aboutsummaryrefslogtreecommitdiffstats
path: root/libPCMutils/src/pcmdmx_lib.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libPCMutils/src/pcmdmx_lib.cpp')
-rw-r--r--libPCMutils/src/pcmdmx_lib.cpp2659
1 files changed, 2659 insertions, 0 deletions
diff --git a/libPCMutils/src/pcmdmx_lib.cpp b/libPCMutils/src/pcmdmx_lib.cpp
new file mode 100644
index 0000000..b09a848
--- /dev/null
+++ b/libPCMutils/src/pcmdmx_lib.cpp
@@ -0,0 +1,2659 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** PCM utility library ******************************
+
+ Author(s): Christian Griebel
+
+ Description: Defines functions that perform downmixing or a simple channel
+ expansion in the PCM time domain.
+
+*******************************************************************************/
+
+#include "pcmdmx_lib.h"
+
+#include "genericStds.h"
+#include "fixpoint_math.h"
+#include "FDK_core.h"
+
+/* library version */
+#include "version.h"
+/* library title */
+#define PCMDMX_LIB_TITLE "PCM Downmix Lib"
+
+#define FALSE 0
+#define TRUE 1
+#define IN 0
+#define OUT 1
+
+/* Type definitions: */
+#define FIXP_DMX FIXP_SGL
+#define FX_DMX2FX_DBL(x) FX_SGL2FX_DBL((FIXP_SGL)(x))
+#define FX_DBL2FX_DMX(x) FX_DBL2FX_SGL(x)
+#define FL2FXCONST_DMX(x) FL2FXCONST_SGL(x)
+#define MAXVAL_DMX MAXVAL_SGL
+#define FX_DMX2SHRT(x) ((SHORT)(x))
+#define FX_DMX2FL(x) FX_DBL2FL(FX_DMX2FX_DBL(x))
+
+/* Fixed and unique channel group indices.
+ * The last group index has to be smaller than ( 4 ). */
+#define CH_GROUP_FRONT (0)
+#define CH_GROUP_SIDE (1)
+#define CH_GROUP_REAR (2)
+#define CH_GROUP_LFE (3)
+
+/* Fixed and unique channel plain indices. */
+#define CH_PLAIN_NORMAL (0)
+#define CH_PLAIN_TOP (1)
+#define CH_PLAIN_BOTTOM (2)
+
+/* The ordering of the following fixed channel labels has to be in MPEG-4 style.
+ * From the center to the back with left and right channel interleaved (starting
+ * with left). The last channel label index has to be smaller than ( 8 ). */
+#define CENTER_FRONT_CHANNEL (0) /* C */
+#define LEFT_FRONT_CHANNEL (1) /* L */
+#define RIGHT_FRONT_CHANNEL (2) /* R */
+#define LEFT_REAR_CHANNEL \
+ (3) /* Lr (aka left back channel) or center back channel */
+#define RIGHT_REAR_CHANNEL (4) /* Rr (aka right back channel) */
+#define LOW_FREQUENCY_CHANNEL (5) /* Lf */
+#define LEFT_MULTIPRPS_CHANNEL (6) /* Left multipurpose channel */
+#define RIGHT_MULTIPRPS_CHANNEL (7) /* Right multipurpose channel */
+
+/* 22.2 channel specific fixed channel lables: */
+#define LEFT_SIDE_CHANNEL (8) /* Lss */
+#define RIGHT_SIDE_CHANNEL (9) /* Rss */
+#define CENTER_REAR_CHANNEL (10) /* Cs */
+#define CENTER_FRONT_CHANNEL_TOP (11) /* Cv */
+#define LEFT_FRONT_CHANNEL_TOP (12) /* Lv */
+#define RIGHT_FRONT_CHANNEL_TOP (13) /* Rv */
+#define LEFT_SIDE_CHANNEL_TOP (14) /* Lvss */
+#define RIGHT_SIDE_CHANNEL_TOP (15) /* Rvss */
+#define CENTER_SIDE_CHANNEL_TOP (16) /* Ts */
+#define LEFT_REAR_CHANNEL_TOP (17) /* Lvr */
+#define RIGHT_REAR_CHANNEL_TOP (18) /* Rvr */
+#define CENTER_REAR_CHANNEL_TOP (19) /* Cvr */
+#define CENTER_FRONT_CHANNEL_BOTTOM (20) /* Cb */
+#define LEFT_FRONT_CHANNEL_BOTTOM (21) /* Lb */
+#define RIGHT_FRONT_CHANNEL_BOTTOM (22) /* Rb */
+#define LOW_FREQUENCY_CHANNEL_2 (23) /* LFE2 */
+
+/* More constants */
+#define ONE_CHANNEL (1)
+#define TWO_CHANNEL (2)
+#define SIX_CHANNEL (6)
+#define EIGHT_CHANNEL (8)
+#define TWENTY_FOUR_CHANNEL (24)
+
+#define PCMDMX_THRESHOLD_MAP_HEAT_1 (0) /* Store only exact matches */
+#define PCMDMX_THRESHOLD_MAP_HEAT_2 (20)
+#define PCMDMX_THRESHOLD_MAP_HEAT_3 \
+ (256) /* Do not assign normal channels to LFE */
+
+#define SP_Z_NRM (0)
+#define SP_Z_TOP (2)
+#define SP_Z_BOT (-2)
+#define SP_Z_LFE (-18)
+#define SP_Z_MUL (8) /* Should be smaller than SP_Z_LFE */
+
+typedef struct {
+ SCHAR x; /* horizontal position: center (0), left (-), right (+) */
+ SCHAR y; /* deepth position: front, side, back, position */
+ SCHAR z; /* heigth positions: normal, top, bottom, lfe */
+} PCM_DMX_SPEAKER_POSITION;
+
+/* CAUTION: The maximum x-value should be less or equal to
+ * PCMDMX_SPKR_POS_X_MAX_WIDTH. */
+static const PCM_DMX_SPEAKER_POSITION spkrSlotPos[] = {
+ /* x, y, z */
+ {0, 0, SP_Z_NRM}, /* 0 CENTER_FRONT_CHANNEL */
+ {-2, 0, SP_Z_NRM}, /* 1 LEFT_FRONT_CHANNEL */
+ {2, 0, SP_Z_NRM}, /* 2 RIGHT_FRONT_CHANNEL */
+ {-3, 4, SP_Z_NRM}, /* 3 LEFT_REAR_CHANNEL */
+ {3, 4, SP_Z_NRM}, /* 4 RIGHT_REAR_CHANNEL */
+ {0, 0, SP_Z_LFE}, /* 5 LOW_FREQUENCY_CHANNEL */
+ {-2, 2, SP_Z_MUL}, /* 6 LEFT_MULTIPRPS_CHANNEL */
+ {2, 2, SP_Z_MUL} /* 7 RIGHT_MULTIPRPS_CHANNEL */
+};
+
+/* List of packed channel modes */
+typedef enum { /* CH_MODE_<numFrontCh>_<numSideCh>_<numBackCh>_<numLfCh> */
+ CH_MODE_UNDEFINED = 0x0000,
+ /* 1 channel */
+ CH_MODE_1_0_0_0 = 0x0001, /* chCfg 1 */
+ /* 2 channels */
+ CH_MODE_2_0_0_0 = 0x0002 /* chCfg 2 */
+ /* 3 channels */
+ ,
+ CH_MODE_3_0_0_0 = 0x0003, /* chCfg 3 */
+ CH_MODE_2_0_1_0 = 0x0102,
+ CH_MODE_2_0_0_1 = 0x1002,
+ /* 4 channels */
+ CH_MODE_3_0_1_0 = 0x0103, /* chCfg 4 */
+ CH_MODE_2_0_2_0 = 0x0202,
+ CH_MODE_2_0_1_1 = 0x1102,
+ CH_MODE_4_0_0_0 = 0x0004,
+ /* 5 channels */
+ CH_MODE_3_0_2_0 = 0x0203, /* chCfg 5 */
+ CH_MODE_2_0_2_1 = 0x1202,
+ CH_MODE_3_0_1_1 = 0x1103,
+ CH_MODE_3_2_0_0 = 0x0023,
+ CH_MODE_5_0_0_0 = 0x0005,
+ /* 6 channels */
+ CH_MODE_3_0_2_1 = 0x1203, /* chCfg 6 */
+ CH_MODE_3_2_0_1 = 0x1023,
+ CH_MODE_3_2_1_0 = 0x0123,
+ CH_MODE_5_0_1_0 = 0x0105,
+ CH_MODE_6_0_0_0 = 0x0006,
+ /* 7 channels */
+ CH_MODE_2_2_2_1 = 0x1222,
+ CH_MODE_3_0_3_1 = 0x1303, /* chCfg 11 */
+ CH_MODE_3_2_1_1 = 0x1123,
+ CH_MODE_3_2_2_0 = 0x0223,
+ CH_MODE_3_0_2_2 = 0x2203,
+ CH_MODE_5_0_2_0 = 0x0205,
+ CH_MODE_5_0_1_1 = 0x1105,
+ CH_MODE_7_0_0_0 = 0x0007,
+ /* 8 channels */
+ CH_MODE_3_2_2_1 = 0x1223,
+ CH_MODE_3_0_4_1 = 0x1403, /* chCfg 12 */
+ CH_MODE_5_0_2_1 = 0x1205, /* chCfg 7 + 14 */
+ CH_MODE_5_2_1_0 = 0x0125,
+ CH_MODE_3_2_1_2 = 0x2123,
+ CH_MODE_2_2_2_2 = 0x2222,
+ CH_MODE_3_0_3_2 = 0x2303,
+ CH_MODE_8_0_0_0 = 0x0008
+
+} PCM_DMX_CHANNEL_MODE;
+
+/* These are the channel configurations linked to
+ the number of output channels give by the user: */
+static const PCM_DMX_CHANNEL_MODE outChModeTable[(8) + 1] = {
+ CH_MODE_UNDEFINED,
+ CH_MODE_1_0_0_0, /* 1 channel */
+ CH_MODE_2_0_0_0 /* 2 channels */
+ ,
+ CH_MODE_3_0_0_0, /* 3 channels */
+ CH_MODE_3_0_1_0, /* 4 channels */
+ CH_MODE_3_0_2_0, /* 5 channels */
+ CH_MODE_3_0_2_1 /* 6 channels */
+ ,
+ CH_MODE_3_0_3_1, /* 7 channels */
+ CH_MODE_3_0_4_1 /* 8 channels */
+};
+
+static const FIXP_DMX abMixLvlValueTab[8] = {
+ FL2FXCONST_DMX(0.500f), /* scaled by 1 */
+ FL2FXCONST_DMX(0.841f), FL2FXCONST_DMX(0.707f), FL2FXCONST_DMX(0.596f),
+ FL2FXCONST_DMX(0.500f), FL2FXCONST_DMX(0.422f), FL2FXCONST_DMX(0.355f),
+ FL2FXCONST_DMX(0.0f)};
+
+static const FIXP_DMX lfeMixLvlValueTab[16] = {
+ /* value, scale */
+ FL2FXCONST_DMX(0.7905f), /* 2 */
+ FL2FXCONST_DMX(0.5000f), /* 2 */
+ FL2FXCONST_DMX(0.8395f), /* 1 */
+ FL2FXCONST_DMX(0.7065f), /* 1 */
+ FL2FXCONST_DMX(0.5945f), /* 1 */
+ FL2FXCONST_DMX(0.500f), /* 1 */
+ FL2FXCONST_DMX(0.841f), /* 0 */
+ FL2FXCONST_DMX(0.707f), /* 0 */
+ FL2FXCONST_DMX(0.596f), /* 0 */
+ FL2FXCONST_DMX(0.500f), /* 0 */
+ FL2FXCONST_DMX(0.316f), /* 0 */
+ FL2FXCONST_DMX(0.178f), /* 0 */
+ FL2FXCONST_DMX(0.100f), /* 0 */
+ FL2FXCONST_DMX(0.032f), /* 0 */
+ FL2FXCONST_DMX(0.010f), /* 0 */
+ FL2FXCONST_DMX(0.000f) /* 0 */
+};
+
+/* MPEG matrix mixdown:
+ Set 1: L' = (1 + 2^-0.5 + A )^-1 * [L + C * 2^-0.5 + A * Ls];
+ R' = (1 + 2^-0.5 + A )^-1 * [R + C * 2^-0.5 + A * Rs];
+
+ Set 2: L' = (1 + 2^-0.5 + 2A )^-1 * [L + C * 2^-0.5 - A * (Ls + Rs)];
+ R' = (1 + 2^-0.5 + 2A )^-1 * [R + C * 2^-0.5 + A * (Ls + Rs)];
+
+ M = (3 + 2A)^-1 * [L + C + R + A*(Ls + Rs)];
+*/
+static const FIXP_DMX mpegMixDownIdx2Coef[4] = {
+ FL2FXCONST_DMX(0.70710678f), FL2FXCONST_DMX(0.5f),
+ FL2FXCONST_DMX(0.35355339f), FL2FXCONST_DMX(0.0f)};
+
+static const FIXP_DMX mpegMixDownIdx2PreFact[3][4] = {
+ {/* Set 1: */
+ FL2FXCONST_DMX(0.4142135623730950f), FL2FXCONST_DMX(0.4530818393219728f),
+ FL2FXCONST_DMX(0.4852813742385703f), FL2FXCONST_DMX(0.5857864376269050f)},
+ {/* Set 2: */
+ FL2FXCONST_DMX(0.3203772410170407f), FL2FXCONST_DMX(0.3693980625181293f),
+ FL2FXCONST_DMX(0.4142135623730950f), FL2FXCONST_DMX(0.5857864376269050f)},
+ {/* Mono DMX set: */
+ FL2FXCONST_DMX(0.2265409196609864f), FL2FXCONST_DMX(0.25f),
+ FL2FXCONST_DMX(0.2697521433898179f), FL2FXCONST_DMX(0.3333333333333333f)}};
+
+#define TYPE_NONE (0x00)
+#define TYPE_PCE_DATA (0x01)
+#define TYPE_DSE_CLEV_DATA (0x02)
+#define TYPE_DSE_SLEV_DATA (0x04)
+#define TYPE_DSE_DMIX_AB_DATA (0x08)
+#define TYPE_DSE_DMIX_LFE_DATA (0x10)
+#define TYPE_DSE_DMX_GAIN_DATA (0x20)
+#define TYPE_DSE_DMX_CGL_DATA (0x40)
+#define TYPE_DSE_DATA (0x7E)
+
+typedef struct {
+ UINT typeFlags;
+ /* From DSE */
+ UCHAR cLevIdx;
+ UCHAR sLevIdx;
+ UCHAR dmixIdxA;
+ UCHAR dmixIdxB;
+ UCHAR dmixIdxLfe;
+ UCHAR dmxGainIdx2;
+ UCHAR dmxGainIdx5;
+ /* From PCE */
+ UCHAR matrixMixdownIdx;
+ /* Attributes: */
+ SCHAR pseudoSurround; /*!< If set to 1 the signal is pseudo surround
+ compatible. The value 0 tells that it is not. If the
+ value is -1 the information is not available. */
+ UINT expiryCount; /*!< Counter to monitor the life time of a meta data set. */
+
+} DMX_BS_META_DATA;
+
+/* Default metadata */
+static const DMX_BS_META_DATA dfltMetaData = {0, 2, 2, 2, 2, 15,
+ 0, 0, 0, -1, 0};
+
+/* Dynamic (user) params:
+ See the definition of PCMDMX_PARAM for details on the specific fields. */
+typedef struct {
+ DMX_PROFILE_TYPE dmxProfile; /*!< Linked to DMX_PRFL_STANDARD */
+ UINT expiryFrame; /*!< Linked to DMX_BS_DATA_EXPIRY_FRAME */
+ DUAL_CHANNEL_MODE dualChannelMode; /*!< Linked to DMX_DUAL_CHANNEL_MODE */
+ PSEUDO_SURROUND_MODE
+ pseudoSurrMode; /*!< Linked to DMX_PSEUDO_SURROUND_MODE */
+ SHORT numOutChannelsMin; /*!< Linked to MIN_NUMBER_OF_OUTPUT_CHANNELS */
+ SHORT numOutChannelsMax; /*!< Linked to MAX_NUMBER_OF_OUTPUT_CHANNELS */
+ UCHAR frameDelay; /*!< Linked to DMX_BS_DATA_DELAY */
+
+} PCM_DMX_USER_PARAMS;
+
+/* Modules main data structure: */
+struct PCM_DMX_INSTANCE {
+ /* Metadata */
+ DMX_BS_META_DATA bsMetaData[(1) + 1];
+ PCM_DMX_USER_PARAMS userParams;
+
+ UCHAR applyProcessing; /*!< Flag to en-/disable modules processing.
