diff options
author | The Android Open Source Project <initial-contribution@android.com> | 2012-07-11 10:15:24 -0700 |
---|---|---|
committer | The Android Open Source Project <initial-contribution@android.com> | 2012-07-11 10:15:24 -0700 |
commit | 2228e360595641dd906bf1773307f43d304f5b2e (patch) | |
tree | 57f3d390ebb0782cc0de0fb984c8ea7e45b4f386 /libSBRenc/src/invf_est.cpp | |
download | fdk-aac-2228e360595641dd906bf1773307f43d304f5b2e.tar.gz fdk-aac-2228e360595641dd906bf1773307f43d304f5b2e.tar.bz2 fdk-aac-2228e360595641dd906bf1773307f43d304f5b2e.zip |
Snapshot 2bda038c163298531d47394bc2c09e1409c5d0db
Change-Id: If584e579464f28b97d50e51fc76ba654a5536c54
Diffstat (limited to 'libSBRenc/src/invf_est.cpp')
-rw-r--r-- | libSBRenc/src/invf_est.cpp | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/libSBRenc/src/invf_est.cpp b/libSBRenc/src/invf_est.cpp new file mode 100644 index 0000000..788ab7c --- /dev/null +++ b/libSBRenc/src/invf_est.cpp @@ -0,0 +1,529 @@ + +/* ----------------------------------------------------------------------------------------------------------- +Software License for The Fraunhofer FDK AAC Codec Library for Android + +© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. + All rights reserved. + + 1. INTRODUCTION +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements +the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. +This FDK AAC Codec software is intended to be used on a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual +audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by +independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part +of the MPEG specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) +may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners +individually for the purpose of encoding or decoding bit streams in products that are compliant with +the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license +these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec +software may already be covered under those patent licenses when it is used for those licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, +are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional +applications information and documentation. + +2. COPYRIGHT LICENSE + +Redistribution and use in source and binary forms, with or without modification, are permitted without +payment of copyright license fees provided that you satisfy the following conditions: + +You must retain the complete text of this software license in redistributions of the FDK AAC Codec or +your modifications thereto in source code form. + +You must retain the complete text of this software license in the documentation and/or other materials +provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. +You must make available free of charge copies of the complete source code of the FDK AAC Codec and your +modifications thereto to recipients of copies in binary form. + +The name of Fraunhofer may not be used to endorse or promote products derived from this library without +prior written permission. + +You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec +software or your modifications thereto. + +Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software +and the date of any change. For modified versions of the FDK AAC Codec, the term +"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term +"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." + +3. NO PATENT LICENSE + +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, +ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with +respect to this software. + +You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized +by appropriate patent licenses. + +4. DISCLAIMER + +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors +"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties +of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, +including but not limited to procurement of substitute goods or services; loss of use, data, or profits, +or business interruption, however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of