diff options
author | Dave Burke <daveburke@google.com> | 2012-04-17 09:51:45 -0700 |
---|---|---|
committer | Dave Burke <daveburke@google.com> | 2012-04-17 23:04:43 -0700 |
commit | 9bf37cc9712506b2483650c82d3c41152337ef7e (patch) | |
tree | 77db44e2bae06e3d144b255628be2b7a55c581d3 /libSBRenc/src/psenc_hybrid.cpp | |
parent | a37315fe10ee143d6d0b28c19d41a476a23e63ea (diff) | |
download | fdk-aac-9bf37cc9712506b2483650c82d3c41152337ef7e.tar.gz fdk-aac-9bf37cc9712506b2483650c82d3c41152337ef7e.tar.bz2 fdk-aac-9bf37cc9712506b2483650c82d3c41152337ef7e.zip |
Fraunhofer AAC codec.
License boilerplate update to follow.
Change-Id: I2810460c11a58b6d148d84673cc031f3685e79b5
Diffstat (limited to 'libSBRenc/src/psenc_hybrid.cpp')
-rw-r--r-- | libSBRenc/src/psenc_hybrid.cpp | 836 |
1 files changed, 836 insertions, 0 deletions
diff --git a/libSBRenc/src/psenc_hybrid.cpp b/libSBRenc/src/psenc_hybrid.cpp new file mode 100644 index 0000000..a314678 --- /dev/null +++ b/libSBRenc/src/psenc_hybrid.cpp @@ -0,0 +1,836 @@ +/***************************** MPEG Audio Encoder *************************** + + (C) Copyright Fraunhofer IIS (2004-2005) + All Rights Reserved + + Please be advised that this software and/or program delivery is + Confidential Information of Fraunhofer and subject to and covered by the + + Fraunhofer IIS Software Evaluation Agreement + between Google Inc. and Fraunhofer + effective and in full force since March 1, 2012. + + You may use this software and/or program only under the terms and + conditions described in the above mentioned Fraunhofer IIS Software + Evaluation Agreement. Any other and/or further use requires a separate agreement. + + + $Id$ + Initial author: M. Neuendorf, M. Multrus + contents/description: hybrid analysis filter bank + + This software and/or program is protected by copyright law and international + treaties. Any reproduction or distribution of this software and/or program, + or any portion of it, may result in severe civil and criminal penalties, and + will be prosecuted to the maximum extent possible under law. + +******************************************************************************/ + +#include "psenc_hybrid.h" + + +/* Includes ******************************************************************/ + +#include "psenc_hybrid.h" +#include "sbr_ram.h" + +#include "fft.h" + +#include "genericStds.h" + +/* Defines *******************************************************************/ + +#define HYBRID_SCALE 4 + +/*//#define FAST_FILTER2 +#define FAST_FILTER4 +#define FAST_FILTER8 +#define FAST_FILTER12 +*/ +#define HYBRID_INVERSE_ORDER ( 0x0F000000 ) +#define HYBRID_INVERSE_MASK ( ~HYBRID_INVERSE_ORDER ) + +//#define REAL ( 0 ) +//#define CPLX ( 1 ) + +#define cos0Pi FL2FXCONST_DBL( 1.f) +#define sin0Pi FL2FXCONST_DBL( 0.f) +#define cos1Pi FL2FXCONST_DBL(-1.f) +#define sin1Pi FL2FXCONST_DBL( 0.f) +#define cos1Pi_2 FL2FXCONST_DBL( 0.f) +#define sin1Pi_2 FL2FXCONST_DBL( 1.f) +#define cos1Pi_3 FL2FXCONST_DBL( 0.5f) +#define sin1Pi_3 FL2FXCONST_DBL( 0.86602540378444f) + +#define cos0Pi_4 cos0Pi +#define cos1Pi_4 FL2FXCONST_DBL(0.70710678118655f) +#define cos2Pi_4 cos1Pi_2 +#define cos3Pi_4 (-cos1Pi_4) +#define cos4Pi_4 (-cos0Pi_4) +#define cos5Pi_4 cos3Pi_4 +#define cos6Pi_4 cos2Pi_4 + +#define sin0Pi_4 sin0Pi +#define sin1Pi_4 FL2FXCONST_DBL(0.70710678118655f) +#define sin2Pi_4 sin1Pi_2 +#define sin3Pi_4 sin1Pi_4 +#define sin4Pi_4 sin0Pi_4 +#define sin5Pi_4 (-sin3Pi_4) +#define sin6Pi_4 (-sin2Pi_4) + +#define cos0Pi_8 cos0Pi +#define cos1Pi_8 FL2FXCONST_DBL(0.92387953251129f) +#define cos2Pi_8 cos1Pi_4 +#define cos3Pi_8 