+ The max channel limiting is done independently. */
+};
+
+/* Memory allocation macro */
+C_ALLOC_MEM(PcmDmxInstance, struct PCM_DMX_INSTANCE, 1)
+
+static UINT getSpeakerDistance(PCM_DMX_SPEAKER_POSITION posA,
+ PCM_DMX_SPEAKER_POSITION posB) {
+ PCM_DMX_SPEAKER_POSITION diff;
+
+ diff.x = posA.x - posB.x;
+ diff.y = posA.y - posB.y;
+ diff.z = posA.z - posB.z;
+
+ return ((diff.x * diff.x) + (diff.y * diff.y) + (diff.z * diff.z));
+}
+
+static PCM_DMX_SPEAKER_POSITION getSpeakerPos(AUDIO_CHANNEL_TYPE chType,
+ UCHAR chIndex, UCHAR numChInGrp) {
+#define PCMDMX_SPKR_POS_X_MAX_WIDTH (3)
+#define PCMDMX_SPKR_POS_Y_SPREAD (2)
+#define PCMDMX_SPKR_POS_Z_SPREAD (2)
+
+ PCM_DMX_SPEAKER_POSITION spkrPos = {0, 0, 0};
+ AUDIO_CHANNEL_TYPE chGrp = (AUDIO_CHANNEL_TYPE)(chType & 0x0F);
+ unsigned fHasCenter = numChInGrp & 0x1;
+ unsigned chGrpWidth = numChInGrp >> 1;
+ unsigned fIsCenter = 0;
+ unsigned fIsLfe = (chType == ACT_LFE) ? 1 : 0;
+ int offset = 0;
+
+ FDK_ASSERT(chIndex < numChInGrp);
+
+ if ((chGrp == ACT_FRONT) && fHasCenter) {
+ if (chIndex == 0) fIsCenter = 1;
+ chIndex = (UCHAR)fMax(0, chIndex - 1);
+ } else if (fHasCenter && (chIndex == numChInGrp - 1)) {
+ fIsCenter = 1;
+ }
+ /* now all even indices are left (-) */
+ if (!fIsCenter) {
+ offset = chIndex >> 1;
+ if ((chGrp > ACT_FRONT) && (chType != ACT_SIDE) && !fIsLfe) {
+ /* the higher the index the lower the distance to the center position */
+ offset = chGrpWidth - fHasCenter - offset;
+ }
+ if ((chIndex & 0x1) == 0) { /* even */
+ offset = -(offset + 1);
+ } else {
+ offset += 1;
+ }
+ }
+ /* apply the offset */
+ if (chType == ACT_SIDE) {
+ spkrPos.x = (offset < 0) ? -PCMDMX_SPKR_POS_X_MAX_WIDTH
+ : PCMDMX_SPKR_POS_X_MAX_WIDTH;
+ spkrPos.y = /* 1x */ PCMDMX_SPKR_POS_Y_SPREAD + (SCHAR)fAbs(offset) - 1;
+ spkrPos.z = 0;
+ } else {
+ unsigned spread =
+ ((chGrpWidth == 1) && (!fIsLfe)) ? PCMDMX_SPKR_POS_X_MAX_WIDTH - 1 : 1;
+ spkrPos.x = (SCHAR)offset * (SCHAR)spread;
+ if (fIsLfe) {
+ spkrPos.y = 0;
+ spkrPos.z = SP_Z_LFE;
+ } else {
+ spkrPos.y = (SCHAR)fMax((SCHAR)chGrp - 1, 0) * PCMDMX_SPKR_POS_Y_SPREAD;
+ spkrPos.z = (SCHAR)chType >> 4;
+ if (spkrPos.z == 2) { /* ACT_BOTTOM */
+ spkrPos.z = -1;
+ }
+ spkrPos.z *= PCMDMX_SPKR_POS_Z_SPREAD;
+ }
+ }
+ return spkrPos;
+}
+
+/** Return the channel mode of a given horizontal channel plain (normal, top,
+ *bottom) for a given channel configuration. NOTE: This function shall get
+ *obsolete once the channel mode has been changed to be nonambiguous.
+ * @param [in] Index of the requested channel plain.
+ * @param [in] The packed channel mode for the complete channel configuration
+ *(all plains).
+ * @param [in] The MPEG-4 channel configuration index which is necessary in
+ *cases where the (packed) channel mode is ambiguous.
+ * @returns Returns the packed channel mode of the requested channel plain.
+ **/
+static PCM_DMX_CHANNEL_MODE getChMode4Plain(
+ const int plainIndex, const PCM_DMX_CHANNEL_MODE totChMode,
+ const int chCfg) {
+ PCM_DMX_CHANNEL_MODE plainChMode = totChMode;
+
+ switch (totChMode) {
+ case CH_MODE_5_0_2_1:
+ if (chCfg == 14) {
+ switch (plainIndex) {
+ case CH_PLAIN_BOTTOM:
+ plainChMode = (PCM_DMX_CHANNEL_MODE)0x0000;
+ break;
+ case CH_PLAIN_TOP:
+ plainChMode = CH_MODE_2_0_0_0;
+ break;
+ case CH_PLAIN_NORMAL:
+ default:
+ plainChMode = CH_MODE_3_0_2_1;
+ break;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+
+ return plainChMode;
+}
+
+static inline UINT getIdxSum(UCHAR numCh) {
+ UINT result = 0;
+ int i;
+ for (i = 1; i < numCh; i += 1) {
+ result += i;
+ }
+ return result;
+}
+
+/** Evaluate a given channel configuration and extract a packed channel mode. In
+ *addition the function generates a channel offset table for the mapping to the
+ *internal representation. This function is the inverse to the
+ *getChannelDescription() routine.
+ * @param [in] The total number of channels of the given configuration.
+ * @param [in] Array holding the corresponding channel types for each channel.
+ * @param [in] Array holding the corresponding channel type indices for each
+ *channel.
+ * @param [out] Array where the buffer offsets for each channel are stored into.
+ * @param [out] The generated packed channel mode that represents the given
+ *input configuration.
+ * @returns Returns an error code.
+ **/
+static PCMDMX_ERROR getChannelMode(
+ const UINT numChannels, /* in */
+ const AUDIO_CHANNEL_TYPE channelType[], /* in */
+ UCHAR channelIndices[], /* in */
+ UCHAR offsetTable[(8)], /* out */
+ PCM_DMX_CHANNEL_MODE *chMode /* out */
+) {
+ UINT idxSum[(3)][(4)];
+ UCHAR numCh[(3)][(4)];
+ UCHAR mapped[(8)];
+ PCM_DMX_SPEAKER_POSITION spkrPos[(8)];
+ PCMDMX_ERROR err = PCMDMX_OK;
+ unsigned ch, numMappedInChs = 0;
+ unsigned startSlot;
+ unsigned stopSlot = LOW_FREQUENCY_CHANNEL;
+
+ FDK_ASSERT(channelType != NULL);
+ FDK_ASSERT(channelIndices != NULL);
+ FDK_ASSERT(offsetTable != NULL);
+ FDK_ASSERT(chMode != NULL);
+
+ /* For details see ISO/IEC 13818-7:2005(E), 8.5.3 Channel configuration */
+ FDKmemclear(idxSum, (3) * (4) * sizeof(UINT));
+ FDKmemclear(numCh, (3) * (4) * sizeof(UCHAR));
+ FDKmemclear(mapped, (8) * sizeof(UCHAR));
+ FDKmemclear(spkrPos, (8) * sizeof(PCM_DMX_SPEAKER_POSITION));
+ /* Init output */
+ FDKmemset(offsetTable, 255, (8) * sizeof(UCHAR));
+ *chMode = CH_MODE_UNDEFINED;
+
+ /* Determine how many channels are assigned to each channels each group: */
+ for (ch = 0; ch < numChannels; ch += 1) {
+ unsigned chGrp = fMax(
+ (channelType[ch] & 0x0F) - 1,
+ 0); /* Assign all undefined channels (ACT_NONE) to front channels. */
+ numCh[channelType[ch] >> 4][chGrp] += 1;
+ idxSum[channelType[ch] >> 4][chGrp] += channelIndices[ch];
+ }
+ if (numChannels > TWO_CHANNEL) {
+ int chGrp;
+ /* Sanity check on the indices */
+ for (chGrp = 0; chGrp < (4); chGrp += 1) {
+ int plane;
+ for (plane = 0; plane < (3); plane += 1) {
+ if (idxSum[plane][chGrp] != getIdxSum(numCh[plane][chGrp])) {
+ unsigned idxCnt = 0;
+ for (ch = 0; ch < numChannels; ch += 1) {
+ if (channelType[ch] ==
+ (AUDIO_CHANNEL_TYPE)((plane << 4) | ((chGrp + 1) & 0xF))) {
+ channelIndices[ch] = idxCnt++;
+ }
+ }
+ err = PCMDMX_INVALID_CH_CONFIG;
+ }
+ }
+ }
+ }
+ /* Mapping HEAT 1:
+ * Determine the speaker position of each input channel and map it to a
+ * internal slot if it matches exactly (with zero distance). */
+ for (ch = 0; ch < numChannels; ch += 1) {
+ UINT mapDist = (unsigned)-1;
+ unsigned mapCh, mapPos = (unsigned)-1;
+ unsigned chGrp = fMax(
+ (channelType[ch] & 0x0F) - 1,
+ 0); /* Assign all undefined channels (ACT_NONE) to front channels. */
+
+ spkrPos[ch] = getSpeakerPos(channelType[ch], channelIndices[ch],
+ numCh[channelType[ch] >> 4][chGrp]);
+
+ for (mapCh = 0; mapCh <= stopSlot; mapCh += 1) {
+ if (offsetTable[mapCh] == 255) {
+ UINT dist = getSpeakerDistance(spkrPos[ch], spkrSlotPos[mapCh]);
+ if (dist < mapDist) {
+ mapPos = mapCh;
+ mapDist = dist;
+ }
+ }
+ }
+ if (mapDist <= PCMDMX_THRESHOLD_MAP_HEAT_1) {
+ offsetTable[mapPos] = (UCHAR)ch;
+ mapped[ch] = 1;
+ numMappedInChs += 1;
+ }
+ }
+
+ /* Mapping HEAT 2:
+ * Go through the unmapped input channels and assign them to the internal
+ * slots that matches best (least distance). But assign center channels to
+ * center slots only. */
+ startSlot =
+ ((numCh[CH_PLAIN_NORMAL][CH_GROUP_FRONT] & 0x1) || (numChannels >= (8)))
+ ? 0
+ : 1;
+ for (ch = 0; ch < (unsigned)numChannels; ch += 1) {
+ if (!mapped[ch]) {
+ UINT mapDist = (unsigned)-1;
+ unsigned mapCh, mapPos = (unsigned)-1;
+
+ for (mapCh = startSlot; mapCh <= stopSlot; mapCh += 1) {
+ if (offsetTable[mapCh] == 255) {
+ UINT dist = getSpeakerDistance(spkrPos[ch], spkrSlotPos[mapCh]);
+ if (dist < mapDist) {
+ mapPos = mapCh;
+ mapDist = dist;
+ }
+ }
+ }
+ if ((mapPos <= stopSlot) && (mapDist < PCMDMX_THRESHOLD_MAP_HEAT_2) &&
+ (((spkrPos[ch].x != 0) && (spkrSlotPos[mapPos].x != 0)) /* XOR */
+ || ((spkrPos[ch].x == 0) &&
+ (spkrSlotPos[mapPos].x ==
+ 0)))) { /* Assign center channels to center slots only. */
+ offsetTable[mapPos] = (UCHAR)ch;
+ mapped[ch] = 1;
+ numMappedInChs += 1;
+ }
+ }
+ }
+
+ /* Mapping HEAT 3:
+ * Assign the rest by searching for the nearest input channel for each
+ * internal slot. */
+ for (ch = startSlot; (ch < (8)) && (numMappedInChs < numChannels); ch += 1) {
+ if (offsetTable[ch] == 255) {
+ UINT mapDist = (unsigned)-1;
+ unsigned mapCh, mapPos = (unsigned)-1;
+
+ for (mapCh = 0; mapCh < (unsigned)numChannels; mapCh += 1) {
+ if (!mapped[mapCh]) {
+ UINT dist = getSpeakerDistance(spkrPos[mapCh], spkrSlotPos[ch]);
+ if (dist < mapDist) {
+ mapPos = mapCh;
+ mapDist = dist;
+ }
+ }
+ }
+ if (mapDist < PCMDMX_THRESHOLD_MAP_HEAT_3) {
+ offsetTable[ch] = (UCHAR)mapPos;
+ mapped[mapPos] = 1;
+ numMappedInChs += 1;
+ if ((spkrPos[mapPos].x == 0) && (spkrSlotPos[ch].x != 0) &&
+ (numChannels <
+ (8))) { /* Skip the paired slot if we assigned a center channel. */
+ ch += 1;
+ }
+ }
+ }
+ }
+
+ /* Finaly compose the channel mode */
+ for (ch = 0; ch < (4); ch += 1) {
+ int plane, numChInGrp = 0;
+ for (plane = 0; plane < (3); plane += 1) {
+ numChInGrp += numCh[plane][ch];
+ }
+ *chMode = (PCM_DMX_CHANNEL_MODE)(*chMode | (numChInGrp << (ch * 4)));
+ }
+
+ return err;
+}
+
+/** Generate a channel offset table and complete channel description for a given
+ *(packed) channel mode. This function is the inverse to the getChannelMode()
+ *routine but does not support weird channel configurations.