this software, even if +advised of the possibility of such damage. + +5. CONTACT INFORMATION + +Fraunhofer Institute for Integrated Circuits IIS +Attention: Audio and Multimedia Departments - FDK AAC LL +Am Wolfsmantel 33 +91058 Erlangen, Germany + +www.iis.fraunhofer.de/amm +amm-info@iis.fraunhofer.de +----------------------------------------------------------------------------------------------------------- */ + +#include "invf_est.h" +#include "sbr_misc.h" + +#include "genericStds.h" + +#define MAX_NUM_REGIONS 10 +#define SCALE_FAC_QUO 512.0f +#define SCALE_FAC_NRG 256.0f + +#ifndef min +#define min(a,b) ( a < b ? a:b) +#endif + +#ifndef max +#define max(a,b) ( a > b ? a:b) +#endif + +static const FIXP_DBL quantStepsSbr[4] = { 0x00400000, 0x02800000, 0x03800000, 0x04c00000 } ; /* table scaled with SCALE_FAC_QUO */ +static const FIXP_DBL quantStepsOrig[4] = { 0x00000000, 0x00c00000, 0x01c00000, 0x02800000 } ; /* table scaled with SCALE_FAC_QUO */ +static const FIXP_DBL nrgBorders[4] = { 0x0c800000, 0x0f000000, 0x11800000, 0x14000000 } ; /* table scaled with SCALE_FAC_NRG */ + +static const DETECTOR_PARAMETERS detectorParamsAAC = { + quantStepsSbr, + quantStepsOrig, + nrgBorders, + 4, /* Number of borders SBR. */ + 4, /* Number of borders orig. */ + 4, /* Number of borders Nrg. */ + { /* Region space. */ + {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */ + {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */ + },/*------------------------ regionOrig ---------------------------------*/ + { /* Region space transient. */ + {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */ + },/*------------------------ regionOrig ---------------------------------*/ + {-4, -3, -2, -1, 0} /* Reduction factor of the inverse filtering for low energies.*/ +}; + +static const FIXP_DBL hysteresis = 0x00400000 ; /* Delta value for hysteresis. scaled with SCALE_FAC_QUO */ + +/* + * AAC+SBR PARAMETERS for Speech + *********************************/ +static const DETECTOR_PARAMETERS detectorParamsAACSpeech = { + quantStepsSbr, + quantStepsOrig, + nrgBorders, + 4, /* Number of borders SBR. */ + 4, /* Number of borders orig. */ + 4, /* Number of borders Nrg. */ + { /* Region space. */ + {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */ + },/*------------------------ regionOrig ---------------------------------*/ + { /* Region space transient. */ + {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */ + {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */ + },/*------------------------ regionOrig ---------------------------------*/ + {-4, -3, -2, -1, 0} /* Reduction factor of the inverse filtering for low energies.*/ +}; + +/* + * Smoothing filters. + ************************/ +typedef const FIXP_DBL FIR_FILTER[5]; + +static const FIR_FILTER fir_0 = { 0x7fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 } ; +static const FIR_FILTER fir_1 = { 0x2aaaaa80, 0x555554ff, 0x00000000, 0x00000000, 0x00000000 } ; +static const FIR_FILTER fir_2 = { 0x10000000, 0x30000000, 0x40000000, 0x00000000, 0x00000000 } ; +static const FIR_FILTER fir_3 = { 0x077f80e8, 0x199999a0, 0x2bb3b240, 0x33333340, 0x00000000 } ; +static const FIR_FILTER fir_4 = { 0x04130598, 0x0ebdb000, 0x1becfa60, 0x2697a4c0, 0x2aaaaa80 } ; + + +static const FIR_FILTER *const fir_table[5] = { + &fir_0, + &fir_1, + &fir_2, + &fir_3, + &fir_4 +}; + +/**************************************************************************/ +/*! + \brief Calculates the values used for the detector. + + + \return none + +*/ +/**************************************************************************/ +static void +calculateDetectorValues(FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the tonality values of the original. */ + SCHAR *indexVector, /*!< Index vector to obtain the patched data. */ + FIXP_DBL *nrgVector, /*!< Energy vector. */ + DETECTOR_VALUES *detectorValues, /*!< pointer to DETECTOR_VALUES struct. */ + INT startChannel, /*!< Start channel. */ + INT stopChannel, /*!< Stop channel. */ + INT startIndex, /*!