FL2FXCONST_DBL(0.38268343236509f) +#define cos4Pi_8 cos2Pi_4 +#define cos5Pi_8 (-cos3Pi_8) +#define cos6Pi_8 (-cos2Pi_8) + +#define sin0Pi_8 sin0Pi +#define sin1Pi_8 cos3Pi_8 +#define sin2Pi_8 sin1Pi_4 +#define sin3Pi_8 cos1Pi_8 +#define sin4Pi_8 sin2Pi_4 +#define sin5Pi_8 sin3Pi_8 +#define sin6Pi_8 sin1Pi_4 + +#define cos0Pi_12 cos0Pi +#define cos1Pi_12 FL2FXCONST_DBL(0.96592582628906f) +#define cos2Pi_12 FL2FXCONST_DBL(0.86602540378444f) +#define cos3Pi_12 cos1Pi_4 +#define cos4Pi_12 cos1Pi_3 +#define cos5Pi_12 FL2FXCONST_DBL(0.25881904510252f) +#define cos6Pi_12 cos1Pi_2 + +#define sin0Pi_12 sin0Pi +#define sin1Pi_12 cos5Pi_12 +#define sin2Pi_12 cos4Pi_12 +#define sin3Pi_12 sin1Pi_4 +#define sin4Pi_12 sin1Pi_3 +#define sin5Pi_12 cos1Pi_12 +#define sin6Pi_12 sin1Pi_2 + +#define FFT_IDX_R(a) (2*a) +#define FFT_IDX_I(a) (2*a+1) + + +/* Constants *****************************************************************/ + +/* static const UINT noQmfBandsInHybrid34 = 5; */ + +static const INT aHybridResolution10[] = { HYBRID_6_CPLX, + HYBRID_2_REAL | HYBRID_INVERSE_ORDER, + HYBRID_2_REAL }; + +static const INT aHybridResolution20[] = { HYBRID_6_CPLX, + HYBRID_2_REAL | HYBRID_INVERSE_ORDER, + HYBRID_2_REAL }; + +/*static const INT aHybridResolution34[] = { HYBRID_12_CPLX, + HYBRID_8_CPLX, + HYBRID_4_CPLX, + HYBRID_4_CPLX, + HYBRID_4_CPLX };*/ + +static const FIXP_DBL p8_13_20[HYBRID_FILTER_LENGTH] = +{ + FL2FXCONST_DBL(0.00746082949812f), FL2FXCONST_DBL(0.02270420949825f), FL2FXCONST_DBL(0.04546865930473f), FL2FXCONST_DBL(0.07266113929591f), + FL2FXCONST_DBL(0.09885108575264f), FL2FXCONST_DBL(0.11793710567217f), FL2FXCONST_DBL(0.125f ), FL2FXCONST_DBL(0.11793710567217f), + FL2FXCONST_DBL(0.09885108575264f), FL2FXCONST_DBL(0.07266113929591f), FL2FXCONST_DBL(0.04546865930473f), FL2FXCONST_DBL(0.02270420949825f), + FL2FXCONST_DBL(0.00746082949812f) +}; + +static const FIXP_DBL p2_13_20[HYBRID_FILTER_LENGTH] = +{ + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL( 0.01899487526049f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(-0.07293139167538f), + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL( 0.30596630545168f), FL2FXCONST_DBL(0.5f), FL2FXCONST_DBL( 0.30596630545168f), + FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(-0.07293139167538f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL( 0.01899487526049f), + FL2FXCONST_DBL(0.0f) +}; + + +/*static const float p12_13_34[HYBRID_FILTER_LENGTH] = +{ + 0.04081179924692, 0.03812810994926, 0.05144908135699, 0.06399831151592, + 0.07428313801106, 0.08100347892914, 0.08333333333333, 0.08100347892914, + 0.07428313801106, 0.06399831151592, 0.05144908135699, 0.03812810994926, + 0.04081179924692 +}; + +static const float p8_13_34[HYBRID_FILTER_LENGTH] = +{ + 0.01565675600122, 0.03752716391991, 0.05417891378782, 0.08417044116767, + 0.10307344158036, 0.12222452249753, 0.12500000000000, 0.12222452249753, + 0.10307344158036, 0.08417044116767, 0.05417891378782, 0.03752716391991, + 0.01565675600122 +}; + +static const float p4_13_34[HYBRID_FILTER_LENGTH] = +{ + -0.05908211155639, -0.04871498374946, 0.0, 0.07778723915851, + 0.16486303567403, 0.23279856662996, 0.25, 0.23279856662996, + 0.16486303567403, 0.07778723915851, 0.0, -0.04871498374946, + -0.05908211155639 +};*/ + + +/* Function / Class Implementation *******************************************/ + + + +/*****************************************************************************/ +/* **** FILTERBANK CONFIG **** */ + +HANDLE_ERROR_INFO FDKsbrEnc_CreateHybridConfig(HANDLE_PS_HYBRID_CONFIG *phHybConfig, + PS_BANDS mode) +{ + HANDLE_ERROR_INFO error = noError; + HANDLE_PS_HYBRID_CONFIG