+ * @param [in] The packed channel mode of the configuration to be processed.
+ * @param [in] Array containing the channel mapping to be used (From MPEG PCE
+ *ordering to whatever is required).
+ * @param [out] Array where corresponding channel types for each channels are
+ *stored into.
+ * @param [out] Array where corresponding channel type indices for each output
+ *channel are stored into.
+ * @param [out] Array where the buffer offsets for each channel are stored into.
+ * @returns None.
+ **/
+static void getChannelDescription(
+ const PCM_DMX_CHANNEL_MODE chMode, /* in */
+ const FDK_channelMapDescr *const mapDescr, /* in */
+ AUDIO_CHANNEL_TYPE channelType[], /* out */
+ UCHAR channelIndices[], /* out */
+ UCHAR offsetTable[(8)] /* out */
+) {
+ int grpIdx, plainIdx, numPlains = 1, numTotalChannels = 0;
+ int chCfg, ch = 0;
+
+ FDK_ASSERT(channelType != NULL);
+ FDK_ASSERT(channelIndices != NULL);
+ FDK_ASSERT(mapDescr != NULL);
+ FDK_ASSERT(offsetTable != NULL);
+
+ /* Init output arrays */
+ FDKmemclear(channelType, (8) * sizeof(AUDIO_CHANNEL_TYPE));
+ FDKmemclear(channelIndices, (8) * sizeof(UCHAR));
+ FDKmemset(offsetTable, 255, (8) * sizeof(UCHAR));
+
+ /* Summerize to get the total number of channels */
+ for (grpIdx = 0; grpIdx < (4); grpIdx += 1) {
+ numTotalChannels += (chMode >> (grpIdx * 4)) & 0xF;
+ }
+
+ /* Get the appropriate channel map */
+ switch (chMode) {
+ case CH_MODE_1_0_0_0:
+ case CH_MODE_2_0_0_0:
+ case CH_MODE_3_0_0_0:
+ case CH_MODE_3_0_1_0:
+ case CH_MODE_3_0_2_0:
+ case CH_MODE_3_0_2_1:
+ chCfg = numTotalChannels;
+ break;
+ case CH_MODE_3_0_3_1:
+ chCfg = 11;
+ break;
+ case CH_MODE_3_0_4_1:
+ chCfg = 12;
+ break;
+ case CH_MODE_5_0_2_1:
+ chCfg = 7;
+ break;
+ default:
+ /* fallback */
+ chCfg = 0;
+ break;
+ }
+
+ /* Compose channel offset table */
+
+ for (plainIdx = 0; plainIdx < numPlains; plainIdx += 1) {
+ PCM_DMX_CHANNEL_MODE plainChMode;
+ UCHAR numChInGrp[(4)];
+
+ plainChMode = getChMode4Plain(plainIdx, chMode, chCfg);
+
+ /* Extract the number of channels per group */
+ numChInGrp[CH_GROUP_FRONT] = plainChMode & 0xF;
+ numChInGrp[CH_GROUP_SIDE] = (plainChMode >> 4) & 0xF;
+ numChInGrp[CH_GROUP_REAR] = (plainChMode >> 8) & 0xF;
+ numChInGrp[CH_GROUP_LFE] = (plainChMode >> 12) & 0xF;
+
+ /* Non-symmetric channels */
+ if ((numChInGrp[CH_GROUP_FRONT] & 0x1) && (plainIdx == CH_PLAIN_NORMAL)) {
+ /* Odd number of front channels -> we have a center channel.
+ In MPEG-4 the center has the index 0. */
+ int mappedIdx = FDK_chMapDescr_getMapValue(mapDescr, (UCHAR)ch, chCfg);
+ offsetTable[CENTER_FRONT_CHANNEL] = (UCHAR)mappedIdx;
+ channelType[mappedIdx] = ACT_FRONT;
+ channelIndices[mappedIdx] = 0;
+ ch += 1;
+ }
+
+ for (grpIdx = 0; grpIdx < (4); grpIdx += 1) {
+ AUDIO_CHANNEL_TYPE type = ACT_NONE;
+ int chMapPos = 0, maxChannels = 0;
+ int chIdx = 0; /* Index of channel within the specific group */
+
+ switch (grpIdx) {
+ case CH_GROUP_FRONT:
+ type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_FRONT);
+ switch (plainIdx) {
+ default:
+ chMapPos = LEFT_FRONT_CHANNEL;
+ chIdx = numChInGrp[grpIdx] & 0x1;
+ break;
+ }
+ maxChannels = 3;
+ break;
+ case CH_GROUP_SIDE:
+ /* Always map side channels to the multipurpose group. */
+ type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_SIDE);
+ if (plainIdx == CH_PLAIN_TOP) {
+ chMapPos = LEFT_SIDE_CHANNEL_TOP;
+ maxChannels = 3;
+ } else {
+ chMapPos = LEFT_MULTIPRPS_CHANNEL;
+ maxChannels = 2;
+ }
+ break;
+ case CH_GROUP_REAR:
+ type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_BACK);
+ if (plainIdx == CH_PLAIN_TOP) {
+ chMapPos = LEFT_REAR_CHANNEL_TOP;
+ maxChannels = 3;
+ } else {
+ chMapPos = LEFT_REAR_CHANNEL;
+ maxChannels = 2;
+ }
+ break;
+ case CH_GROUP_LFE:
+ if (plainIdx == CH_PLAIN_NORMAL) {
+ type = ACT_LFE;
+ chMapPos = LOW_FREQUENCY_CHANNEL;
+ maxChannels = 1;
+ }
+ break;
+ default:
+ break;
+ }
+
+ /* Map all channels in this group */
+ for (; chIdx < numChInGrp[grpIdx]; chIdx += 1) {
+ int mappedIdx = FDK_chMapDescr_getMapValue(mapDescr, (UCHAR)ch, chCfg);
+ if ((chIdx == maxChannels) || (offsetTable[chMapPos] < 255)) {
+ /* No space left in this channel group! */
+ if (offsetTable[LEFT_MULTIPRPS_CHANNEL] ==
+ 255) { /* Use the multipurpose group: */
+ chMapPos = LEFT_MULTIPRPS_CHANNEL;
+ } else {
+ FDK_ASSERT(0);
+ }
+ }
+ offsetTable[chMapPos] = (UCHAR)mappedIdx;
+ channelType[mappedIdx] = type;
+ channelIndices[mappedIdx] = (UCHAR)chIdx;
+ chMapPos += 1;
+ ch += 1;
+ }
+ }
+ }
+}
+
+/** Private helper function for downmix matrix manipulation that initializes
+ * one row in a given downmix matrix (corresponding to one output channel).
+ * @param [inout] Pointer to fixed-point parts of the downmix matrix.
+ * @param [inout] Pointer to scale factor matrix associated to the downmix
+ *factors.
+ * @param [in] Index of channel (row) to be initialized.
+ * @returns Nothing to return.
+ **/
+static void dmxInitChannel(FIXP_DMX mixFactors[(8)][(8)],
+ INT mixScales[(8)][(8)], const unsigned int outCh) {
+ unsigned int inCh;
+ for (inCh = 0; inCh < (8); inCh += 1) {
+ if (inCh == outCh) {
+ mixFactors[outCh][inCh] = FL2FXCONST_DMX(0.5f);
+ mixScales[outCh][inCh] = 1;
+ } else {
+ mixFactors[outCh][inCh] = FL2FXCONST_DMX(0.0f);
+ mixScales[outCh][inCh] = 0;
+ }
+ }
+}
+
+/** Private helper function for downmix matrix manipulation that does a reset
+ * of one row in a given downmix matrix (corresponding to one output channel).
+ * @param [inout] Pointer to fixed-point parts of the downmix matrix.
+ * @param [inout] Pointer to scale factor matrix associated to the downmix
+ *factors.
+ * @param [in] Index of channel (row) to be cleared/reset.
+ * @returns Nothing to return.
+ **/
+static void dmxClearChannel(FIXP_DMX mixFactors[(8)][(8)],
+ INT mixScales[(8)][(8)], const unsigned int outCh) {
+ FDK_ASSERT((outCh >= 0) && (outCh < (8)));
+ FDKmemclear(&mixFactors[outCh], (8) * sizeof(FIXP_DMX));
+ FDKmemclear(&mixScales[outCh], (8) * sizeof(INT));
+}
+
+/** Private helper function for downmix matrix manipulation that applies a
+ *source channel (row) scaled by a given mix factor to a destination channel
+ *(row) in a given downmix matrix. Existing mix factors of the destination
+ *channel (row) will get overwritten.
+ * @param [inout] Pointer to fixed-point parts of the downmix matrix.
+ * @param [inout] Pointer to scale factor matrix associated to the downmix
+ *factors.
+ * @param [in] Index of source channel (row).
+ * @param [in] Index of destination channel (row).
+ * @param [in] Fixed-point part of mix factor to be applied.
+ * @param [in] Scale factor of mix factor to be applied.
+ * @returns Nothing to return.
+ **/
+static void dmxSetChannel(FIXP_DMX mixFactors[(8)][(8)],
+ INT mixScales[(8)][(8)], const unsigned int dstCh,
+ const unsigned int srcCh, const FIXP_DMX factor,
+ const INT scale) {
+ int ch;
+ for (ch = 0; ch < (8); ch += 1) {
+ if (mixFactors[srcCh][ch] != (FIXP_DMX)0) {
+ mixFactors[dstCh][ch] =
+ FX_DBL2FX_DMX(fMult(mixFactors[srcCh][ch], factor));
+ mixScales[dstCh][ch] = mixScales[srcCh][ch] + scale;
+ }
+ }
+}
+
+/** Private helper function for downmix matrix manipulation that adds a source
+ *channel (row) scaled by a given mix factor to a destination channel (row) in a
+ *given downmix matrix.
+ * @param [inout] Pointer to fixed-point parts of the downmix matrix.
+ * @param [inout] Pointer to scale factor matrix associated to the downmix
+ *factors.
+ * @param [in] Index of source channel (row).
+ * @param [in] Index of destination channel (row).
+ * @param [in] Fixed-point part of mix factor to be applied.
+ * @param [in] Scale factor of mix factor to be applied.
+ * @returns Nothing to return.
+ **/
+static void dmxAddChannel(FIXP_DMX mixFactors[(8)][(8)],
+ INT mixScales[(8)][(8)], const unsigned int dstCh,
+ const unsigned int srcCh, const FIXP_DMX factor,
+ const INT scale) {
+ int ch;
+ for (ch = 0; ch < (8); ch += 1) {
+ FIXP_DBL addFact = fMult(mixFactors[srcCh][ch], factor);
+ if (addFact != (FIXP_DMX)0) {
+ INT newScale = mixScales[srcCh][ch] + scale;
+ if (mixFactors[dstCh][ch] != (FIXP_DMX)0) {
+ if (newScale > mixScales[dstCh][ch]) {
+ mixFactors[dstCh][ch] >>= newScale - mixScales[dstCh][ch];
+ } else {
+ addFact >>= mixScales[dstCh][ch] - newScale;
+ newScale = mixScales[dstCh][ch];
+ }
+ }
+ mixFactors[dstCh][ch] += FX_DBL2FX_DMX(addFact);
+ mixScales[dstCh][ch] = newScale;
+ }
+ }
+}
+
+/** Private function that creates a downmix factor matrix depending on the input
+ and output
+ * configuration, the user parameters as well as the given metadata. This
+ function is the modules
+ * brain and hold all downmix algorithms.