< Start index. */ + INT stopIndex, /*!< Stop index. */ + INT numberOfStrongest /*!< The number of sorted tonal components to be considered. */ + ) +{ + INT i,temp, j; + + const FIXP_DBL* filter = *fir_table[INVF_SMOOTHING_LENGTH]; + FIXP_DBL origQuotaMeanStrongest, sbrQuotaMeanStrongest; + FIXP_DBL origQuota, sbrQuota; + FIXP_DBL invIndex, invChannel, invTemp; + FIXP_DBL quotaVecOrig[64], quotaVecSbr[64]; + + FDKmemclear(quotaVecOrig,64*sizeof(FIXP_DBL)); + FDKmemclear(quotaVecSbr,64*sizeof(FIXP_DBL)); + + invIndex = GetInvInt(stopIndex-startIndex); + invChannel = GetInvInt(stopChannel-startChannel); + + /* + Calculate the mean value, over the current time segment, for the original, the HFR + and the difference, over all channels in the current frequency range. + NOTE: the averaging is done on the values quota/(1 - quota + RELAXATION). + */ + + /* The original, the sbr signal and the total energy */ + detectorValues->avgNrg = FL2FXCONST_DBL(0.0f); + for(j=startIndex; j<stopIndex; j++) { + for(i=startChannel; i<stopChannel; i++) { + quotaVecOrig[i] += fMult(quotaMatrixOrig[j][i], invIndex); + + if(indexVector[i] != -1) + quotaVecSbr[i] += fMult(quotaMatrixOrig[j][indexVector[i]], invIndex); + } + detectorValues->avgNrg += fMult(nrgVector[j], invIndex); + } + + /* + Calculate the mean value, over the current frequency range, for the original, the HFR + and the difference. Also calculate the same mean values for the three vectors, but only + includeing the x strongest copmponents. + */ + + origQuota = FL2FXCONST_DBL(0.0f); + sbrQuota = FL2FXCONST_DBL(0.0f); + for(i=startChannel; i<stopChannel; i++) { + origQuota += fMultDiv2(quotaVecOrig[i], invChannel); + sbrQuota += fMultDiv2(quotaVecSbr[i], invChannel); + } + + /* + Calculate the mean value for the x strongest components + */ + FDKsbrEnc_Shellsort_fract(quotaVecOrig+startChannel,stopChannel-startChannel); + FDKsbrEnc_Shellsort_fract(quotaVecSbr+startChannel,stopChannel-startChannel); + + origQuotaMeanStrongest = FL2FXCONST_DBL(0.0f); + sbrQuotaMeanStrongest = FL2FXCONST_DBL(0.0f); + + temp = min(stopChannel - startChannel, numberOfStrongest); + invTemp = GetInvInt(temp); + + for(i=0; i<temp; i++) { + origQuotaMeanStrongest += fMultDiv2(quotaVecOrig[i + stopChannel - temp], invTemp); + sbrQuotaMeanStrongest += fMultDiv2(quotaVecSbr[i + stopChannel - temp], invTemp); + } + + /* + The value for the strongest component + */ + detectorValues->origQuotaMax = quotaVecOrig[stopChannel - 1]; + detectorValues->sbrQuotaMax = quotaVecSbr[stopChannel - 1]; + + /* + Buffer values + */ + FDKmemmove(detectorValues->origQuotaMean, detectorValues->origQuotaMean + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL)); + FDKmemmove(detectorValues->sbrQuotaMean, detectorValues->sbrQuotaMean + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL)); + FDKmemmove(detectorValues->origQuotaMeanStrongest, detectorValues->origQuotaMeanStrongest + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL)); + FDKmemmove(detectorValues->sbrQuotaMeanStrongest, detectorValues->sbrQuotaMeanStrongest + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL)); + + detectorValues->origQuotaMean[INVF_SMOOTHING_LENGTH] = origQuota<<1; + detectorValues->sbrQuotaMean[INVF_SMOOTHING_LENGTH] = sbrQuota<<1; + detectorValues->origQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] = origQuotaMeanStrongest<<1; + detectorValues->sbrQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] = sbrQuotaMeanStrongest<<1; + + /* + Filter values + */ + detectorValues->origQuotaMeanFilt = FL2FXCONST_DBL(0.0f); + detectorValues->sbrQuotaMeanFilt = FL2FXCONST_DBL(0.0f); + detectorValues->origQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f); + detectorValues->sbrQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f); + + for(i=0;i<INVF_SMOOTHING_LENGTH+1;i++) { + detectorValues->origQuotaMeanFilt += fMult(detectorValues->origQuotaMean[i], filter[i]); + detectorValues->sbrQuotaMeanFilt += fMult(detectorValues->sbrQuotaMean[i], filter[i]); + detectorValues->origQuotaMeanStrongestFilt += fMult(detectorValues->origQuotaMeanStrongest[i], filter[i]); + detectorValues->sbrQuotaMeanStrongestFilt += fMult(detectorValues->sbrQuotaMeanStrongest[i], filter[i]); + } +} + +/**************************************************************************/ +/*! + \brief Returns the region in which the input value belongs. + + + + \return region. + +*/ +/**************************************************************************/ +static INT +findRegion(FIXP_DBL currVal, /*!