h = NULL; + UINT k = 0; + + if (error == noError) { + h = *phHybConfig; /* Simplify your life */ + h->mode = mode; + + switch (mode) { + case PS_BANDS_MID: + h->noQmfBandsInHybrid = NO_QMF_BANDS_HYBRID_20; + for (k=0; k<h->noQmfBandsInHybrid; k++) { + h->aHybridResolution[k] = aHybridResolution20[k]; + } + break; + + case PS_BANDS_FINE: + /*h->noQmfBandsInHybrid = noQmfBandsInHybrid34; + for (k=0; k<h->noQmfBandsInHybrid; k++) { + h->aHybridResolution[k] = aHybridResolution34[k]; + }*/ + FDK_ASSERT(0); /* we don't support! */ + break; + + case PS_BANDS_COARSE: + h->noQmfBandsInHybrid = NO_QMF_BANDS_HYBRID_10; + for (k=0; k<h->noQmfBandsInHybrid; k++) { + h->aHybridResolution[k] = aHybridResolution10[k]; + } + break; + + default: + error = ERROR(CDI, "Invalid hybrid filter bank configuration."); + break; + } + } + + return error; +} + +/*****************************************************************************/ +/* **** FILTERBANK DATA **** */ + +HANDLE_ERROR_INFO FDKsbrEnc_CreateHybridData(HANDLE_PS_HYBRID_DATA *phHybData, + INT ch) +{ + HANDLE_ERROR_INFO error = noError; + int k; + + HANDLE_PS_HYBRID_DATA hHybData = GetRam_HybData(ch); + if (hHybData==NULL) { + error = 1; + goto bail; + } + + FDKmemclear(hHybData, sizeof(PS_HYBRID_DATA)); + + hHybData->rHybData[0] = GetRam_PsRhyb(ch); + hHybData->iHybData[0] = GetRam_PsIhyb(ch); + if ( (hHybData->rHybData[0]==NULL) || (hHybData->iHybData[0]==NULL) ) { + error = 1; + goto bail; + } + + + + for (k=1; k<(HYBRID_FRAMESIZE+HYBRID_WRITEOFFSET); k++) { + hHybData->rHybData[k] = hHybData->rHybData[0] + (k*HYBRID_NUM_BANDS); + hHybData->iHybData[k] = hHybData->iHybData[0] + (k*HYBRID_NUM_BANDS); + } + +bail: + *phHybData = hHybData; + return error; +} + + +HANDLE_ERROR_INFO FDKsbrEnc_InitHybridData(HANDLE_PS_HYBRID_DATA hHybData, + HANDLE_PS_HYBRID_CONFIG hHybConfig, + INT frameSize) +{ + HANDLE_ERROR_INFO error = noError; + INT nHybridBands = 0; + INT k = 0; + INT noBands = 0; + const INT *hybridRes = NULL; + + if (hHybConfig != NULL) { + noBands = hHybConfig->noQmfBandsInHybrid; + hybridRes = hHybConfig->aHybridResolution; + } + + for (k=0; k<noBands; k++) { + nHybridBands += (hybridRes[k] & HYBRID_INVERSE_MASK); + } + FDK_ASSERT (HYBRID_NUM_BANDS>=nHybridBands); + + hHybData->hybDataReadOffset = HYBRID_DATA_READ_OFFSET; + hHybData->hybDataWriteOffset = HYBRID_WRITEOFFSET; + + for (k=0; k<(HYBRID_FRAMESIZE+HYBRID_WRITEOFFSET); k++) { + FDKmemclear(hHybData->rHybData[k], sizeof(FIXP_QMF)*HYBRID_NUM_BANDS); + FDKmemclear(hHybData->iHybData[k], sizeof(FIXP_QMF)*HYBRID_NUM_BANDS); + } + + hHybData->frameSize = frameSize; + hHybData->nHybridBands = nHybridBands; + hHybData->nHybridQmfBands = noBands; + + /* store hybrid resoltion in hybrid data handle */ + FDK_ASSERT (HYBRID_MAX_QMF_BANDS>=hHybData->nHybridQmfBands); + for(k = 0; k<hHybData->nHybridQmfBands; k++){ + hHybData->nHybridResolution[k] = (hybridRes[k] & HYBRID_INVERSE_MASK); + } + + return error; +} + +HANDLE_ERROR_INFO FDKsbrEnc_DestroyHybridData(HANDLE_PS_HYBRID_DATA* phHybData) +{ + HANDLE_PS_HYBRID_DATA hHybData = *phHybData; + + if (hHybData!