+ * @param [in] Flag that indicates if inChMode holds a real (packed) channel
+ mode or has been converted to a MPEG-4 channel configuration index.
+ * @param [in] Dependent on the inModeIsCfg flag this field hands in a (packed)
+ channel mode or the corresponding MPEG-4 channel configuration index.of the
+ input configuration.
+ * @param [in] The (packed) channel mode of the output configuration.
+ * @param [in] Pointer to structure holding all current user parameter.
+ * @param [in] Pointer to field holding all current meta data.
+ * @param [out] Pointer to fixed-point parts of the downmix matrix. Normalized
+ to one scale factor.
+ * @param [out] The common scale factor of the downmix matrix.
+ * @returns An error code.
+ **/
+static PCMDMX_ERROR getMixFactors(const UCHAR inModeIsCfg,
+ PCM_DMX_CHANNEL_MODE inChMode,
+ const PCM_DMX_CHANNEL_MODE outChMode,
+ const PCM_DMX_USER_PARAMS *pParams,
+ const DMX_BS_META_DATA *pMetaData,
+ FIXP_DMX mixFactors[(8)][(8)],
+ INT *pOutScale) {
+ PCMDMX_ERROR err = PCMDMX_OK;
+ INT mixScales[(8)][(8)];
+ INT maxScale = 0;
+ int numInChannel;
+ int numOutChannel;
+ int dmxMethod;
+ unsigned int outCh, inChCfg = 0;
+ unsigned int valid[(8)] = {0};
+
+ FDK_ASSERT(pMetaData != NULL);
+ FDK_ASSERT(mixFactors != NULL);
+ /* Check on a supported output configuration.
+ Add new one only after extensive testing! */
+ if (!((outChMode == CH_MODE_1_0_0_0) || (outChMode == CH_MODE_2_0_0_0) ||
+ (outChMode == CH_MODE_3_0_2_1) || (outChMode == CH_MODE_3_0_4_1) ||
+ (outChMode == CH_MODE_5_0_2_1))) {
+ FDK_ASSERT(0);
+ }
+
+ if (inModeIsCfg) {
+ /* Convert channel config to channel mode: */
+ inChCfg = (unsigned int)inChMode;
+ switch (inChCfg) {
+ case 1:
+ case 2:
+ case 3:
+ case 4:
+ case 5:
+ case 6:
+ inChMode = outChModeTable[inChCfg];
+ break;
+ case 11:
+ inChMode = CH_MODE_3_0_3_1;
+ break;
+ case 12:
+ inChMode = CH_MODE_3_0_4_1;
+ break;
+ case 7:
+ case 14:
+ inChMode = CH_MODE_5_0_2_1;
+ break;
+ default:
+ FDK_ASSERT(0);
+ }
+ }
+
+ /* Extract the total number of input channels */
+ numInChannel = (inChMode & 0xF) + ((inChMode >> 4) & 0xF) +
+ ((inChMode >> 8) & 0xF) + ((inChMode >> 12) & 0xF);
+ /* Extract the total number of output channels */
+ numOutChannel = (outChMode & 0xF) + ((outChMode >> 4) & 0xF) +
+ ((outChMode >> 8) & 0xF) + ((outChMode >> 12) & 0xF);
+
+ /* MPEG ammendment 4 aka ETSI metadata and fallback mode: */
+
+ /* Create identity DMX matrix: */
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ dmxInitChannel(mixFactors, mixScales, outCh);
+ }
+ if (((inChMode >> 12) & 0xF) == 0) {
+ /* Clear empty or wrongly mapped input channel */
+ dmxClearChannel(mixFactors, mixScales, LOW_FREQUENCY_CHANNEL);
+ }
+
+ /* FIRST STAGE: */
+ if (numInChannel > SIX_CHANNEL) { /* Always use MPEG equations either with
+ meta data or with default values. */
+ FIXP_DMX dMixFactA, dMixFactB;
+ INT dMixScaleA, dMixScaleB;
+ int isValidCfg = TRUE;
+
+ /* Get factors from meta data */
+ dMixFactA = abMixLvlValueTab[pMetaData->dmixIdxA];
+ dMixScaleA = (pMetaData->dmixIdxA == 0) ? 1 : 0;
+ dMixFactB = abMixLvlValueTab[pMetaData->dmixIdxB];
+ dMixScaleB = (pMetaData->dmixIdxB == 0) ? 1 : 0;
+
+ /* Check if input is in the list of supported configurations */
+ switch (inChMode) {
+ case CH_MODE_3_2_1_1: /* chCfg 11 but with side channels */
+ case CH_MODE_3_2_1_0:
+ isValidCfg = FALSE;
+ err = PCMDMX_INVALID_MODE;
+ case CH_MODE_3_0_3_1: /* chCfg 11 */
+ /* 6.1ch: C' = C; L' = L; R' = R; LFE' = LFE;
+ Ls' = Ls*dmix_a_idx + Cs*dmix_b_idx;
+ Rs' = Rs*dmix_a_idx + Cs*dmix_b_idx; */
+ dmxClearChannel(
+ mixFactors, mixScales,
+ RIGHT_MULTIPRPS_CHANNEL); /* clear empty input channel */
+ dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
+ LEFT_REAR_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
+ LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
+ RIGHT_REAR_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
+ LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ break;
+ case CH_MODE_3_0_4_1: /* chCfg 12 */
+ /* 7.1ch Surround Back: C' = C; L' = L; R' = R; LFE' = LFE;
+ Ls' = Ls*dmix_a_idx + Lsr*dmix_b_idx;
+ Rs' = Rs*dmix_a_idx + Rsr*dmix_b_idx; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
+ LEFT_REAR_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
+ LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
+ RIGHT_REAR_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
+ RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ break;
+ case CH_MODE_5_0_1_0:
+ case CH_MODE_5_0_1_1:
+ dmxClearChannel(mixFactors, mixScales,
+ RIGHT_REAR_CHANNEL); /* clear empty input channel */
+ dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
+ LEFT_REAR_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
+ dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
+ LEFT_REAR_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
+ case CH_MODE_5_2_1_0:
+ isValidCfg = FALSE;
+ err = PCMDMX_INVALID_MODE;
+ case CH_MODE_5_0_2_1: /* chCfg 7 || 14 */
+ if (inChCfg == 14) {
+ /* 7.1ch Front Height: C' = C; Ls' = Ls; Rs' = Rs; LFE' = LFE;
+ L' = L*dmix_a_idx + Lv*dmix_b_idx;
+ R' = R*dmix_a_idx + Rv*dmix_b_idx; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ } else {
+ /* 7.1ch Front: Ls' = Ls; Rs' = Rs; LFE' = LFE;
+ C' = C + (Lc+Rc)*dmix_a_idx;
+ L' = L + Lc*dmix_b_idx;
+ R' = R + Rc*dmix_b_idx; */
+ dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
+ LEFT_MULTIPRPS_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
+ RIGHT_MULTIPRPS_CHANNEL, dMixFactA, dMixScaleA);
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
+ }
+ break;
+ default:
+ /* Nothing to do. Just use the identity matrix. */
+ isValidCfg = FALSE;
+ err = PCMDMX_INVALID_MODE;
+ break;
+ }
+
+ /* Add additional DMX gain */
+ if ((isValidCfg == TRUE) &&
+ (pMetaData->dmxGainIdx5 != 0)) { /* Apply DMX gain 5 */
+ FIXP_DMX dmxGain;
+ INT dmxScale;
+ INT sign = (pMetaData->dmxGainIdx5 & 0x40) ? -1 : 1;
+ INT val = pMetaData->dmxGainIdx5 & 0x3F;
+
+ /* 10^(dmx_gain_5/80) */
+ dmxGain = FX_DBL2FX_DMX(
+ fLdPow(FL2FXCONST_DBL(0.830482023721841f), 2, /* log2(10) */
+ (FIXP_DBL)(sign * val * (LONG)FL2FXCONST_DBL(0.0125f)), 0,
+ &dmxScale));
+ /* Currently only positive scale factors supported! */
+ if (dmxScale < 0) {
+ dmxGain >>= -dmxScale;
+ dmxScale = 0;
+ }
+
+ dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, dmxGain, dmxScale);
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, dmxGain, dmxScale);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, dmxGain, dmxScale);
+ dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, LEFT_REAR_CHANNEL,
+ dmxGain, dmxScale);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
+ RIGHT_REAR_CHANNEL, dmxGain, dmxScale);
+ dmxSetChannel(mixFactors, mixScales, LOW_FREQUENCY_CHANNEL,
+ LOW_FREQUENCY_CHANNEL, dmxGain, dmxScale);
+ }
+
+ /* Mark the output channels */
+ valid[CENTER_FRONT_CHANNEL] = 1;
+ valid[LEFT_FRONT_CHANNEL] = 1;
+ valid[RIGHT_FRONT_CHANNEL] = 1;
+ valid[LEFT_REAR_CHANNEL] = 1;
+ valid[RIGHT_REAR_CHANNEL] = 1;
+ valid[LOW_FREQUENCY_CHANNEL] = 1;
+
+ /* Update channel mode for the next stage */
+ inChMode = CH_MODE_3_0_2_1;
+ }
+
+ /* For the X (> 6) to 6 channel downmix we had no choice.
+ To mix from 6 to 2 (or 1) channel(s) we have several possibilities (MPEG
+ DSE | MPEG PCE | ITU | ARIB | DLB). Use profile and the metadata
+ available flags to determine which equation to use: */
+
+#define DMX_METHOD_MPEG_AMD4 1
+#define DMX_METHOD_MPEG_LEGACY 2
+#define DMX_METHOD_ARIB_JAPAN 4
+#define DMX_METHOD_ITU_RECOM 8
+#define DMX_METHOD_CUSTOM 16
+
+ dmxMethod = DMX_METHOD_MPEG_AMD4; /* default */
+
+ if ((pParams->dmxProfile == DMX_PRFL_FORCE_MATRIX_MIX) &&
+ (pMetaData->typeFlags & TYPE_PCE_DATA)) {
+ dmxMethod = DMX_METHOD_MPEG_LEGACY;
+ } else if (!(pMetaData->typeFlags &
+ (TYPE_DSE_CLEV_DATA | TYPE_DSE_SLEV_DATA))) {
+ switch (pParams->dmxProfile) {
+ default:
+ case DMX_PRFL_STANDARD:
+ /* dmxMethod = DMX_METHOD_MPEG_AMD4; */
+ break;
+ case DMX_PRFL_MATRIX_MIX:
+ case DMX_PRFL_FORCE_MATRIX_MIX:
+ if (pMetaData->typeFlags & TYPE_PCE_DATA) {
+ dmxMethod = DMX_METHOD_MPEG_LEGACY;
+ }
+ break;
+ case DMX_PRFL_ARIB_JAPAN:
+ dmxMethod = DMX_METHOD_ARIB_JAPAN;
+ break;
+ }
+ }
+
+ /* SECOND STAGE: */
+ if (numOutChannel <= TWO_CHANNEL) {
+ /* Create DMX matrix according to input configuration */
+ switch (inChMode) {
+ case CH_MODE_2_0_0_0: /* chCfg 2 */
+ /* Apply the dual channel mode. */
+ switch (pParams->dualChannelMode) {
+ case CH1_MODE: /* L' = 0.707 * Ch1;
+ R' = 0.707 * Ch1; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ break;
+ case CH2_MODE: /* L' = 0.707 * Ch2;
+ R' = 0.707 * Ch2; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ break;
+ case MIXED_MODE: /* L' = 0.5*Ch1 + 0.5*Ch2;
+ R' = 0.5*Ch1 + 0.5*Ch2; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
+ break;
+ default:
+ case STEREO_MODE:
+ /* Nothing to do */
+ break;
+ }
+ break;
+ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ * - - - - - - - - - - - - - - - - - - - */
+ case CH_MODE_2_0_1_0: {
+ FIXP_DMX sMixLvl;
+ if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
+ /* L' = 0.707*L + 0.5*S; R' = 0.707*R + 0.5*S; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ sMixLvl = FL2FXCONST_DMX(0.5f);
+ } else { /* L' = L + 0.707*S; R' = R + 0.707*S; */
+ sMixLvl = FL2FXCONST_DMX(0.707f);
+ }
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, sMixLvl, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, sMixLvl, 0);
+ } break;
+ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ * - - - - - - - - - - - - - - - - - - - */
+ case CH_MODE_3_0_0_0: /* chCfg 3 */
+ {
+ FIXP_DMX cMixLvl;
+ if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
+ /* L' = 0.707*L + 0.5*C; R' = 0.707*R + 0.5*C; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ cMixLvl = FL2FXCONST_DMX(0.5f);
+ } else { /* L' = L + 0.707*C; R' = R + 0.707*C; */
+ cMixLvl = FL2FXCONST_DMX(0.707f);
+ }
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, cMixLvl, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, cMixLvl, 0);
+ } break;
+ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ * - - - - - - - - - - - - - - - - - - - */
+ case CH_MODE_3_0_1_0: /* chCfg 4 */
+ {
+ FIXP_DMX csMixLvl;
+ if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
+ /* L' = 0.707*L + 0.5*C + 0.5*S; R' = 0.707*R + 0.5*C + 0.5*S; */
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
+ csMixLvl = FL2FXCONST_DMX(0.5f);
