COEFFS * sizeof (SCHAR)); + h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch]; - FDKmemcpy (h_envChan[ch]->encEnvData.domain_vec,domainVecTemp[ch],sizeof(INT)*MAX_ENVELOPES); - FDKmemcpy (h_envChan[ch]->encEnvData.domain_vec_noise,domainVecNoiseTemp[ch],sizeof(INT)*MAX_ENVELOPES); + FDKmemcpy(h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev, + noisePrevTemp[ch], MAX_NUM_NOISE_COEFFS * sizeof(SCHAR)); - h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch]; - } + FDKmemcpy(h_envChan[ch]->encEnvData.domain_vec, domainVecTemp[ch], + sizeof(INT) * MAX_ENVELOPES); + FDKmemcpy(h_envChan[ch]->encEnvData.domain_vec_noise, + domainVecNoiseTemp[ch], sizeof(INT) * MAX_ENVELOPES); - sbrHeaderData->coupling = 0; - h_envChan[0]->encEnvData.balance = 0; - h_envChan[1]->encEnvData.balance = 0; + h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch]; } - } - break; - } /* switch */ + sbrHeaderData->coupling = 0; + h_envChan[0]->encEnvData.balance = 0; + h_envChan[1]->encEnvData.balance = 0; + } + } break; + } /* switch */ /* tell the envelope encoders how long it has been, since we last sent a frame starting with a dF-coded envelope */ - if (stereoMode == SBR_MONO ) { + if (stereoMode == SBR_MONO) { if (h_envChan[0]->encEnvData.domain_vec[0] == TIME) h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac++; else h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac = 0; - } - else { + } else { if (h_envChan[0]->encEnvData.domain_vec[0] == TIME || h_envChan[1]->encEnvData.domain_vec[0] == TIME) { h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac++; h_envChan[1]->sbrCodeEnvelope.dF_edge_incr_fac++; - } - else { + } else { h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac = 0; h_envChan[1]->sbrCodeEnvelope.dF_edge_incr_fac = 0; } @@ -1807,7 +1791,7 @@ FDKsbrEnc_extractSbrEnvelope2 ( /* Send the encoded data to the bitstream */ - for(ch = 0; ch < nChannels;ch++){ + for (ch = 0; ch < nChannels; ch++) { SBR_ENV_TEMP_DATA *ed = &eData[ch]; c = 0; for (i = 0; i < ed->nEnvelopes; i++) { @@ -1817,45 +1801,38 @@ FDKsbrEnc_extractSbrEnvelope2 ( c++; } } - for (i = 0; i < MAX_NUM_NOISE_VALUES; i++){ + for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) { h_envChan[ch]->encEnvData.sbr_noise_levels[i] = ed->noise_level[i]; } - }/* ch */ - + } /* ch */ /* Write bitstream */ if (nChannels == 2) { - FDKsbrEnc_WriteEnvChannelPairElement(sbrHeaderData, - hParametricStereo, - sbrBitstreamData, - &h_envChan[0]->encEnvData, - &h_envChan[1]->encEnvData, - hCmonData, - h_con->sbrSyntaxFlags); - } - else { - FDKsbrEnc_WriteEnvSingleChannelElement(sbrHeaderData, - hParametricStereo, - sbrBitstreamData, - &h_envChan[0]->encEnvData, - hCmonData, - h_con->sbrSyntaxFlags); + FDKsbrEnc_WriteEnvChannelPairElement( + sbrHeaderData, hParametricStereo, sbrBitstreamData, + &h_envChan[0]->encEnvData, &h_envChan[1]->encEnvData, hCmonData, + h_con->sbrSyntaxFlags); + } else { + FDKsbrEnc_WriteEnvSingleChannelElement( + sbrHeaderData, hParametricStereo, sbrBitstreamData, + &h_envChan[0]->encEnvData, hCmonData, h_con->sbrSyntaxFlags); } /* * Update buffers. */ - for (ch=0; ch<nChannels; ch++) - { - int YBufferLength = h_envChan[ch]->sbrExtractEnvelope.no_cols >> h_envChan[ch]->sbrExtractEnvelope.YBufferSzShift; - for (i = 0; i < h_envChan[ch]->sbrExtractEnvelope.YBufferWriteOffset; i++) { - FDKmemcpy(h_envChan[ch]->sbrExtractEnvelope.YBuffer[i], - h_envChan[ch]->sbrExtractEnvelope.YBuffer[i + YBufferLength], - sizeof(FIXP_DBL)*QMF_CHANNELS); - } - h_envChan[ch]->sbrExtractEnvelope.YBufferScale[0] = h_envChan[ch]->sbrExtractEnvelope.YBufferScale[1]; + for (ch = 0; ch < nChannels; ch++) { + int YBufferLength = h_envChan[ch]->sbrExtractEnvelope.no_cols >> + h_envChan[ch]->sbrExtractEnvelope.YBufferSzShift; + for (i = 0; i < h_envChan[ch]->sbrExtractEnvelope.YBufferWriteOffset; i++) { + FDKmemcpy(h_envChan[ch]->sbrExtractEnvelope.YBuffer[i], + h_envChan[ch]->sbrExtractEnvelope.YBuffer[i + YBufferLength], + sizeof(FIXP_DBL) * 64); + } + h_envChan[ch]->sbrExtractEnvelope.YBufferScale[0] = + h_envChan[ch]->sbrExtractEnvelope.YBufferScale[1]; } sbrHeaderData->prev_coupling = sbrHeaderData->coupling; @@ -1869,40 +1846,43 @@ FDKsbrEnc_extractSbrEnvelope2 ( \return error status ****************************************************************************/ -INT -FDKsbrEnc_CreateExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, - INT channel - ,INT chInEl - ,UCHAR* dynamic_RAM - ) -{ +INT FDKsbrEnc_CreateExtractSbrEnvelope(HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, + INT channel, INT chInEl, + UCHAR *dynamic_RAM) { INT i; - FIXP_DBL* YBuffer = GetRam_Sbr_envYBuffer(channel); + FIXP_DBL *rBuffer, *iBuffer; + INT n; + FIXP_DBL *YBufferDyn; - FDKmemclear(hSbrCut,sizeof(SBR_EXTRACT_ENVELOPE)); - hSbrCut->p_YBuffer = YBuffer; + FDKmemclear(hSbrCut, sizeof(SBR_EXTRACT_ENVELOPE)); + if (NULL == (hSbrCut->p_YBuffer = GetRam_Sbr_envYBuffer(channel))) { + goto bail; + } - for (i = 0; i < (QMF_MAX_TIME_SLOTS>>1); i++) { - hSbrCut->YBuffer[i] = YBuffer + (i*QMF_CHANNELS); + for (i = 0; i < (32 >> 1); i++) { + hSbrCut->YBuffer[i] = hSbrCut->p_YBuffer + (i * 64); } - FIXP_DBL *YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM); - INT n=0; - for (; i < QMF_MAX_TIME_SLOTS; i++,n++) { - hSbrCut->YBuffer[i] = YBufferDyn + (n*QMF_CHANNELS); + YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM); + for (n = 0; i < 32; i++, n++) { + hSbrCut->YBuffer[i] = YBufferDyn + (n * 64); } - FIXP_DBL* rBuffer = GetRam_Sbr_envRBuffer(0, dynamic_RAM); - FIXP_DBL* iBuffer = GetRam_Sbr_envIBuffer(0, dynamic_RAM); + rBuffer = GetRam_Sbr_envRBuffer(0, dynamic_RAM); + iBuffer = GetRam_Sbr_envIBuffer(0, dynamic_RAM); - for (i = 0; i < QMF_MAX_TIME_SLOTS; i++) { - hSbrCut->rBuffer[i] = rBuffer + (i*QMF_CHANNELS); - hSbrCut->iBuffer[i] = iBuffer + (i*QMF_CHANNELS); + for (i = 0; i < 32; i++) { + hSbrCut->rBuffer[i] = rBuffer + (i * 64); + hSbrCut->iBuffer[i] = iBuffer + (i * 64); } return 0; -} +bail: + FDKsbrEnc_deleteExtractSbrEnvelope(hSbrCut); + + return -1; +} /***************************************************************************/ /*! @@ -1912,36 +1892,22 @@ FDKsbrEnc_CreateExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, \return error status ****************************************************************************/ -INT -FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, - int no_cols, - int no_rows, - int start_index, - int time_slots, - int time_step, - int tran_off, - ULONG statesInitFlag - ,int chInEl - ,UCHAR* dynamic_RAM - ,UINT sbrSyntaxFlags - ) -{ +INT FDKsbrEnc_InitExtractSbrEnvelope(HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, + int no_cols, int no_rows, int start_index, + int time_slots, int time_step, + int tran_off, ULONG statesInitFlag, + int chInEl, UCHAR *dynamic_RAM, + UINT sbrSyntaxFlags) { int YBufferLength, rBufferLength; int i; if (sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) { int off = TRANSIENT_OFFSET_LD; -#ifndef FULL_DELAY - hSbrCut->YBufferWriteOffset = (no_cols>>1)+off*time_step; -#else - hSbrCut->YBufferWriteOffset = no_cols+off*time_step; -#endif - } else - { - hSbrCut->YBufferWriteOffset = tran_off*time_step; + hSbrCut->YBufferWriteOffset = (no_cols >> 1) + off * time_step; + } else { + hSbrCut->YBufferWriteOffset = tran_off * time_step; } - hSbrCut->rBufferReadOffset = 0; - + hSbrCut->rBufferReadOffset = 0; YBufferLength = hSbrCut->YBufferWriteOffset + no_cols; rBufferLength = no_cols; @@ -1949,7 +1915,6 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, hSbrCut->pre_transient_info[0] = 0; hSbrCut->pre_transient_info[1] = 0; - hSbrCut->no_cols = no_cols; hSbrCut->no_rows = no_rows; hSbrCut->start_index = start_index; @@ -1957,7 +1922,7 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, hSbrCut->time_slots = time_slots; hSbrCut->time_step = time_step; - FDK_ASSERT(no_rows <= QMF_CHANNELS); + FDK_ASSERT(no_rows <= 64); /* Use half the Energy values if time step is 2 or greater */ if (time_step >= 2) @@ -1965,40 +1930,37 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, else hSbrCut->YBufferSzShift = 0; - YBufferLength >>= hSbrCut->YBufferSzShift; + YBufferLength >>= hSbrCut->YBufferSzShift; hSbrCut->YBufferWriteOffset >>= hSbrCut->YBufferSzShift; - FDK_ASSERT(YBufferLength<=QMF_MAX_TIME_SLOTS); + FDK_ASSERT(YBufferLength <= 32); FIXP_DBL *YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM); - INT n=0; - for (i=(QMF_MAX_TIME_SLOTS>>1); i < QMF_MAX_TIME_SLOTS; i++,n++) { - hSbrCut->YBuffer[i] = YBufferDyn + (n*QMF_CHANNELS); + INT n = 0; + for (i = (32 >> 1); i < 32; i++, n++) { + hSbrCut->YBuffer[i] = YBufferDyn + (n * 64); } - if(statesInitFlag) { - for (i=0; i<YBufferLength; i++) { - FDKmemclear( hSbrCut->YBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL)); + if (statesInitFlag) { + for (i = 0; i < YBufferLength; i++) { + FDKmemclear(hSbrCut->YBuffer[i], 64 * sizeof(FIXP_DBL)); } } for (i = 0; i < rBufferLength; i++) { - FDKmemclear( hSbrCut->rBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL)); - FDKmemclear( hSbrCut->iBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL)); + FDKmemclear(hSbrCut->rBuffer[i], 64 * sizeof(FIXP_DBL)); + FDKmemclear(hSbrCut->iBuffer[i], 64 * sizeof(FIXP_DBL)); } - FDKmemclear (hSbrCut->envelopeCompensation,sizeof(UCHAR)*MAX_FREQ_COEFFS); + FDKmemclear(hSbrCut->envelopeCompensation, sizeof(UCHAR) * MAX_FREQ_COEFFS); - if(statesInitFlag) { - hSbrCut->YBufferScale[0] = hSbrCut->YBufferScale[1] = FRACT_BITS-1; + if (statesInitFlag) { + hSbrCut->YBufferScale[0] = hSbrCut->YBufferScale[1] = FRACT_BITS - 1; } return (0); } - - - /***************************************************************************/ /*! @@ -2008,23 +1970,16 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut, ****************************************************************************/ -void -FDKsbrEnc_deleteExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut) -{ - +void FDKsbrEnc_deleteExtractSbrEnvelope(HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut) { if (hSbrCut) { FreeRam_Sbr_envYBuffer(&hSbrCut->p_YBuffer); } } -INT -FDKsbrEnc_GetEnvEstDelay(HANDLE_SBR_EXTRACT_ENVELOPE hSbr) -{ - return hSbr->no_rows*((hSbr->YBufferWriteOffset)*2 /* mult 2 because nrg's are grouped half */ - - hSbr->rBufferReadOffset ); /* in reference hold half spec and calc nrg's on overlapped spec */ - +INT FDKsbrEnc_GetEnvEstDelay(HANDLE_SBR_EXTRACT_ENVELOPE hSbr) { + return hSbr->no_rows * + ((hSbr->YBufferWriteOffset) * + 2 /* mult 2 because nrg's are grouped half */ + - hSbr->rBufferReadOffset); /* in reference hold half spec and calc + nrg's on overlapped spec */ } - - - - |