=NULL) { + FreeRam_PsRhyb(&hHybData->rHybData[0]); + FreeRam_PsIhyb(&hHybData->iHybData[0]); + FreeRam_HybData(phHybData); + } + + return noError; +} + +/*** Access functions ***/ + +/* return hybrid band resolution of qmf band 'qmfBand' */ +INT FDKsbrEnc_GetHybridResolution(HANDLE_PS_HYBRID_DATA h, INT qmfBand){ + + INT nHybridResolution = 0; + + if(h->nHybridResolution){ + nHybridResolution = h->nHybridResolution[qmfBand]; + } + + return nHybridResolution; +} + +/*****************************************************************************/ +/* **** FILTERBANK **** */ + +/* + 2 channel filter + Filter Coefs: + 0.0, + 0.01899487526049, + 0.0, + -0.07293139167538, + 0.0, + 0.30596630545168, + 0.5, + 0.30596630545168, + 0.0, + -0.07293139167538, + 0.0, + 0.01899487526049, + 0.0 + + + Filter design: + h[q,n] = g[n] * cos(2pi/2 * q * (n-6) ); n = 0..12, q = 0,1; + + -> h[0,n] = g[n] * 1; + -> h[1,n] = g[n] * pow(-1,n); + +*/ + +static void dualChannelFiltering(const FIXP_QMF *RESTRICT pQmfReal, + const FIXP_QMF *RESTRICT pQmfImag, + FIXP_QMF **RESTRICT mHybridReal, + FIXP_QMF **RESTRICT mHybridImag, + INT nSamples) +{ + INT i; + + for(i = 0; i < nSamples; i++) { + FIXP_DBL r1, r3, r5, r6; + FIXP_DBL i1, i3, i5, i6; + + /* symmetric filter coefficients + scaleValue same as used in eightChannelFiltering (HYBRID_SCALE = 4) + */ + r1 = fMultDiv2(p2_13_20[1], (FIXP_QMF)((pQmfReal[1+i]>>1) + (pQmfReal[11+i]>>1)) ) >> 2; + r3 = fMultDiv2(p2_13_20[3], (FIXP_QMF)((pQmfReal[3+i]>>1) + (pQmfReal[ 9+i]>>1)) ) >> 2; + r5 = fMultDiv2(p2_13_20[5], (FIXP_QMF)((pQmfReal[5+i]>>1) + (pQmfReal[ 7+i]>>1)) ) >> 2; + r6 = fMultDiv2(p2_13_20[6], (FIXP_QMF) (pQmfReal[6+i]>>1) ) >> 2; + + i1 = fMultDiv2(p2_13_20[1], (FIXP_QMF)((pQmfImag[1+i]>>1) + (pQmfImag[11+i]>>1)) ) >> 2; + i3 = fMultDiv2(p2_13_20[3], (FIXP_QMF)((pQmfImag[3+i]>>1) + (pQmfImag[ 9+i]>>1)) ) >> 2; + i5 = fMultDiv2(p2_13_20[5], (FIXP_QMF)((pQmfImag[5+i]>>1) + (pQmfImag[ 7+i]>>1)) ) >> 2; + i6 = fMultDiv2(p2_13_20[6], (FIXP_QMF) (pQmfImag[6+i]>>1) ) >> 2; + + mHybridReal[i][0] = FX_DBL2FX_QMF(r1 + r3 + r5 + r6); + mHybridImag[i][0] = FX_DBL2FX_QMF(i1 + i3 + i5 + i6); + + mHybridReal[i][1] = FX_DBL2FX_QMF(- r1 - r3 - r5 + r6); + mHybridImag[i][1] = FX_DBL2FX_QMF(- i1 - i3 - i5 + i6); + } +} + +/* + 8 channel filter + + Implementation using a FFT of length 8 + + prototype filter coefficients: + 0.00746082949812 0.02270420949825 0.04546865930473 0.07266113929591 0.09885108575264 0.11793710567217 + 0.125 + 0.11793710567217 0.09885108575264 0.07266113929591 0.04546865930473 0.02270420949825 0.00746082949812 + + Filter design: + N = 13; Q = 8; + h[q,n] = g[n] * exp(j * 2 * pi / Q * (q + .5) * (n - 6)); n = 0..(N-1), q = 0..(Q-1); + + Time Signal: x[t]; + Filter Bank Output + y[q,t] = conv(x[t],h[q,t]) = conv(h[q,t],x[t]) = sum(x[k] * h[q, t - k] ) = sum(h[q, k] * x[t - k] ); k = 0..(N-1); + + y[q,t] = x[t - 12]*h[q, 12] + x[t - 11]*h[q, 11] + x[t - 10]*h[q, 10] + x[t - 9]*h[q, 9] + + x[t - 8]*h[q, 8] + x[t - 7]*h[q, 7] + + x[t - 6]*h[q, 6] + + x[t - 5]*h[q, 5] + x[t - 4]*h[q, 4] + + x[t - 3]*h[q, 3] + x[t - 2]*h[q, 2] + x[t - 1]*h[q, 1] + x[t - 0]*h[q, 0]; + + h'[q, n] = h[q,(N-1)-n] = g[n] * exp(j * 2 * pi / Q * (q + .5) * (6 - n)); n = 0..(N-1), q = 0..(Q-1); + + y[q,t] = x[t - 12]*h'[q, 0] + x[t - 11]*h'[q, 1] + x[t - 10]*h'[q, 2] + x[t - 9]*h'[q, 3] + + x[t - 8]*h'[q, 4] + x[t - 7]*h'[q, 5] + + x[t - 6]*h'[q, 6] + + x[t - 5]*h'[q, 7] + x[t - 4]*h'[q, 8] + + x[t - 3]*h'[q, 9] + x[t - 2]*h'[q, 10] + x[t - 1]*h'[q, 11] + x[t - 0]*h'[q, 12]; + + Try to split off FFT Modulation Term: + FFT(x[t], q) = sum(x[t+k]*exp(-j*2*pi/N *q * k)) + c m + Step 1: h'[q,n] = g[n] * ( exp(j * 2 * pi / 8 * .5 * (6 - n)) ) * ( exp (j * 2 * pi / 8 * q * (6 - n)) ); + + h'[q,n] = g[n] *c[n] * m[q,n]; (see above) + c[n] = exp( j * 2 * pi / 8 * .5 * (6 - n) ); + m[q,n] = exp( j * 2 * pi / 8 * q * (6 - n) ); + + y[q,t] = x[t - 0]*g[0]*c[0]*m[q,0] + x[t - 1]*g[1]*c[ 1]*m[q, 1] + ... + ... + x[t - 12]*g[2]*c[12]*m[q,12]; + + | + n m *exp(-j*2*pi) | n' fft +------------------------------------------------------------------------------------------------------------------------- + 