+ } else { /* L' = L + 0.707*C + 0.707*S;
+ R' = R + 0.707*C + 0.707*S; */
+ csMixLvl = FL2FXCONST_DMX(0.707f);
+ }
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, csMixLvl, 0);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, csMixLvl, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, csMixLvl, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, csMixLvl, 0);
+ } break;
+ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ * - - - - - - - - - - - - - - - - - - - */
+ case CH_MODE_3_0_2_0: /* chCfg 5 */
+ case CH_MODE_3_0_2_1: /* chCfg 6 */
+ {
+ switch (dmxMethod) {
+ default:
+ case DMX_METHOD_MPEG_AMD4: {
+ FIXP_DMX cMixLvl, sMixLvl, lMixLvl;
+ INT cMixScale, sMixScale, lMixScale;
+
+ /* Get factors from meta data */
+ cMixLvl = abMixLvlValueTab[pMetaData->cLevIdx];
+ cMixScale = (pMetaData->cLevIdx == 0) ? 1 : 0;
+ sMixLvl = abMixLvlValueTab[pMetaData->sLevIdx];
+ sMixScale = (pMetaData->sLevIdx == 0) ? 1 : 0;
+ lMixLvl = lfeMixLvlValueTab[pMetaData->dmixIdxLfe];
+ if (pMetaData->dmixIdxLfe <= 1) {
+ lMixScale = 2;
+ } else if (pMetaData->dmixIdxLfe <= 5) {
+ lMixScale = 1;
+ } else {
+ lMixScale = 0;
+ }
+ /* Setup the DMX matrix */
+ if ((pParams->pseudoSurrMode == FORCE_PS_DMX) ||
+ ((pParams->pseudoSurrMode == AUTO_PS_DMX) &&
+ (pMetaData->pseudoSurround ==
+ 1))) { /* L' = L + C*clev - (Ls+Rs)*slev + LFE*lflev;
+ R' = R + C*clev + (Ls+Rs)*slev + LFE*lflev; */
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, -sMixLvl, sMixScale);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ RIGHT_REAR_CHANNEL, -sMixLvl, sMixScale);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, sMixLvl, sMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_REAR_CHANNEL, sMixLvl, sMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
+ } else { /* L' = L + C*clev + Ls*slev + LFE*llev;
+ R' = R + C*clev + Rs*slev + LFE*llev; */
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, sMixLvl, sMixScale);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_REAR_CHANNEL, sMixLvl, sMixScale);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
+ }
+
+ /* Add additional DMX gain */
+ if (pMetaData->dmxGainIdx2 != 0) { /* Apply DMX gain 2 */
+ FIXP_DMX dmxGain;
+ INT dmxScale;
+ INT sign = (pMetaData->dmxGainIdx2 & 0x40) ? -1 : 1;
+ INT val = pMetaData->dmxGainIdx2 & 0x3F;
+
+ /* 10^(dmx_gain_2/80) */
+ dmxGain = FX_DBL2FX_DMX(
+ fLdPow(FL2FXCONST_DBL(0.830482023721841f), 2, /* log2(10) */
+ (FIXP_DBL)(sign * val * (LONG)FL2FXCONST_DBL(0.0125f)),
+ 0, &dmxScale));
+ /* Currently only positive scale factors supported! */
+ if (dmxScale < 0) {
+ dmxGain >>= -dmxScale;
+ dmxScale = 0;
+ }
+
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, dmxGain, dmxScale);
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, dmxGain, dmxScale);
+ }
+ } break;
+ case DMX_METHOD_ARIB_JAPAN:
+ case DMX_METHOD_MPEG_LEGACY: {
+ FIXP_DMX flev, clev, slevLL, slevLR, slevRL, slevRR;
+ FIXP_DMX mtrxMixDwnCoef =
+ mpegMixDownIdx2Coef[pMetaData->matrixMixdownIdx];
+
+ if ((pParams->pseudoSurrMode == FORCE_PS_DMX) ||
+ ((pParams->pseudoSurrMode == AUTO_PS_DMX) &&
+ (pMetaData->pseudoSurround == 1))) {
+ if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
+ /* 3/2 input: L' = 0.707 * [L+0.707*C-k*Ls-k*Rs];
+ R' = 0.707 * [R+0.707*C+k*Ls+k*Rs]; */
+ flev = mpegMixDownIdx2Coef[0]; /* a = 0.707 */
+ } else { /* 3/2 input: L' = (1.707+2*A)^-1 *
+ [L+0.707*C-A*Ls-A*Rs]; R' = (1.707+2*A)^-1 *
+ [R+0.707*C+A*Ls+A*Rs]; */
+ flev = mpegMixDownIdx2PreFact[1][pMetaData->matrixMixdownIdx];
+ }
+ slevRR = slevRL = FX_DBL2FX_DMX(fMult(flev, mtrxMixDwnCoef));
+ slevLL = slevLR = -slevRL;
+ } else {
+ if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
+ /* 3/2 input: L' = 0.707 * [L+0.707*C+k*Ls];
+ R' = 0.707 * [R+0.707*C+k*Rs]; */
+ flev = mpegMixDownIdx2Coef[0]; /* a = 0.707 */
+ } else { /* 3/2 input: L' = (1.707+A)^-1 * [L+0.707*C+A*Ls];
+ R' = (1.707+A)^-1 * [R+0.707*C+A*Rs]; */
+ flev = mpegMixDownIdx2PreFact[0][pMetaData->matrixMixdownIdx];
+ }
+ slevRR = slevLL = FX_DBL2FX_DMX(fMult(flev, mtrxMixDwnCoef));
+ slevLR = slevRL = (FIXP_DMX)0;
+ }
+ /* common factor */
+ clev =
+ FX_DBL2FX_DMX(fMult(flev, mpegMixDownIdx2Coef[0] /* 0.707 */));
+
+ dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, flev, 0);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, clev, 0);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, slevLL, 0);
+ dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
+ RIGHT_REAR_CHANNEL, slevLR, 0);
+
+ dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, flev, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ CENTER_FRONT_CHANNEL, clev, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ LEFT_REAR_CHANNEL, slevRL, 0);
+ dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
+ RIGHT_REAR_CHANNEL, slevRR, 0);
+ } break;
+ } /* switch (dmxMethod) */
+ } break;
+ default:
+ /* This configuration does not fit to any known downmix equation! */
+ err = PCMDMX_INVALID_MODE;
+ break;
+ } /* switch (inChMode) */
+
+ /* Mark the output channels */
+ FDKmemclear(valid, (8) * sizeof(unsigned int));
+ valid[LEFT_FRONT_CHANNEL] = 1;
+ valid[RIGHT_FRONT_CHANNEL] = 1;
+ }
+
+ if (numOutChannel == ONE_CHANNEL) {
+ FIXP_DMX monoMixLevel;
+ INT monoMixScale = 0;
+
+ dmxClearChannel(mixFactors, mixScales,
+ CENTER_FRONT_CHANNEL); /* C is not in the mix */
+
+ if (dmxMethod ==
+ DMX_METHOD_MPEG_LEGACY) { /* C' = (3+2*A)^-1 * [C+L+R+A*Ls+A+Rs]; */
+ monoMixLevel = mpegMixDownIdx2PreFact[2][pMetaData->matrixMixdownIdx];
+
+ mixFactors[CENTER_FRONT_CHANNEL][CENTER_FRONT_CHANNEL] = monoMixLevel;
+ mixFactors[CENTER_FRONT_CHANNEL][LEFT_FRONT_CHANNEL] = monoMixLevel;
+ mixFactors[CENTER_FRONT_CHANNEL][RIGHT_FRONT_CHANNEL] = monoMixLevel;
+ monoMixLevel = FX_DBL2FX_DMX(fMult(
+ monoMixLevel, mpegMixDownIdx2Coef[pMetaData->matrixMixdownIdx]));
+ mixFactors[CENTER_FRONT_CHANNEL][LEFT_REAR_CHANNEL] = monoMixLevel;
+ mixFactors[CENTER_FRONT_CHANNEL][RIGHT_REAR_CHANNEL] = monoMixLevel;
+ } else {
+ switch (dmxMethod) {
+ case DMX_METHOD_MPEG_AMD4:
+ /* C' = L + R; */
+ monoMixLevel = FL2FXCONST_DMX(0.5f);
+ monoMixScale = 1;
+ break;
+ default:
+ /* C' = 0.5*L + 0.5*R; */
+ monoMixLevel = FL2FXCONST_DMX(0.5f);
+ monoMixScale = 0;
+ break;
+ }
+ dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
+ LEFT_FRONT_CHANNEL, monoMixLevel, monoMixScale);
+ dmxAddChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
+ RIGHT_FRONT_CHANNEL, monoMixLevel, monoMixScale);
+ }
+
+ /* Mark the output channel */
+ FDKmemclear(valid, (8) * sizeof(unsigned int));
+ valid[CENTER_FRONT_CHANNEL] = 1;
+ }
+
+#define MAX_SEARCH_START_VAL (-7)
+
+ {
+ LONG chSum[(8)];
+ INT chSumMax = MAX_SEARCH_START_VAL;
+
+ /* Determine the current maximum scale factor */
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ if (valid[outCh] != 0) {
+ unsigned int inCh;
+ for (inCh = 0; inCh < (8); inCh += 1) {
+ if (mixScales[outCh][inCh] > maxScale) { /* Store the new maximum */
+ maxScale = mixScales[outCh][inCh];
+ }
+ }
+ }
+ }
+
+ /* Individualy analyse output chanal levels */
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ chSum[outCh] = MAX_SEARCH_START_VAL;
+ if (valid[outCh] != 0) {
+ int ovrflwProtScale = 0;
+ unsigned int inCh;
+
+ /* Accumulate all factors for each output channel */
+ chSum[outCh] = 0;
+ for (inCh = 0; inCh < (8); inCh += 1) {
+ SHORT addFact = FX_DMX2SHRT(mixFactors[outCh][inCh]);
+ if (mixScales[outCh][inCh] <= maxScale) {
+ addFact >>= maxScale - mixScales[outCh][inCh];
+ } else {
+ addFact <<= mixScales[outCh][inCh] - maxScale;
+ }
+ chSum[outCh] += addFact;
+ }
+ if (chSum[outCh] > (LONG)MAXVAL_SGL) {
+ while (chSum[outCh] > (LONG)MAXVAL_SGL) {
+ ovrflwProtScale += 1;
+ chSum[outCh] >>= 1;
+ }
+ } else if (chSum[outCh] > 0) {
+ while ((chSum[outCh] << 1) <= (LONG)MAXVAL_SGL) {
+ ovrflwProtScale -= 1;
+ chSum[outCh] <<= 1;
+ }
+ }
+ /* Store the differential scaling in the same array */
+ chSum[outCh] = ovrflwProtScale;
+ }
+ }
+
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ if ((valid[outCh] != 0) &&
+ (chSum[outCh] > chSumMax)) { /* Store the new maximum */
+ chSumMax = chSum[outCh];
+ }
+ }
+ maxScale = fMax(maxScale + chSumMax, 0);
+
+ /* Normalize all factors */
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ if (valid[outCh] != 0) {
+ unsigned int inCh;
+ for (inCh = 0; inCh < (8); inCh += 1) {
+ if (mixFactors[outCh][inCh] != (FIXP_DMX)0) {
+ if (mixScales[outCh][inCh] <= maxScale) {
+ mixFactors[outCh][inCh] >>= maxScale - mixScales[outCh][inCh];
+ } else {
+ mixFactors[outCh][inCh] <<= mixScales[outCh][inCh] - maxScale;
+ }
+ mixScales[outCh][inCh] = maxScale;
+ }
+ }
+ }
+ }
+ }
+
+ /* return the scale factor */
+ *pOutScale = maxScale;
+
+ return (err);
+}
+
+/** Open and initialize an instance of the PCM downmix module
+ * @param [out] Pointer to a buffer receiving the handle of the new instance.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_Open(HANDLE_PCM_DOWNMIX *pSelf) {
+ HANDLE_PCM_DOWNMIX self;
+
+ if (pSelf == NULL) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ *pSelf = NULL;
+
+ self = (HANDLE_PCM_DOWNMIX)GetPcmDmxInstance(0);
+ if (self == NULL) {
+ return (PCMDMX_OUT_OF_MEMORY);
+ }
+
+ /* Reset the full instance */
+ pcmDmx_Reset(self, PCMDMX_RESET_FULL);
+
+ *pSelf = self;
+
+ return (PCMDMX_OK);
+}
+
+/** Reset all static values like e.g. mixdown coefficients.
+ * @param [in] Handle of PCM downmix module instance.
+ * @param [in] Flags telling which parts of the module shall be reset.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_Reset(HANDLE_PCM_DOWNMIX self, UINT flags) {
+ if (self == NULL) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ if (flags & PCMDMX_RESET_PARAMS) {
+ PCM_DMX_USER_PARAMS *pParams = &self->userParams;
+
+ pParams->dualChannelMode = STEREO_MODE;
+ pParams->pseudoSurrMode = NEVER_DO_PS_DMX;
+ pParams->numOutChannelsMax = (6);
+ pParams->numOutChannelsMin = (0);
+ pParams->frameDelay = 0;
+ pParams->expiryFrame = (0);
+
+ self->applyProcessing = 0;
+ }
+
+ if (flags & PCMDMX_RESET_BS_DATA) {
+ int slot;
+ /* Init all slots with a default set */
+ for (slot = 0; slot <= (1); slot += 1) {
+ FDKmemcpy(&self->bsMetaData[slot], &dfltMetaData,
+ sizeof(DMX_BS_META_DATA));
+ }
+ }
+
+ return (PCMDMX_OK);
+}
+
+/** Set one parameter for one instance of the PCM downmix module.
+ * @param [in] Handle of PCM downmix module instance.
+ * @param [in] Parameter to be set.