< The current value. */ + const FIXP_DBL *borders, /*!< The border of the regions. */ + const INT numBorders /*!< The number of borders. */ + ) +{ + INT i; + + if(currVal < borders[0]){ + return 0; + } + + for(i = 1; i < numBorders; i++){ + if( currVal >= borders[i-1] && currVal < borders[i]){ + return i; + } + } + + if(currVal >= borders[numBorders-1]){ + return numBorders; + } + + return 0; /* We never get here, it's just to avoid compiler warnings.*/ +} + +/**************************************************************************/ +/*! + \brief Makes a clever decision based on the quota vector. + + + \return decision on which invf mode to use + +*/ +/**************************************************************************/ +static INVF_MODE +decisionAlgorithm(const DETECTOR_PARAMETERS *detectorParams, /*!< Struct with the detector parameters. */ + DETECTOR_VALUES *detectorValues, /*!< Struct with the detector values. */ + INT transientFlag, /*!< Flag indicating if there is a transient present.*/ + INT* prevRegionSbr, /*!< The previous region in which the Sbr value was. */ + INT* prevRegionOrig /*!< The previous region in which the Orig value was. */ + ) +{ + INT invFiltLevel, regionSbr, regionOrig, regionNrg; + + /* + Current thresholds. + */ + const FIXP_DBL *quantStepsSbr = detectorParams->quantStepsSbr; + const FIXP_DBL *quantStepsOrig = detectorParams->quantStepsOrig; + const FIXP_DBL *nrgBorders = detectorParams->nrgBorders; + const INT numRegionsSbr = detectorParams->numRegionsSbr; + const INT numRegionsOrig = detectorParams->numRegionsOrig; + const INT numRegionsNrg = detectorParams->numRegionsNrg; + + FIXP_DBL quantStepsSbrTmp[MAX_NUM_REGIONS]; + FIXP_DBL quantStepsOrigTmp[MAX_NUM_REGIONS]; + + /* + Current detector values. + */ + FIXP_DBL origQuotaMeanFilt; + FIXP_DBL sbrQuotaMeanFilt; + FIXP_DBL nrg; + + /* 0.375 = 3.0 / 8.0; 0.31143075889 = log2(RELAXATION)/64.0; 0.625 = log(16)/64.0; 0.6875 = 44/64.0 */ + origQuotaMeanFilt = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(max(detectorValues->origQuotaMeanFilt,(FIXP_DBL)1)) + FL2FXCONST_DBL(0.31143075889f)))) << 0; /* scaled by 1/2^9 */ + sbrQuotaMeanFilt = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(max(detectorValues->sbrQuotaMeanFilt,(FIXP_DBL)1)) + FL2FXCONST_DBL(0.31143075889f)))) << 0; /* scaled by 1/2^9 */ + /* If energy is zero then we will get different results for different word lengths. */ + nrg = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(detectorValues->avgNrg+(FIXP_DBL)1) + FL2FXCONST_DBL(0.0625f) + FL2FXCONST_DBL(0.6875f)))) << 0; /* scaled by 1/2^8; 2^44 -> qmf energy scale */ + + FDKmemcpy(quantStepsSbrTmp,quantStepsSbr,numRegionsSbr*sizeof(FIXP_DBL)); + FDKmemcpy(quantStepsOrigTmp,quantStepsOrig,numRegionsOrig*sizeof(FIXP_DBL)); + + if(*prevRegionSbr < numRegionsSbr) + quantStepsSbrTmp[*prevRegionSbr] = quantStepsSbr[*prevRegionSbr] + hysteresis; + if(*prevRegionSbr > 0) + quantStepsSbrTmp[*prevRegionSbr - 1] = quantStepsSbr[*prevRegionSbr - 1] - hysteresis; + + if(*prevRegionOrig < numRegionsOrig) + quantStepsOrigTmp[*prevRegionOrig] = quantStepsOrig[*prevRegionOrig] + hysteresis; + if(*prevRegionOrig > 0) + quantStepsOrigTmp[*prevRegionOrig - 1] = quantStepsOrig[*prevRegionOrig - 1] - hysteresis; + + regionSbr = findRegion(sbrQuotaMeanFilt, quantStepsSbrTmp, numRegionsSbr); + regionOrig = findRegion(origQuotaMeanFilt, quantStepsOrigTmp, numRegionsOrig); + regionNrg = findRegion(nrg,nrgBorders,numRegionsNrg); + + *prevRegionSbr = regionSbr; + *prevRegionOrig = regionOrig; + + /* Use different settings if a transient is present*/ + invFiltLevel = (transientFlag == 1) ? detectorParams->regionSpaceTransient[regionSbr][regionOrig] + : detectorParams->regionSpace[regionSbr][regionOrig]; + + /* Compensate for low energy.