0 exp( j * 2 * pi / 8 * q * 6) -> exp(-j * 2 * pi / 8 * q * 2) | 2 exp(-j * 2 * pi / 8 * q * 0) + 1 exp( j * 2 * pi / 8 * q * 5) -> exp(-j * 2 * pi / 8 * q * 3) | 3 exp(-j * 2 * pi / 8 * q * 1) + 2 exp( j * 2 * pi / 8 * q * 4) -> exp(-j * 2 * pi / 8 * q * 4) | 4 exp(-j * 2 * pi / 8 * q * 2) + 3 exp( j * 2 * pi / 8 * q * 3) -> exp(-j * 2 * pi / 8 * q * 5) | 5 exp(-j * 2 * pi / 8 * q * 3) + 4 exp( j * 2 * pi / 8 * q * 2) -> exp(-j * 2 * pi / 8 * q * 6) | 6 exp(-j * 2 * pi / 8 * q * 4) + 5 exp( j * 2 * pi / 8 * q * 1) -> exp(-j * 2 * pi / 8 * q * 7) | 7 exp(-j * 2 * pi / 8 * q * 5) + 6 exp( j * 2 * pi / 8 * q * 0) | 0 exp(-j * 2 * pi / 8 * q * 6) + 7 exp(-j * 2 * pi / 8 * q * 1) | 1 exp(-j * 2 * pi / 8 * q * 7) + 8 exp(-j * 2 * pi / 8 * q * 2) | 2 + 9 exp(-j * 2 * pi / 8 * q * 3) | 3 + 10 exp(-j * 2 * pi / 8 * q * 4) | 4 + 11 exp(-j * 2 * pi / 8 * q * 5) | 5 + 12 exp(-j * 2 * pi / 8 * q * 6) | 6 + + + now use fft modulation coefficients + m[6] = = fft[0] + m[7] = = fft[1] + m[8] = m[ 0] = fft[2] + m[9] = m[ 1] = fft[3] + m[10] = m[ 2] = fft[4] + m[11] = m[ 3] = fft[5] + m[12] = m[ 4] = fft[6] + m[ 5] = fft[7] + + y[q,t] = ( x[t- 6]*g[ 6]*c[ 6] ) * fft[q,0] + + ( x[t- 7]*g[ 7]*c[ 7] ) * fft[q,1] + + ( x[t- 0]*g[ 0]*c[ 0] + x[t- 8]*g[ 8]*c[ 8] ) * fft[q,2] + + ( x[t- 1]*g[ 1]*c[ 1] + x[t- 9]*g[ 9]*c[ 9] ) * fft[q,3] + + ( x[t- 2]*g[ 2]*c[ 2] + x[t-10]*g[10]*c[10] ) * fft[q,4] + + ( x[t- 3]*g[ 3]*c[ 3] + x[t-11]*g[11]*c[11] ) * fft[q,5] + + ( x[t- 4]*g[ 4]*c[ 4] + x[t-12]*g[12]*c[12] ) * fft[q,6] + + ( x[t- 5]*g[ 5]*c[ 5] ) * fft[q,7]; + + pre twiddle factors c[n] = exp(j * 2 * pi / 8 * .5 * (6 - n)); + n c] | n c[n] | n c[n] +--------------------------------------------------------------------------------------------------- + 0 exp( j * 6 * pi / 8) | 1 exp( j * 5 * pi / 8) | 2 exp( j * 4 * pi / 8) + 3 exp( j * 3 * pi / 8) | 4 exp( j * 2 * pi / 8) | 5 exp( j * 1 * pi / 8) + 6 exp( j * 0 * pi / 8) | 7 exp(-j * 1 * pi / 8) | 8 exp(-j * 2 * pi / 8) + 9 exp(-j * 3 * pi / 8) | 10 exp(-j * 4 * pi / 8) | 11 exp(-j * 5 * pi / 8) + 12 exp(-j * 6 * pi / 8) | | + +*/ + +static const FIXP_DBL cr[13] = +{ cos6Pi_8, cos5Pi_8, cos4Pi_8, + cos3Pi_8, cos2Pi_8, cos1Pi_8, + cos0Pi_8, + cos1Pi_8, cos2Pi_8, cos3Pi_8, + cos4Pi_8, cos5Pi_8, cos6Pi_8 +}; + +static const FIXP_DBL ci[13] = +{ + sin6Pi_8, sin5Pi_8, sin4Pi_8, + sin3Pi_8, sin2Pi_8, sin1Pi_8, + sin0Pi_8, + -sin1Pi_8, -sin2Pi_8, -sin3Pi_8, + -sin4Pi_8, -sin5Pi_8, -sin6Pi_8 +}; + + +static void eightChannelFiltering(const FIXP_QMF *pQmfReal, + const FIXP_QMF *pQmfImag, + FIXP_DBL *fft, + FIXP_QMF **mHybridReal, + FIXP_QMF **mHybridImag, + INT nSamples, + const FIXP_DBL *p) +{ + INT i, bin; + for(i = 0; i < nSamples; i++) { + /* pre twiddeling + scaling 4 = 2 (fMultDiv2) + 2 (dit_fft) scaling (HYBRID_SCALE = 4) + */ + fft[FFT_IDX_R(0)] = fMultDiv2(p[6], fMultSubDiv2(fMultDiv2(cr[6], pQmfReal[6+i]), ci[6], pQmfImag[6+i])); + fft[FFT_IDX_I(0)] = fMultDiv2(p[6], fMultAddDiv2(fMultDiv2(ci[6], pQmfReal[6+i]), cr[6], pQmfImag[6+i])); + + fft[FFT_IDX_R(1)] = fMultDiv2(p[7], fMultSubDiv2(fMultDiv2(cr[7], pQmfReal[7+i]), ci[7], pQmfImag[7+i])); + fft[FFT_IDX_I(1)] = fMultDiv2(p[7], fMultAddDiv2(fMultDiv2(ci[7], pQmfReal[7+i]), cr[7], pQmfImag[7+i])); + + fft[FFT_IDX_R(2)] = ( fMultDiv2(p[ 0], fMultSubDiv2(fMultDiv2(cr[0], pQmfReal[ 0+i]), ci[0], pQmfImag[ 0+i]))+ + fMultDiv2(p[ 8], fMultSubDiv2(fMultDiv2(cr[8], pQmfReal[ 8+i]), ci[8], pQmfImag[ 8+i])) ); + fft[FFT_IDX_I(2)] = ( fMultDiv2(p[ 0], fMultAddDiv2(fMultDiv2(ci[0], pQmfReal[ 0+i]), cr[0], pQmfImag[ 0+i]))+ + fMultDiv2(p[ 8], fMultAddDiv2(fMultDiv2(ci[8], pQmfReal[ 