+ * @param [in] Parameter value.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_SetParam(HANDLE_PCM_DOWNMIX self, const PCMDMX_PARAM param,
+ const INT value) {
+ switch (param) {
+ case DMX_PROFILE_SETTING:
+ switch ((DMX_PROFILE_TYPE)value) {
+ case DMX_PRFL_STANDARD:
+ case DMX_PRFL_MATRIX_MIX:
+ case DMX_PRFL_FORCE_MATRIX_MIX:
+ case DMX_PRFL_ARIB_JAPAN:
+ break;
+ default:
+ return (PCMDMX_UNABLE_TO_SET_PARAM);
+ }
+ if (self == NULL) return (PCMDMX_INVALID_HANDLE);
+ self->userParams.dmxProfile = (DMX_PROFILE_TYPE)value;
+ break;
+
+ case DMX_BS_DATA_EXPIRY_FRAME:
+ if (self == NULL) return (PCMDMX_INVALID_HANDLE);
+ self->userParams.expiryFrame = (value > 0) ? (UINT)value : 0;
+ break;
+
+ case DMX_BS_DATA_DELAY:
+ if ((value > (1)) || (value < 0)) {
+ return (PCMDMX_UNABLE_TO_SET_PARAM);
+ }
+ if (self == NULL) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+ self->userParams.frameDelay = (UCHAR)value;
+ break;
+
+ case MIN_NUMBER_OF_OUTPUT_CHANNELS:
+ switch (value) { /* supported output channels */
+ case -1:
+ case 0:
+ case ONE_CHANNEL:
+ case TWO_CHANNEL:
+ case SIX_CHANNEL:
+ case EIGHT_CHANNEL:
+ break;
+ default:
+ return (PCMDMX_UNABLE_TO_SET_PARAM);
+ }
+ if (self == NULL) return (PCMDMX_INVALID_HANDLE);
+ /* Store the new value */
+ self->userParams.numOutChannelsMin = (value > 0) ? (SHORT)value : -1;
+ if ((value > 0) && (self->userParams.numOutChannelsMax > 0) &&
+ (value > self->userParams
+ .numOutChannelsMax)) { /* MIN > MAX would be an invalid
+ state. Thus set MAX = MIN in
+ this case. */
+ self->userParams.numOutChannelsMax = self->userParams.numOutChannelsMin;
+ }
+ break;
+
+ case MAX_NUMBER_OF_OUTPUT_CHANNELS:
+ switch (value) { /* supported output channels */
+ case -1:
+ case 0:
+ case ONE_CHANNEL:
+ case TWO_CHANNEL:
+ case SIX_CHANNEL:
+ case EIGHT_CHANNEL:
+ break;
+ default:
+ return (PCMDMX_UNABLE_TO_SET_PARAM);
+ }
+ if (self == NULL) return (PCMDMX_INVALID_HANDLE);
+ /* Store the new value */
+ self->userParams.numOutChannelsMax = (value > 0) ? (SHORT)value : -1;
+ if ((value > 0) &&
+ (value < self->userParams
+ .numOutChannelsMin)) { /* MAX < MIN would be an invalid
+ state. Thus set MIN = MAX in
+ this case. */
+ self->userParams.numOutChannelsMin = self->userParams.numOutChannelsMax;
+ }
+ break;
+
+ case DMX_DUAL_CHANNEL_MODE:
+ switch ((DUAL_CHANNEL_MODE)value) {
+ case STEREO_MODE:
+ case CH1_MODE:
+ case CH2_MODE:
+ case MIXED_MODE:
+ break;
+ default:
+ return (PCMDMX_UNABLE_TO_SET_PARAM);
+ }
+ if (self == NULL) return (PCMDMX_INVALID_HANDLE);
+ self->userParams.dualChannelMode = (DUAL_CHANNEL_MODE)value;
+ self->applyProcessing = ((DUAL_CHANNEL_MODE)value != STEREO_MODE)
+ ? 1
+ : 0; /* Force processing if necessary. */
+ break;
+
+ case DMX_PSEUDO_SURROUND_MODE:
+ switch ((PSEUDO_SURROUND_MODE)value) {
+ case NEVER_DO_PS_DMX:
+ case AUTO_PS_DMX:
+ case FORCE_PS_DMX:
+ break;
+ default:
+ return (PCMDMX_UNABLE_TO_SET_PARAM);
+ }
+ if (self == NULL) return (PCMDMX_INVALID_HANDLE);
+ self->userParams.pseudoSurrMode = (PSEUDO_SURROUND_MODE)value;
+ break;
+
+ default:
+ return (PCMDMX_UNKNOWN_PARAM);
+ }
+
+ return (PCMDMX_OK);
+}
+
+/** Get one parameter value of one PCM downmix module instance.
+ * @param [in] Handle of PCM downmix module instance.
+ * @param [in] Parameter to be set.
+ * @param [out] Pointer to buffer receiving the parameter value.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_GetParam(HANDLE_PCM_DOWNMIX self, const PCMDMX_PARAM param,
+ INT *const pValue) {
+ PCM_DMX_USER_PARAMS *pUsrParams;
+
+ if ((self == NULL) || (pValue == NULL)) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+ pUsrParams = &self->userParams;
+
+ switch (param) {
+ case DMX_PROFILE_SETTING:
+ *pValue = (INT)pUsrParams->dmxProfile;
+ break;
+ case DMX_BS_DATA_EXPIRY_FRAME:
+ *pValue = (INT)pUsrParams->expiryFrame;
+ break;
+ case DMX_BS_DATA_DELAY:
+ *pValue = (INT)pUsrParams->frameDelay;
+ break;
+ case MIN_NUMBER_OF_OUTPUT_CHANNELS:
+ *pValue = (INT)pUsrParams->numOutChannelsMin;
+ break;
+ case MAX_NUMBER_OF_OUTPUT_CHANNELS:
+ *pValue = (INT)pUsrParams->numOutChannelsMax;
+ break;
+ case DMX_DUAL_CHANNEL_MODE:
+ *pValue = (INT)pUsrParams->dualChannelMode;
+ break;
+ case DMX_PSEUDO_SURROUND_MODE:
+ *pValue = (INT)pUsrParams->pseudoSurrMode;
+ break;
+ default:
+ return (PCMDMX_UNKNOWN_PARAM);
+ }
+
+ return (PCMDMX_OK);
+}
+
+/*
+ * Read DMX meta-data from a data stream element.
+ */
+PCMDMX_ERROR pcmDmx_Parse(HANDLE_PCM_DOWNMIX self, HANDLE_FDK_BITSTREAM hBs,
+ UINT ancDataBits, int isMpeg2) {
+ PCMDMX_ERROR errorStatus = PCMDMX_OK;
+
+#define MAX_DSE_ANC_BYTES (16) /* 15 bytes */
+#define ANC_DATA_SYNC_BYTE (0xBC) /* ancillary data sync byte. */
+
+ DMX_BS_META_DATA *pBsMetaData;
+
+ int skip4Dmx = 0, skip4Ext = 0;
+ int dmxLvlAvail = 0, extDataAvail = 0;
+ UINT foundNewData = 0;
+ UINT minAncBits = ((isMpeg2) ? 5 : 3) * 8;
+
+ if ((self == NULL) || (hBs == NULL)) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ /* sanity checks */
+ if ((ancDataBits < minAncBits) || (ancDataBits > FDKgetValidBits(hBs))) {
+ return (PCMDMX_CORRUPT_ANC_DATA);
+ }
+
+ pBsMetaData = &self->bsMetaData[0];
+
+ if (isMpeg2) {
+ /* skip DVD ancillary data */
+ FDKpushFor(hBs, 16);
+ }
+
+ /* check sync word */
+ if (FDKreadBits(hBs, 8) != ANC_DATA_SYNC_BYTE) {
+ return (PCMDMX_CORRUPT_ANC_DATA);
+ }
+
+ /* skip MPEG audio type and Dolby surround mode */
+ FDKpushFor(hBs, 4);
+
+ if (isMpeg2) {
+ /* int numAncBytes = */ FDKreadBits(hBs, 4);
+ /* advanced dynamic range control */
+ if (FDKreadBit(hBs)) skip4Dmx += 24;
+ /* dialog normalization */
+ if (FDKreadBit(hBs)) skip4Dmx += 8;
+ /* reproduction_level */
+ if (FDKreadBit(hBs)) skip4Dmx += 8;
+ } else {
+ FDKpushFor(hBs, 2); /* drc presentation mode */
+ pBsMetaData->pseudoSurround = (SCHAR)FDKreadBit(hBs);
+ FDKpushFor(hBs, 4); /* reserved bits */
+ }
+
+ /* downmixing levels MPEGx status */
+ dmxLvlAvail = FDKreadBit(hBs);
+
+ if (isMpeg2) {
+ /* scale factor CRC status */
+ if (FDKreadBit(hBs)) skip4Ext += 16;
+ } else {
+ /* ancillary data extension status */
+ extDataAvail = FDKreadBit(hBs);
+ }
+
+ /* audio coding and compression status */
+ if (FDKreadBit(hBs)) skip4Ext += 16;
+ /* coarse grain timecode status */
+ if (FDKreadBit(hBs)) skip4Ext += 16;
+ /* fine grain timecode status */
+ if (FDKreadBit(hBs)) skip4Ext += 16;
+
+ /* skip the useless data to get to the DMX levels */
+ FDKpushFor(hBs, skip4Dmx);
+
+ /* downmix_levels_MPEGX */
+ if (dmxLvlAvail) {
+ if (FDKreadBit(hBs)) { /* center_mix_level_on */
+ pBsMetaData->cLevIdx = (UCHAR)FDKreadBits(hBs, 3);
+ foundNewData |= TYPE_DSE_CLEV_DATA;
+ } else {
+ FDKreadBits(hBs, 3);
+ }
+ if (FDKreadBit(hBs)) { /* surround_mix_level_on */
+ pBsMetaData->sLevIdx = (UCHAR)FDKreadBits(hBs, 3);
+ foundNewData |= TYPE_DSE_SLEV_DATA;
+ } else {
+ FDKreadBits(hBs, 3);
+ }
+ }
+
+ /* skip the useless data to get to the ancillary data extension */
+ FDKpushFor(hBs, skip4Ext);
+
+ /* anc data extension (MPEG-4 only) */
+ if (extDataAvail) {
+ int extDmxLvlSt, extDmxGainSt, extDmxLfeSt;
+
+ FDKreadBit(hBs); /* reserved bit */
+ extDmxLvlSt = FDKreadBit(hBs);
+ extDmxGainSt = FDKreadBit(hBs);
+ extDmxLfeSt = FDKreadBit(hBs);
+ FDKreadBits(hBs, 4); /* reserved bits */
+
+ if (extDmxLvlSt) {
+ pBsMetaData->dmixIdxA = (UCHAR)FDKreadBits(hBs, 3);
+ pBsMetaData->dmixIdxB = (UCHAR)FDKreadBits(hBs, 3);
+ FDKreadBits(hBs, 2); /* reserved bits */
+ foundNewData |= TYPE_DSE_DMIX_AB_DATA;
+ }
+ if (extDmxGainSt) {
+ pBsMetaData->dmxGainIdx5 = (UCHAR)FDKreadBits(hBs, 7);
+ FDKreadBit(hBs); /* reserved bit */
+ pBsMetaData->dmxGainIdx2 = (UCHAR)FDKreadBits(hBs, 7);
+ FDKreadBit(hBs); /* reserved bit */
+ foundNewData |= TYPE_DSE_DMX_GAIN_DATA;
+ }
+ if (extDmxLfeSt) {
+ pBsMetaData->dmixIdxLfe = (UCHAR)FDKreadBits(hBs, 4);
+ FDKreadBits(hBs, 4); /* reserved bits */
+ foundNewData |= TYPE_DSE_DMIX_LFE_DATA;
+ }
+ }
+
+ /* final sanity check on the amount of read data */
+ if ((INT)FDKgetValidBits(hBs) < 0) {
+ errorStatus = PCMDMX_CORRUPT_ANC_DATA;
+ }
+
+ if ((errorStatus == PCMDMX_OK) && (foundNewData != 0)) {
+ /* announce new data */
+ pBsMetaData->typeFlags |= foundNewData;
+ /* reset expiry counter */
+ pBsMetaData->expiryCount = 0;
+ }
+
+ return (errorStatus);
+}
+
+/*
+ * Read DMX meta-data from a data stream element.
+ */
+PCMDMX_ERROR pcmDmx_ReadDvbAncData(HANDLE_PCM_DOWNMIX self, UCHAR *pAncDataBuf,
+ UINT ancDataBytes, int isMpeg2) {
+ PCMDMX_ERROR errorStatus = PCMDMX_OK;
+ FDK_BITSTREAM bs;
+ HANDLE_FDK_BITSTREAM hBs = &bs;
+
+ if (self == NULL) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ /* sanity checks */
+ if ((pAncDataBuf == NULL) || (ancDataBytes == 0)) {
+ return (PCMDMX_CORRUPT_ANC_DATA);
+ }
+
+ FDKinitBitStream(hBs, pAncDataBuf, MAX_DSE_ANC_BYTES, ancDataBytes * 8,
+ BS_READER);
+
+ errorStatus = pcmDmx_Parse(self, hBs, ancDataBytes * 8, isMpeg2);
+
+ return (errorStatus);
+}
+
+/** Set the matrix mixdown information extracted from the PCE of an AAC
+ *bitstream. Note: Call only if matrix_mixdown_idx_present is true.
+ * @param [in] Handle of PCM downmix module instance.
+ * @param [in] The 2 bit matrix mixdown index extracted from PCE.
+ * @param [in] The pseudo surround enable flag extracted from PCE.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_SetMatrixMixdownFromPce(HANDLE_PCM_DOWNMIX self,
+ int matrixMixdownPresent,
+ int matrixMixdownIdx,
+ int pseudoSurroundEnable) {
+ if (self == NULL) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ {
+ DMX_BS_META_DATA *pBsMetaData = &self->bsMetaData[0];
+
+ if (matrixMixdownPresent) {
+ pBsMetaData->pseudoSurround = (pseudoSurroundEnable) ? 1 : 0;
+ pBsMetaData->matrixMixdownIdx = matrixMixdownIdx & 0x03;
+ pBsMetaData->typeFlags |= TYPE_PCE_DATA;
+ /* Reset expiry counter */
+ pBsMetaData->expiryCount = 0;
+ }
+ }
+
+ return (PCMDMX_OK);
+}
+
+/** Apply down or up mixing.
+ * @param [in] Handle of PCM downmix module instance.
+ * @param [inout] Pointer to buffer that hold the time domain signal.
+ * @param [in] Pointer where the amount of output samples is returned into.