*/ + invFiltLevel = max(invFiltLevel + detectorParams->EnergyCompFactor[regionNrg],0); + + return (INVF_MODE) (invFiltLevel); +} + +/**************************************************************************/ +/*! + \brief Estiamtion of the inverse filtering level required + in the decoder. + + A second order LPC is calculated for every filterbank channel, using + the covariance method. THe ratio between the energy of the predicted + signal and the energy of the non-predictable signal is calcualted. + + \return none. + +*/ +/**************************************************************************/ +void +FDKsbrEnc_qmfInverseFilteringDetector(HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */ + FIXP_DBL **quotaMatrix, /*!< The matrix holding the tonality values of the original. */ + FIXP_DBL *nrgVector, /*!< The energy vector. */ + SCHAR *indexVector, /*!< Index vector to obtain the patched data. */ + INT startIndex, /*!< Start index. */ + INT stopIndex, /*!< Stop index. */ + INT transientFlag, /*!< Flag indicating if a transient is present or not.*/ + INVF_MODE* infVec /*!< Vector holding the inverse filtering levels. */ + ) +{ + INT band; + + /* + * Do the inverse filtering level estimation. + *****************************************************/ + for(band = 0 ; band < hInvFilt->noDetectorBands; band++){ + INT startChannel = hInvFilt->freqBandTableInvFilt[band]; + INT stopChannel = hInvFilt->freqBandTableInvFilt[band+1]; + + + calculateDetectorValues( quotaMatrix, + indexVector, + nrgVector, + &hInvFilt->detectorValues[band], + startChannel, + stopChannel, + startIndex, + stopIndex, + hInvFilt->numberOfStrongest); + + infVec[band]= decisionAlgorithm( hInvFilt->detectorParams, + &hInvFilt->detectorValues[band], + transientFlag, + &hInvFilt->prevRegionSbr[band], + &hInvFilt->prevRegionOrig[band]); + } + +} + + +/**************************************************************************/ +/*! + \brief Initialize an instance of the inverse filtering level estimator. + + + \return errorCode, noError if successful. + +*/ +/**************************************************************************/ +INT +FDKsbrEnc_initInvFiltDetector (HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Pointer to a handle to the SBR_INV_FILT_EST struct. */ + INT* freqBandTableDetector, /*!< Frequency band table for the inverse filtering. */ + INT numDetectorBands, /*!< Number of inverse filtering bands. */ + UINT useSpeechConfig /*!< Flag: adapt tuning parameters according to speech*/ + ) +{ + INT i; + + FDKmemclear( hInvFilt,sizeof(SBR_INV_FILT_EST)); + + hInvFilt->detectorParams = (useSpeechConfig) ? &detectorParamsAACSpeech + : &detectorParamsAAC ; + + hInvFilt->noDetectorBandsMax = numDetectorBands; + + /* + Memory initialisation + */ + for(i=0;i<hInvFilt->noDetectorBandsMax;i++){ + FDKmemclear(&hInvFilt->detectorValues[i], sizeof(DETECTOR_VALUES)); + hInvFilt->prevInvfMode[i] = INVF_OFF; + hInvFilt->prevRegionOrig[i] = 0; + hInvFilt->prevRegionSbr[i] = 0; + } + + /* + Reset the inverse fltering detector. + */ + FDKsbrEnc_resetInvFiltDetector(hInvFilt, + freqBandTableDetector, + hInvFilt->noDetectorBandsMax); + + return (0); +} + + +/**************************************************************************/ +/*! + \brief resets sbr inverse filtering structure. + + + + \return errorCode, noError if successful. + +*/ +/**************************************************************************/ +INT +FDKsbrEnc_resetInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */ + INT* freqBandTableDetector, /*!< Frequency band table for the inverse filtering. */ + INT numDetectorBands) /*!< Number of inverse filtering bands. */ +{ + + hInvFilt->numberOfStrongest = 1; + FDKmemcpy(hInvFilt->freqBandTableInvFilt,freqBandTableDetector,(numDetectorBands+1)*sizeof(INT)); + hInvFilt->noDetectorBands = numDetectorBands; + + return (0); +} + + |