8+i]), cr[8], pQmfImag[ 8+i])) ); + + fft[FFT_IDX_R(3)] = ( fMultDiv2(p[ 1], fMultSubDiv2(fMultDiv2(cr[1], pQmfReal[ 1+i]), ci[1], pQmfImag[ 1+i]))+ + fMultDiv2(p[ 9], fMultSubDiv2(fMultDiv2(cr[9], pQmfReal[ 9+i]), ci[9], pQmfImag[ 9+i])) ); + fft[FFT_IDX_I(3)] = ( fMultDiv2(p[ 1], fMultAddDiv2(fMultDiv2(ci[1], pQmfReal[ 1+i]), cr[1], pQmfImag[ 1+i]))+ + fMultDiv2(p[ 9], fMultAddDiv2(fMultDiv2(ci[9], pQmfReal[ 9+i]), cr[9], pQmfImag[ 9+i])) ); + + fft[FFT_IDX_R(4)] = ( fMultDiv2(p[ 2], fMultSubDiv2( fMultDiv2(cr[2], pQmfReal[ 2+i]), ci[2], pQmfImag[ 2+i]))+ + fMultDiv2(p[10], fMultSubDiv2(fMultDiv2(cr[10], pQmfReal[10+i]), ci[10], pQmfImag[10+i])) ); + fft[FFT_IDX_I(4)] = ( fMultDiv2(p[ 2], fMultAddDiv2( fMultDiv2(ci[2], pQmfReal[ 2+i]), cr[2], pQmfImag[ 2+i]))+ + fMultDiv2(p[10], fMultAddDiv2(fMultDiv2(ci[10], pQmfReal[10+i]), cr[10], pQmfImag[10+i])) ); + + fft[FFT_IDX_R(5)] = ( fMultDiv2(p[ 3], fMultSubDiv2( fMultDiv2(cr[3], pQmfReal[ 3+i]), ci[3], pQmfImag[ 3+i]))+ + fMultDiv2(p[11], fMultSubDiv2(fMultDiv2(cr[11], pQmfReal[11+i]), ci[11], pQmfImag[11+i])) ); + fft[FFT_IDX_I(5)] = ( fMultDiv2(p[ 3], fMultAddDiv2( fMultDiv2(ci[3], pQmfReal[ 3+i]), cr[3], pQmfImag[ 3+i]))+ + fMultDiv2(p[11], fMultAddDiv2(fMultDiv2(ci[11], pQmfReal[11+i]), cr[11], pQmfImag[11+i])) ); + + fft[FFT_IDX_R(6)] = ( fMultDiv2(p[ 4], fMultSubDiv2( fMultDiv2(cr[4], pQmfReal[ 4+i]), ci[4], pQmfImag[ 4+i]))+ + fMultDiv2(p[12], fMultSubDiv2(fMultDiv2(cr[12], pQmfReal[12+i]), ci[12], pQmfImag[12+i])) ); + fft[FFT_IDX_I(6)] = ( fMultDiv2(p[ 4], fMultAddDiv2( fMultDiv2(ci[4], pQmfReal[ 4+i]), cr[4], pQmfImag[ 4+i]))+ + fMultDiv2(p[12], fMultAddDiv2(fMultDiv2(ci[12], pQmfReal[12+i]), cr[12], pQmfImag[12+i])) ); + + fft[FFT_IDX_R(7)] = fMultDiv2(p[5], fMultSubDiv2(fMultDiv2(cr[5], pQmfReal[5+i]), ci[5], pQmfImag[5+i])); + fft[FFT_IDX_I(7)] = fMultDiv2(p[5], fMultAddDiv2(fMultDiv2(ci[5], pQmfReal[5+i]), cr[5], pQmfImag[5+i])); + + /* fft modulation */ + fft_8(fft); + + /* resort fft data INTo output array*/ + for(bin=0; bin<8;bin++ ) { + mHybridReal[i][bin] = FX_DBL2FX_QMF(fft[FFT_IDX_R(bin)]); + mHybridImag[i][bin] = FX_DBL2FX_QMF(fft[FFT_IDX_I(bin)]); + } + } +} + +/**************************************************************************//** +HybridAnalysis +******************************************************************************/ + +HANDLE_ERROR_INFO +HybridAnalysis ( HANDLE_PS_HYBRID hHybrid, /*!< Handle to HYBRID struct. */ + FIXP_QMF *const *const mQmfReal, /*!< The real part of the QMF-matrix. */ + FIXP_QMF *const *const mQmfImag, /*!< The imaginary part of the QMF-matrix. */ + SCHAR sf_fixpQmf, /*!< Qmf scale factor */ + FIXP_QMF **mHybridReal, /*!< The real part of the hybrid-matrix. */ + FIXP_QMF **mHybridImag, /*!< The imaginary part of the hybrid-matrix. */ + SCHAR *sf_fixpHybrid) /*!< Hybrid scale factor */ +{ + HANDLE_ERROR_INFO error = noError; + INT n, band; + INT hybridRes; + INT chOffset = 0; + /* INT usedStereoBands = hHybrid->mode; */ /*!< indicates which 8 band filter to use */ + INT frameSize = hHybrid->frameSize; + INT hybridFilterDelay = hHybrid->hybridFilterDelay; + + for(band = 0; band < hHybrid->nQmfBands; band++) { /* loop all qmf bands */ + + if(error == noError){ + hybridRes = hHybrid->pResolution[band]; + + /* Create working buffer. */ + /* Copy stored samples to working buffer. */ + FDKmemcpy(hHybrid->pWorkReal, hHybrid->mQmfBufferReal[band], + hHybrid->qmfBufferMove * sizeof(FIXP_QMF)); + FDKmemcpy(hHybrid->pWorkImag, hHybrid->mQmfBufferImag[band], + hHybrid->qmfBufferMove * sizeof(FIXP_QMF)); + + /* Append new samples to working buffer. */ + for(n = 0; n < frameSize; n++) { + hHybrid->pWorkReal [hHybrid->qmfBufferMove + n] = mQmfReal [n + hybridFilterDelay] [band]; + hHybrid->pWorkImag [hHybrid->qmfBufferMove + n] = mQmfImag [n + hybridFilterDelay] [band]; + } + + /* Store samples for next frame. */ + FDKmemcpy(hHybrid->mQmfBufferReal[band], hHybrid->pWorkReal + frameSize, + hHybrid->qmfBufferMove * sizeof(FIXP_QMF)); + FDKmemcpy(hHybrid->mQmfBufferImag[band], hHybrid->pWorkImag + frameSize, + hHybrid->qmfBufferMove * sizeof(FIXP_QMF)); + + + switch(hybridRes) { + case HYBRID_2_REAL: + dualChannelFiltering( hHybrid->pWorkReal, + hHybrid->pWorkImag, + hHybrid->mTempReal, + hHybrid->mTempImag, + frameSize); + + /* copy data to output buffer */ + for(n = 0; n < frameSize; n++) { + FDKmemcpy(&mHybridReal[n][chOffset], hHybrid->mTempReal[n], + (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF)); + FDKmemcpy(&mHybridImag[n][chOffset], hHybrid->mTempImag[n], + (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF)); + } + break; + + case HYBRID_2_REAL | HYBRID_INVERSE_ORDER: + dualChannelFiltering( hHybrid->pWorkReal, + hHybrid->pWorkImag, + hHybrid->mTempReal, + hHybrid->mTempImag, + frameSize); + + /* copy and resort data */ + for ( n = 0; n < frameSize; n++ ) + { + mHybridReal[n][chOffset + 0] = hHybrid->mTempReal[n][1] ; + mHybridReal[n][chOffset + 1] = hHybrid->mTempReal[n][0] ; + mHybridImag[n][chOffset + 0] = hHybrid->mTempImag[n][1] ; + mHybridImag[n][chOffset + 1] = hHybrid->mTempImag[n][0] ; + } + break; + + case HYBRID_6_CPLX: + eightChannelFiltering( hHybrid->pWorkReal, + hHybrid->pWorkImag, + hHybrid->fft, + hHybrid->mTempReal, + hHybrid->mTempImag, + frameSize, + /*(usedStereoBands==PS_BANDS_FINE)?p8_13_34:*/p8_13_20); + + /* do the shuffle */ + for ( n = 0; n < frameSize; n++ ) + { + /* add data ... */ + hHybrid->mTempReal[n][2] += hHybrid->mTempReal[n][5]; + hHybrid->mTempImag[n][2] += hHybrid->mTempImag[n][5]; + hHybrid->mTempReal[n][3] += hHybrid->mTempReal[n][4]; + hHybrid->mTempImag[n][3] += hHybrid->mTempImag[n][4]; + + /* shuffle and copy to output buffer */ + mHybridReal[n][chOffset + 0] = hHybrid->mTempReal[n][6] ; + mHybridReal[n][chOffset + 1] = hHybrid->mTempReal[n][7] ; + mHybridReal[n][chOffset + 2] = hHybrid->mTempReal[n][0] ; + mHybridReal[n][chOffset + 3] = hHybrid->mTempReal[n][1] ; + mHybridReal[n][chOffset + 4] = hHybrid->mTempReal[n][2] ; + mHybridReal[n][chOffset + 5] = hHybrid->mTempReal[n][3] ; + + mHybridImag[n][chOffset + 0] = hHybrid->mTempImag[n][6] ; + mHybridImag[n][chOffset + 1] = hHybrid->mTempImag[n][7] ; + mHybridImag[n][chOffset + 2] = hHybrid->mTempImag[n][0] ; + mHybridImag[n][chOffset + 3] = hHybrid->mTempImag[n][1] ; + mHybridImag[n][chOffset + 4] = hHybrid->mTempImag[n][2] ; + mHybridImag[n][chOffset + 5] = hHybrid->mTempImag[n][3] ; + } + break; + + case HYBRID_8_CPLX: + eightChannelFiltering( hHybrid->pWorkReal, + hHybrid->pWorkImag, + hHybrid->fft, + hHybrid->mTempReal, + hHybrid->mTempImag, + frameSize, + /*(usedStereoBands==PS_BANDS_FINE)?p8_13_34:*/p8_13_20); + + /* copy data to output buffer */ + for(n = 0; n < frameSize; n++) { + FDKmemcpy(&mHybridReal[n][chOffset], hHybrid->mTempReal[n], + (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF)); + FDKmemcpy(&mHybridImag[n][chOffset], hHybrid->mTempImag[n], + (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF)); + } + break; + + default: + error = ERROR(CDI, "Invalid filter bank configuration."); + break; + } + /* prepare next run by incresing chOffset */ + chOffset += hybridRes & HYBRID_INVERSE_MASK; + } + } + + *sf_fixpHybrid = sf_fixpQmf + HYBRID_SCALE; + + return error; +} + +/**************************************************************************//** + FDKsbrEnc_CreateHybridFilterBank +******************************************************************************/ +HANDLE_ERROR_INFO +FDKsbrEnc_CreateHybridFilterBank ( HANDLE_PS_HYBRID *phHybrid, /*!