+ * @param [in] Size of pPcmBuf.
+ * @param [inout] Pointer where the amount of output channels is returned into.
+ * @param [in] Input and output samples are processed interleaved.
+ * @param [inout] Array where the corresponding channel type for each output
+ *audio channel is stored into.
+ * @param [inout] Array where the corresponding channel type index for each
+ *output audio channel is stored into.
+ * @param [in] Array containing the out channel mapping to be used (From MPEG
+ *PCE ordering to whatever is required).
+ * @param [out] Pointer on a field receiving the scale factor that has to be
+ *applied on all samples afterwards. If the handed pointer is NULL scaling is
+ *done internally.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_ApplyFrame(HANDLE_PCM_DOWNMIX self, DMX_PCM *pPcmBuf,
+ const int pcmBufSize, UINT frameSize,
+ INT *nChannels, INT fInterleaved,
+ AUDIO_CHANNEL_TYPE channelType[],
+ UCHAR channelIndices[],
+ const FDK_channelMapDescr *const mapDescr,
+ INT *pDmxOutScale) {
+ PCM_DMX_USER_PARAMS *pParam = NULL;
+ PCMDMX_ERROR errorStatus = PCMDMX_OK;
+ DUAL_CHANNEL_MODE dualChannelMode;
+ PCM_DMX_CHANNEL_MODE inChMode;
+ PCM_DMX_CHANNEL_MODE outChMode;
+ INT devNull; /* Just a dummy to avoid a lot of branches in the code */
+ int numOutChannels, numInChannels;
+ int inStride, outStride, offset;
+ int dmxMaxScale, dmxScale;
+ int slot;
+ UCHAR inOffsetTable[(8)];
+
+ DMX_BS_META_DATA bsMetaData;
+
+ if ((self == NULL) || (nChannels == NULL) || (channelType == NULL) ||
+ (channelIndices == NULL) || (!FDK_chMapDescr_isValid(mapDescr))) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ /* Init the output scaling */
+ dmxScale = 0;
+ if (pDmxOutScale != NULL) {
+ /* Avoid final scaling internally and hand it to the outside world. */
+ *pDmxOutScale = 0;
+ dmxMaxScale = (3);
+ } else {
+ /* Apply the scaling internally. */
+ pDmxOutScale = &devNull; /* redirect to temporal stack memory */
+ dmxMaxScale = 0;
+ }
+
+ pParam = &self->userParams;
+ numInChannels = *nChannels;
+
+ /* Perform some input sanity checks */
+ if (pPcmBuf == NULL) {
+ return (PCMDMX_INVALID_ARGUMENT);
+ }
+ if (frameSize == 0) {
+ return (PCMDMX_INVALID_ARGUMENT);
+ }
+ if (numInChannels == 0) {
+ return (PCMDMX_INVALID_ARGUMENT);
+ }
+ if (numInChannels > (8)) {
+ return (PCMDMX_INVALID_CH_CONFIG);
+ }
+
+ /* Check on misconfiguration */
+ FDK_ASSERT((pParam->numOutChannelsMax <= 0) ||
+ (pParam->numOutChannelsMax >= pParam->numOutChannelsMin));
+
+ /* Determine if the module has to do processing */
+ if ((self->applyProcessing == 0) &&
+ ((pParam->numOutChannelsMax <= 0) ||
+ (pParam->numOutChannelsMax >= numInChannels)) &&
+ (pParam->numOutChannelsMin <= numInChannels)) {
+ /* Nothing to do */
+ return (errorStatus);
+ }
+
+ /* Determine the number of output channels */
+ if ((pParam->numOutChannelsMax > 0) &&
+ (numInChannels > pParam->numOutChannelsMax)) {
+ numOutChannels = pParam->numOutChannelsMax;
+ } else if (numInChannels < pParam->numOutChannelsMin) {
+ numOutChannels = pParam->numOutChannelsMin;
+ } else {
+ numOutChannels = numInChannels;
+ }
+
+ /* Check I/O buffer size */
+ if ((UINT)pcmBufSize < (UINT)numOutChannels * frameSize) {
+ return (PCMDMX_OUTPUT_BUFFER_TOO_SMALL);
+ }
+
+ dualChannelMode = pParam->dualChannelMode;
+
+ /* Analyse input channel configuration and get channel offset
+ * table that can be accessed with the fixed channel labels. */
+ errorStatus = getChannelMode(numInChannels, channelType, channelIndices,
+ inOffsetTable, &inChMode);
+ if (PCMDMX_IS_FATAL_ERROR(errorStatus) || (inChMode == CH_MODE_UNDEFINED)) {
+ /* We don't need to restore because the channel
+ configuration has not been changed. Just exit. */
+ return (PCMDMX_INVALID_CH_CONFIG);
+ }
+
+ /* Set input stride and offset */
+ if (fInterleaved) {
+ inStride = numInChannels;
+ offset = 1; /* Channel specific offset factor */
+ } else {
+ inStride = 1;
+ offset = frameSize; /* Channel specific offset factor */
+ }
+
+ /* Reset downmix meta data if necessary */
+ if ((pParam->expiryFrame > 0) &&
+ (++self->bsMetaData[0].expiryCount >
+ pParam
+ ->expiryFrame)) { /* The metadata read from bitstream is too old. */
+#ifdef FDK_ASSERT_ENABLE
+ PCMDMX_ERROR err = pcmDmx_Reset(self, PCMDMX_RESET_BS_DATA);
+ FDK_ASSERT(err == PCMDMX_OK);
+#else
+ pcmDmx_Reset(self, PCMDMX_RESET_BS_DATA);
+#endif
+ }
+ FDKmemcpy(&bsMetaData, &self->bsMetaData[pParam->frameDelay],
+ sizeof(DMX_BS_META_DATA));
+ /* Maintain delay line */
+ for (slot = pParam->frameDelay; slot > 0; slot -= 1) {
+ FDKmemcpy(&self->bsMetaData[slot], &self->bsMetaData[slot - 1],
+ sizeof(DMX_BS_META_DATA));
+ }
+
+ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ * - - - - - - - - - - - - - - - - - - */
+ if (numInChannels > numOutChannels) { /* Apply downmix */
+ DMX_PCM *pInPcm[(8)] = {NULL};
+ DMX_PCM *pOutPcm[(8)] = {NULL};
+ FIXP_DMX mixFactors[(8)][(8)];
+ UCHAR outOffsetTable[(8)];
+ UINT sample;
+ int chCfg = 0;
+ int bypScale = 0;
+
+ if (numInChannels > SIX_CHANNEL) {
+ AUDIO_CHANNEL_TYPE multiPurposeChType[2];
+
+ /* Get the type of the multipurpose channels */
+ multiPurposeChType[0] =
+ channelType[inOffsetTable[LEFT_MULTIPRPS_CHANNEL]];
+ multiPurposeChType[1] =
+ channelType[inOffsetTable[RIGHT_MULTIPRPS_CHANNEL]];
+
+ /* Check if the input configuration is one defined in the standard. */
+ switch (inChMode) {
+ case CH_MODE_5_0_2_1: /* chCfg 7 || 14 */
+ /* Further analyse the input config to distinguish the two
+ * CH_MODE_5_0_2_1 configs. */
+ if ((multiPurposeChType[0] == ACT_FRONT_TOP) &&
+ (multiPurposeChType[1] == ACT_FRONT_TOP)) {
+ chCfg = 14;
+ } else {
+ chCfg = 7;
+ }
+ break;
+ case CH_MODE_3_0_3_1: /* chCfg 11 */
+ chCfg = 11;
+ break;
+ case CH_MODE_3_0_4_1: /* chCfg 12 */
+ chCfg = 12;
+ break;
+ default:
+ chCfg = 0; /* Not a known config */
+ break;
+ }
+ }
+
+ /* Set this stages output stride and channel mode: */
+ outStride = (fInterleaved) ? numOutChannels : 1;
+ outChMode = outChModeTable[numOutChannels];
+ FDK_ASSERT(outChMode != CH_MODE_UNDEFINED);
+
+ /* Get channel description and channel mapping for the desired output
+ * configuration. */
+ getChannelDescription(outChMode, mapDescr, channelType, channelIndices,
+ outOffsetTable);
+ /* Now there is no way back because we modified the channel configuration!
+ */
+
+ /* Create the DMX matrix */
+ errorStatus =
+ getMixFactors((chCfg > 0) ? 1 : 0,
+ (chCfg > 0) ? (PCM_DMX_CHANNEL_MODE)chCfg : inChMode,
+ outChMode, pParam, &bsMetaData, mixFactors, &dmxScale);
+ /* No fatal errors can occur here. The function is designed to always return
+ a valid matrix. The error code is used to signal configurations and
+ matrices that are not conform to any standard. */
+
+ /* Determine the final scaling */
+ bypScale = fMin(dmxMaxScale, dmxScale);
+ *pDmxOutScale += bypScale;
+ dmxScale -= bypScale;
+
+ { /* Set channel pointer for input. Remove empty cols. */
+ int inCh, outCh, map[(8)];
+ int ch = 0;
+ for (inCh = 0; inCh < (8); inCh += 1) {
+ if (inOffsetTable[inCh] < (UCHAR)numInChannels) {
+ pInPcm[ch] = &pPcmBuf[inOffsetTable[inCh] * offset];
+ map[ch++] = inCh;
+ }
+ }
+ for (; ch < (8); ch += 1) {
+ map[ch] = ch;
+ }
+
+ /* Remove unused cols from factor matrix */
+ for (inCh = 0; inCh < numInChannels; inCh += 1) {
+ if (inCh != map[inCh]) {
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ mixFactors[outCh][inCh] = mixFactors[outCh][map[inCh]];
+ }
+ }
+ }
+
+ /* Set channel pointer for output. Remove empty cols. */
+ ch = 0;
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ if (outOffsetTable[outCh] < (UCHAR)numOutChannels) {
+ pOutPcm[ch] = &pPcmBuf[outOffsetTable[outCh] * offset];
+ map[ch++] = outCh;
+ }
+ }
+ for (; ch < (8); ch += 1) {
+ map[ch] = ch;
+ }
+
+ /* Remove unused rows from factor matrix */
+ for (outCh = 0; outCh < numOutChannels; outCh += 1) {
+ if (outCh != map[outCh]) {
+ FDKmemcpy(&mixFactors[outCh], &mixFactors[map[outCh]],
+ (8) * sizeof(FIXP_DMX));
+ }
+ }
+ }
+
+ /* Sample processing loop */
+ for (sample = 0; sample < frameSize; sample++) {
+ DMX_PCM tIn[(8)] = {0};
+ FIXP_DBL tOut[(8)] = {(FIXP_DBL)0};
+ int inCh, outCh;
+
+ /* Preload all input samples */
+ for (inCh = 0; inCh < numInChannels; inCh += 1) {
+ if (pInPcm[inCh] != NULL) {
+ tIn[inCh] = *pInPcm[inCh];
+ pInPcm[inCh] += inStride;
+ } else {
+ tIn[inCh] = (DMX_PCM)0;
+ }
+ }
+ /* Apply downmix coefficients to input samples and accumulate for output
+ */
+ for (outCh = 0; outCh < numOutChannels; outCh += 1) {
+ for (inCh = 0; inCh < numInChannels; inCh += 1) {
+ tOut[outCh] += fMult((DMX_PCMF)tIn[inCh], mixFactors[outCh][inCh]);
+ }
+ FDK_ASSERT(pOutPcm[outCh] >= pPcmBuf);
+ FDK_ASSERT(pOutPcm[outCh] < &pPcmBuf[pcmBufSize]);
+ /* Write sample */
+ *pOutPcm[outCh] = (DMX_PCM)SATURATE_SHIFT(
+ tOut[outCh], DFRACT_BITS - DMX_PCM_BITS - dmxScale, DMX_PCM_BITS);
+ pOutPcm[outCh] += outStride;
+ }
+ }
+
+ /* Update the number of output channels */
+ *nChannels = numOutChannels;
+
+ } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ - - - - - - - - - - - - - - - - - - */
+ else if (numInChannels < numOutChannels) { /* Apply rudimentary upmix */
+ /* Set up channel pointer */
+ UCHAR outOffsetTable[(8)];
+
+ /* FIRST STAGE
+ Create a stereo/dual channel signal */
+ if (numInChannels == ONE_CHANNEL) {
+ DMX_PCM *pInPcm[(8)];
+ DMX_PCM *pOutLF, *pOutRF;
+ UINT sample;
+
+ /* Set this stages output stride and channel mode: */
+ outStride = (fInterleaved) ? TWO_CHANNEL : 1;
+ outChMode = outChModeTable[TWO_CHANNEL];
+
+ /* Get channel description and channel mapping for this
+ * stages number of output channels (always STEREO). */
+ getChannelDescription(outChMode, mapDescr, channelType, channelIndices,
+ outOffsetTable);
+ /* Now there is no way back because we modified the channel configuration!