< Pointer to handle to HYBRID struct. */ + INT ch) /*!< Current channel */ +{ + HANDLE_ERROR_INFO error = noError; + INT i; + HANDLE_PS_HYBRID hs = GetRam_PsHybrid(ch); /* allocate memory */ + if (hs==NULL) { + error = 1; + goto bail; + } + + hs->fft = GetRam_PsHybFFT(); + + /* alloc working memory */ + hs->pWorkReal = GetRam_PsHybWkReal(); + hs->pWorkImag = GetRam_PsHybWkImag(); + + if ( (hs->fft==NULL) || (hs->pWorkReal==NULL) || (hs->pWorkImag==NULL) ) { + error = 1; + goto bail; + } + + /* Allocate buffers */ + for (i = 0; i < HYBRID_FRAMESIZE; i++) { + hs->mTempReal[i] = GetRam_PsMtmpReal(i); + hs->mTempImag[i] = GetRam_PsMtmpImag(i); + if ( (hs->mTempReal[i]==NULL) || (hs->mTempImag[i]==NULL) ) { + error = 1; + goto bail; + } + } + +bail: + *phHybrid = hs; + return error; +} + +HANDLE_ERROR_INFO +FDKsbrEnc_InitHybridFilterBank ( HANDLE_PS_HYBRID hs, /*!< Handle to HYBRID struct. */ + HANDLE_PS_HYBRID_CONFIG hHybConfig, /*!< Configuration hanlde for filter bank */ + INT frameSize) /*!< Number of QMF slots */ +{ + HANDLE_ERROR_INFO error = noError; + INT i; + INT maxNoChannels = HYBRID_12_CPLX, noBands; + PS_BANDS mode; + const INT *RESTRICT pResolution; + + /* filter bank configuration */ + mode = hHybConfig->mode; + noBands = hHybConfig->noQmfBandsInHybrid; + pResolution = hHybConfig->aHybridResolution; + + /* assign resolution, check for valid values */ + for (i = 0; i < noBands; i++) { + if(error == noError){ + if( pResolution[i] != HYBRID_12_CPLX && + pResolution[i] != HYBRID_8_CPLX && + pResolution[i] != HYBRID_6_CPLX && + pResolution[i] != HYBRID_2_REAL && + pResolution[i] != (HYBRID_2_REAL | HYBRID_INVERSE_ORDER) && + pResolution[i] != HYBRID_4_CPLX ){ + error = ERROR(CDI, "Invalid filter bank resolution"); + } + } + hs->pResolution[i] = pResolution[i]; + if((pResolution[i] & HYBRID_INVERSE_MASK) > maxNoChannels){ + maxNoChannels = pResolution[i] & HYBRID_INVERSE_MASK; + } + } + FDK_ASSERT (MAX_HYBRID_RES>=maxNoChannels); /* check size of mTempReal/Imag */ + + /* assign parameters */ + hs->mode = mode; + hs->nQmfBands = noBands; + hs->frameSize = frameSize; + hs->frameSizeInit = frameSize; + hs->qmfBufferMove = HYBRID_FILTER_LENGTH - 1; + hs->hybridFilterDelay = HYBRID_FILTER_LENGTH/2; + + FDK_ASSERT (HYBRID_FRAMESIZE>=hs->frameSize); + FDK_ASSERT (QMF_BUFFER_MOVE>=hs->qmfBufferMove); + + return error; +} + + +/**************************************************************************//** + FDKsbrEnc_DeleteHybridFilterBank +******************************************************************************/ + +HANDLE_ERROR_INFO +FDKsbrEnc_DeleteHybridFilterBank ( HANDLE_PS_HYBRID* phHybrid ) /*!< Pointer to handle to HYBRID struct. */ +{ + int i; + HANDLE_PS_HYBRID hHybrid = *phHybrid; + + if (hHybrid!=NULL) { + if (hHybrid->fft) + FreeRam_PsHybFFT(&hHybrid->fft); + if (hHybrid->pWorkReal) + FreeRam_PsHybWkReal(&hHybrid->pWorkReal); + if (hHybrid->pWorkImag) + FreeRam_PsHybWkImag(&hHybrid->pWorkImag); + + for (i = 0; i < HYBRID_FRAMESIZE; i++) { + if (hHybrid->mTempReal[i]) + FreeRam_PsMtmpReal(&hHybrid->mTempReal[i]); + if (hHybrid->mTempImag[i]) + FreeRam_PsMtmpImag(&hHybrid->mTempImag[i]); + } + + FreeRam_PsHybrid(phHybrid); + } + + return noError; +} + +/*** Access functions ***/ +INT FDKsbrEnc_GetHybridFilterDelay(HANDLE_PS_HYBRID hHybrid){ + + return hHybrid->hybridFilterDelay; +} + |