+ */
+
+ /* Set input channel pointer. The first channel is always at index 0. */
+ pInPcm[CENTER_FRONT_CHANNEL] =
+ &pPcmBuf[(frameSize - 1) *
+ inStride]; /* Considering input mapping could lead to a
+ invalid pointer here if the channel is not
+ declared to be a front channel. */
+
+ /* Set output channel pointer (for this stage). */
+ pOutLF = &pPcmBuf[outOffsetTable[LEFT_FRONT_CHANNEL] * offset +
+ (frameSize - 1) * outStride];
+ pOutRF = &pPcmBuf[outOffsetTable[RIGHT_FRONT_CHANNEL] * offset +
+ (frameSize - 1) * outStride];
+
+ /* 1/0 input: */
+ for (sample = 0; sample < frameSize; sample++) {
+ /* L' = C; R' = C; */
+ *pOutLF = *pOutRF = *pInPcm[CENTER_FRONT_CHANNEL];
+
+ pInPcm[CENTER_FRONT_CHANNEL] -= inStride;
+ pOutLF -= outStride;
+ pOutRF -= outStride;
+ }
+
+ /* Prepare for next stage: */
+ inStride = outStride;
+ inChMode = outChMode;
+ FDKmemcpy(inOffsetTable, outOffsetTable, (8) * sizeof(UCHAR));
+ }
+
+ /* SECOND STAGE
+ Extend with zero channels to achieved the desired number of output
+ channels. */
+ if (numOutChannels > TWO_CHANNEL) {
+ DMX_PCM *pIn[(8)] = {NULL};
+ DMX_PCM *pOut[(8)] = {NULL};
+ UINT sample;
+ AUDIO_CHANNEL_TYPE inChTypes[(8)];
+ UCHAR inChIndices[(8)];
+ UCHAR numChPerGrp[2][(4)];
+ int nContentCh = 0; /* Number of channels with content */
+ int nEmptyCh = 0; /* Number of channels with content */
+ int ch, chGrp, isCompatible = 1;
+
+ /* Do not change the signalling which is the channel types and indices.
+ Just reorder and add channels. So first save the input signalling. */
+ FDKmemcpy(inChTypes, channelType,
+ numInChannels * sizeof(AUDIO_CHANNEL_TYPE));
+ FDKmemclear(inChTypes + numInChannels,
+ ((8) - numInChannels) * sizeof(AUDIO_CHANNEL_TYPE));
+ FDKmemcpy(inChIndices, channelIndices, numInChannels * sizeof(UCHAR));
+ FDKmemclear(inChIndices + numInChannels,
+ ((8) - numInChannels) * sizeof(UCHAR));
+
+ /* Set this stages output stride and channel mode: */
+ outStride = (fInterleaved) ? numOutChannels : 1;
+ outChMode = outChModeTable[numOutChannels];
+ FDK_ASSERT(outChMode != CH_MODE_UNDEFINED);
+
+ /* Check if input channel config can be easily mapped to the desired
+ * output config. */
+ for (chGrp = 0; chGrp < (4); chGrp += 1) {
+ numChPerGrp[IN][chGrp] = (inChMode >> (chGrp * 4)) & 0xF;
+ numChPerGrp[OUT][chGrp] = (outChMode >> (chGrp * 4)) & 0xF;
+
+ if (numChPerGrp[IN][chGrp] > numChPerGrp[OUT][chGrp]) {
+ isCompatible = 0;
+ break;
+ }
+ }
+
+ if (isCompatible) {
+ /* Get new channel description and channel
+ * mapping for the desired output channel mode. */
+ getChannelDescription(outChMode, mapDescr, channelType, channelIndices,
+ outOffsetTable);
+ /* If the input config has a back center channel but the output
+ config has not, copy it to left and right (if available). */
+ if ((numChPerGrp[IN][CH_GROUP_REAR] % 2) &&
+ !(numChPerGrp[OUT][CH_GROUP_REAR] % 2)) {
+ if (numChPerGrp[IN][CH_GROUP_REAR] == 1) {
+ inOffsetTable[RIGHT_REAR_CHANNEL] =
+ inOffsetTable[LEFT_REAR_CHANNEL];
+ } else if (numChPerGrp[IN][CH_GROUP_REAR] == 3) {
+ inOffsetTable[RIGHT_MULTIPRPS_CHANNEL] =
+ inOffsetTable[LEFT_MULTIPRPS_CHANNEL];
+ }
+ }
+ } else {
+ /* Just copy and extend the original config */
+ FDKmemcpy(outOffsetTable, inOffsetTable, (8) * sizeof(UCHAR));
+ }
+
+ /* Set I/O channel pointer.
+ Note: The following assignment algorithm clears the channel offset
+ tables. Thus they can not be used afterwards. */
+ for (ch = 0; ch < (8); ch += 1) {
+ if ((outOffsetTable[ch] < 255) &&
+ (inOffsetTable[ch] < 255)) { /* Set I/O pointer: */
+ pIn[nContentCh] =
+ &pPcmBuf[inOffsetTable[ch] * offset + (frameSize - 1) * inStride];
+ pOut[nContentCh] = &pPcmBuf[outOffsetTable[ch] * offset +
+ (frameSize - 1) * outStride];
+ /* Update signalling */
+ channelType[outOffsetTable[ch]] = inChTypes[inOffsetTable[ch]];
+ channelIndices[outOffsetTable[ch]] = inChIndices[inOffsetTable[ch]];
+ inOffsetTable[ch] = 255;
+ outOffsetTable[ch] = 255;
+ nContentCh += 1;
+ }
+ }
+ if (isCompatible) {
+ /* Assign the remaining input channels.
+ This is just a safety appliance. We should never need it. */
+ for (ch = 0; ch < (8); ch += 1) {
+ if (inOffsetTable[ch] < 255) {
+ int outCh;
+ for (outCh = 0; outCh < (8); outCh += 1) {
+ if (outOffsetTable[outCh] < 255) {
+ break;
+ }
+ }
+ if (outCh >= (8)) {
+ FDK_ASSERT(0);
+ break;
+ }
+ /* Set I/O pointer: */
+ pIn[nContentCh] = &pPcmBuf[inOffsetTable[ch] * offset +
+ (frameSize - 1) * inStride];
+ pOut[nContentCh] = &pPcmBuf[outOffsetTable[outCh] * offset +
+ (frameSize - 1) * outStride];
+ /* Update signalling */
+ FDK_ASSERT(inOffsetTable[outCh] < numInChannels);
+ FDK_ASSERT(outOffsetTable[outCh] < numOutChannels);
+ channelType[outOffsetTable[outCh]] = inChTypes[inOffsetTable[ch]];
+ channelIndices[outOffsetTable[outCh]] =
+ inChIndices[inOffsetTable[ch]];
+ inOffsetTable[ch] = 255;
+ outOffsetTable[outCh] = 255;
+ nContentCh += 1;
+ }
+ }
+ /* Set the remaining output channel pointer */
+ for (ch = 0; ch < (8); ch += 1) {
+ if (outOffsetTable[ch] < 255) {
+ pOut[nContentCh + nEmptyCh] = &pPcmBuf[outOffsetTable[ch] * offset +
+ (frameSize - 1) * outStride];
+ /* Expand output signalling */
+ channelType[outOffsetTable[ch]] = ACT_NONE;
+ channelIndices[outOffsetTable[ch]] = (UCHAR)nEmptyCh;
+ outOffsetTable[ch] = 255;
+ nEmptyCh += 1;
+ }
+ }
+ } else {
+ /* Set the remaining output channel pointer */
+ for (ch = nContentCh; ch < numOutChannels; ch += 1) {
+ pOut[ch] = &pPcmBuf[ch * offset + (frameSize - 1) * outStride];
+ /* Expand output signalling */
+ channelType[ch] = ACT_NONE;
+ channelIndices[ch] = (UCHAR)nEmptyCh;
+ nEmptyCh += 1;
+ }
+ }
+
+ /* First copy the channels that have signal */
+ for (sample = 0; sample < frameSize; sample += 1) {
+ DMX_PCM tIn[(8)];
+ /* Read all channel samples */
+ for (ch = 0; ch < nContentCh; ch += 1) {
+ tIn[ch] = *pIn[ch];
+ pIn[ch] -= inStride;
+ }
+ /* Write all channel samples */
+ for (ch = 0; ch < nContentCh; ch += 1) {
+ *pOut[ch] = tIn[ch];
+ pOut[ch] -= outStride;
+ }
+ }
+
+ /* Clear all the other channels */
+ for (sample = 0; sample < frameSize; sample++) {
+ for (ch = nContentCh; ch < numOutChannels; ch += 1) {
+ *pOut[ch] = (DMX_PCM)0;
+ pOut[ch] -= outStride;
+ }
+ }
+ }
+
+ /* update the number of output channels */
+ *nChannels = numOutChannels;
+ } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ - - - - - - - - - - - - - - - - - - */
+ else if (numInChannels == numOutChannels) {
+ /* Don't need to change the channel description here */
+
+ switch (numInChannels) {
+ case 2: { /* Set up channel pointer */
+ DMX_PCM *pInPcm[(8)];
+ DMX_PCM *pOutL, *pOutR;
+ FIXP_DMX flev;
+
+ UINT sample;
+
+ if (fInterleaved) {
+ inStride = numInChannels;
+ outStride =
+ 2; /* fixed !!! (below stereo is donwmixed to mono if required */
+ offset = 1; /* Channel specific offset factor */
+ } else {
+ inStride = 1;
+ outStride = 1;
+ offset = frameSize; /* Channel specific offset factor */
+ }
+
+ /* Set input channel pointer */
+ pInPcm[LEFT_FRONT_CHANNEL] =
+ &pPcmBuf[inOffsetTable[LEFT_FRONT_CHANNEL] * offset];
+ pInPcm[RIGHT_FRONT_CHANNEL] =
+ &pPcmBuf[inOffsetTable[RIGHT_FRONT_CHANNEL] * offset];
+
+ /* Set output channel pointer (same as input) */
+ pOutL = pInPcm[LEFT_FRONT_CHANNEL];
+ pOutR = pInPcm[RIGHT_FRONT_CHANNEL];
+
+ /* Set downmix levels: */
+ flev = FL2FXCONST_DMX(0.70710678f);
+ /* 2/0 input: */
+ switch (dualChannelMode) {
+ case CH1_MODE: /* L' = 0.707 * Ch1; R' = 0.707 * Ch1 */
+ for (sample = 0; sample < frameSize; sample++) {
+ *pOutL = *pOutR = (DMX_PCM)SATURATE_RIGHT_SHIFT(
+ fMult((DMX_PCMF)*pInPcm[LEFT_FRONT_CHANNEL], flev),
+ DFRACT_BITS - DMX_PCM_BITS, DMX_PCM_BITS);
+
+ pInPcm[LEFT_FRONT_CHANNEL] += inStride;
+ pOutL += outStride;
+ pOutR += outStride;
+ }
+ break;
+ case CH2_MODE: /* L' = 0.707 * Ch2; R' = 0.707 * Ch2 */
+ for (sample = 0; sample < frameSize; sample++) {
+ *pOutL = *pOutR = (DMX_PCM)SATURATE_RIGHT_SHIFT(
+ fMult((DMX_PCMF)*pInPcm[RIGHT_FRONT_CHANNEL], flev),
+ DFRACT_BITS - DMX_PCM_BITS, DMX_PCM_BITS);
+
+ pInPcm[RIGHT_FRONT_CHANNEL] += inStride;
+ pOutL += outStride;
+ pOutR += outStride;
+ }
+ break;
+ case MIXED_MODE: /* L' = 0.5*Ch1 + 0.5*Ch2; R' = 0.5*Ch1 + 0.5*Ch2 */
+ for (sample = 0; sample < frameSize; sample++) {
+ *pOutL = *pOutR = (*pInPcm[LEFT_FRONT_CHANNEL] >> 1) +
+ (*pInPcm[RIGHT_FRONT_CHANNEL] >> 1);
+
+ pInPcm[LEFT_FRONT_CHANNEL] += inStride;
+ pInPcm[RIGHT_FRONT_CHANNEL] += inStride;
+ pOutL += outStride;
+ pOutR += outStride;
+ }
+ break;
+ default:
+ case STEREO_MODE:
+ /* nothing to do */
+ break;
+ }
+ } break;
+
+ default:
+ /* nothing to do */
+ break;
+ }
+ }
+
+ return (errorStatus);
+}
+
+/** Close an instance of the PCM downmix module.
+ * @param [inout] Pointer to a buffer containing the handle of the instance.
+ * @returns Returns an error code.
+ **/
+PCMDMX_ERROR pcmDmx_Close(HANDLE_PCM_DOWNMIX *pSelf) {
+ if (pSelf == NULL) {
+ return (PCMDMX_INVALID_HANDLE);
+ }
+
+ FreePcmDmxInstance(pSelf);
+ *pSelf = NULL;
+
+ return (PCMDMX_OK);
+}
+
+/** Get library info for this module.
+ * @param [out] Pointer to an allocated LIB_INFO structure.
+ * @returns Returns an error code.
+ */
+PCMDMX_ERROR pcmDmx_GetLibInfo(LIB_INFO *info) {
+ int i;
+
+ if (info == NULL) {
+ return PCMDMX_INVALID_ARGUMENT;
+ }
+
+ /* Search for next free tab */
+ for (i = 0; i < FDK_MODULE_LAST; i++) {
+ if (info[i].module_id == FDK_NONE) break;
+ }
+ if (i == FDK_MODULE_LAST) {
+ return PCMDMX_INVALID_ARGUMENT;
+ }
+
+ /* Add the library info */
+ info[i].module_id = FDK_PCMDMX;
+ info[i].version =
+ LIB_VERSION(PCMUTIL_LIB_VL0, PCMUTIL_LIB_VL1, PCMUTIL_LIB_VL2);
+ LIB_VERSION_STRING(info + i);
+ info[i].build_date = PCMUTIL_LIB_BUILD_DATE;
+ info[i].build_time = PCMUTIL_LIB_BUILD_TIME;
+ info[i].title = PCMDMX_LIB_TITLE;
+
+ /* Set flags */
+ info[i].flags = 0 | CAPF_DMX_BLIND /* At least blind downmixing is possible */
+ | CAPF_DMX_PCE /* Guided downmix with data from MPEG-2/4
+ Program Config Elements (PCE). */
+ | CAPF_DMX_ARIB /* PCE guided downmix with slightly different
+ equations and levels. */
+ | CAPF_DMX_DVB /* Guided downmix with data from DVB ancillary
+ data fields. */
+ | CAPF_DMX_CH_EXP /* Simple upmixing by dublicating channels
+ or adding zero channels. */
+ | CAPF_DMX_6_CH | CAPF_DMX_8_CH;
+
+ /* Add lib info for FDK tools (if not yet done). */
+ FDK_toolsGetLibInfo(info);
+
+ return PCMDMX_OK;
+}