aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/sbrdec_freq_sca.cpp
diff options
context:
space:
mode:
authorXin Li <delphij@google.com>2018-06-08 11:06:57 -0700
committerXin Li <delphij@google.com>2018-06-08 11:06:57 -0700
commit6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835 (patch)
tree41c65cebd836ff3f949f1134512985e4a1288593 /libSBRdec/src/sbrdec_freq_sca.cpp
parentb9fc83e0e9412548830f07e60c53d8072adb60de (diff)
parent1f93990cfc1bb76aa538634512938e39565f471a (diff)
downloadfdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.tar.gz
fdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.tar.bz2
fdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.zip
Merge pi-dev-plus-aosp-without-vendor into stage-aosp-master
Bug: 79597307 Change-Id: Ia98e005208999b395595ef647902768a1199eaa4
Diffstat (limited to 'libSBRdec/src/sbrdec_freq_sca.cpp')
-rw-r--r--libSBRdec/src/sbrdec_freq_sca.cpp723
1 files changed, 373 insertions, 350 deletions
diff --git a/libSBRdec/src/sbrdec_freq_sca.cpp b/libSBRdec/src/sbrdec_freq_sca.cpp
index 8adfbb1..165f94b 100644
--- a/libSBRdec/src/sbrdec_freq_sca.cpp
+++ b/libSBRdec/src/sbrdec_freq_sca.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,11 +90,19 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
+
+/**************************** SBR decoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
/*!
\file
- \brief Frequency scale calculation
+ \brief Frequency scale calculation
*/
#include "sbrdec_freq_sca.h"
@@ -92,18 +111,16 @@ amm-info@iis.fraunhofer.de
#include "sbr_rom.h"
#include "env_extr.h"
-#include "genericStds.h" /* need log() for debug-code only */
-
-#define MAX_OCTAVE 29
-#define MAX_SECOND_REGION 50
-
-
-static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
-static void CalcBands(UCHAR * diff, UCHAR start, UCHAR stop, UCHAR num_bands);
-static SBR_ERROR modifyBands(UCHAR max_band, UCHAR * diff, UCHAR length);
-static void cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress);
+#include "genericStds.h" /* need log() for debug-code only */
+#define MAX_OCTAVE 29
+#define MAX_SECOND_REGION 50
+static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
+static void CalcBands(UCHAR *diff, UCHAR start, UCHAR stop, UCHAR num_bands);
+static SBR_ERROR modifyBands(UCHAR max_band, UCHAR *diff, UCHAR length);
+static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
+ UCHAR *start_adress);
/*!
\brief Retrieve QMF-band where the SBR range starts
@@ -113,41 +130,61 @@ static void cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_ad
\return Number of start band
*/
-static UCHAR
-getStartBand(UINT fs, /*!< Output sampling frequency */
- UCHAR startFreq, /*!< Index to table of possible start bands */
- UINT headerDataFlags) /*!< Info to SBR mode */
+static UCHAR getStartBand(
+ UINT fs, /*!< Output sampling frequency */
+ UCHAR startFreq, /*!< Index to table of possible start bands */
+ UINT headerDataFlags) /*!< Info to SBR mode */
{
- INT band;
- UINT fsMapped;
+ INT band;
+ UINT fsMapped = fs;
+ SBR_RATE rate = DUAL;
+
+ if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
+ if (headerDataFlags & SBRDEC_QUAD_RATE) {
+ rate = QUAD;
+ }
+ fsMapped = sbrdec_mapToStdSampleRate(fs, 1);
+ }
- fsMapped = fs;
+ FDK_ASSERT(2 * (rate + 1) <= (4));
switch (fsMapped) {
+ case 192000:
+ band = FDK_sbrDecoder_sbr_start_freq_192[startFreq];
+ break;
+ case 176400:
+ band = FDK_sbrDecoder_sbr_start_freq_176[startFreq];
+ break;
+ case 128000:
+ band = FDK_sbrDecoder_sbr_start_freq_128[startFreq];
+ break;
case 96000:
case 88200:
- band = FDK_sbrDecoder_sbr_start_freq_88[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_88[rate][startFreq];
break;
case 64000:
- band = FDK_sbrDecoder_sbr_start_freq_64[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_64[rate][startFreq];
break;
case 48000:
- band = FDK_sbrDecoder_sbr_start_freq_48[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_48[rate][startFreq];
break;
case 44100:
- band = FDK_sbrDecoder_sbr_start_freq_44[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_44[rate][startFreq];
+ break;
+ case 40000:
+ band = FDK_sbrDecoder_sbr_start_freq_40[rate][startFreq];
break;
case 32000:
- band = FDK_sbrDecoder_sbr_start_freq_32[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_32[rate][startFreq];
break;
case 24000:
- band = FDK_sbrDecoder_sbr_start_freq_24[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_24[rate][startFreq];
break;
case 22050:
- band = FDK_sbrDecoder_sbr_start_freq_22[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_22[rate][startFreq];
break;
case 16000:
- band = FDK_sbrDecoder_sbr_start_freq_16[startFreq];
+ band = FDK_sbrDecoder_sbr_start_freq_16[rate][startFreq];
break;
default:
band = 255;
@@ -156,7 +193,6 @@ getStartBand(UINT fs, /*!< Output sampling frequency */
return band;
}
-
/*!
\brief Retrieve QMF-band where the SBR range starts
@@ -165,29 +201,32 @@ getStartBand(UINT fs, /*!< Output sampling frequency */
\return Number of start band
*/
-static UCHAR
-getStopBand(UINT fs, /*!< Output sampling frequency */
- UCHAR stopFreq, /*!< Index to table of possible start bands */
- UINT headerDataFlags, /*!< Info to SBR mode */
- UCHAR k0) /*!< Start freq index */
+static UCHAR getStopBand(
+ UINT fs, /*!< Output sampling frequency */
+ UCHAR stopFreq, /*!< Index to table of possible start bands */
+ UINT headerDataFlags, /*!< Info to SBR mode */
+ UCHAR k0) /*!< Start freq index */
{
UCHAR k2;
if (stopFreq < 14) {
- INT stopMin;
- UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
+ INT stopMin;
+ INT num = 2 * (64);
+ UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
UCHAR *diff0 = diff_tot;
- UCHAR *diff1 = diff_tot+MAX_OCTAVE;
+ UCHAR *diff1 = diff_tot + MAX_OCTAVE;
- if (fs < 32000) {
- stopMin = (((2*6000*2*(64)) / fs) + 1) >> 1;
+ if (headerDataFlags & SBRDEC_QUAD_RATE) {
+ num >>= 1;
}
- else {
+
+ if (fs < 32000) {
+ stopMin = (((2 * 6000 * num) / fs) + 1) >> 1;
+ } else {
if (fs < 64000) {
- stopMin = (((2*8000*2*(64)) / fs) + 1) >> 1;
- }
- else {
- stopMin = (((2*10000*2*(64)) / fs) + 1) >> 1;
+ stopMin = (((2 * 8000 * num) / fs) + 1) >> 1;
+ } else {
+ stopMin = (((2 * 10000 * num) / fs) + 1) >> 1;
}
}
@@ -196,44 +235,49 @@ getStopBand(UINT fs, /*!< Output sampling frequency */
based on a logarithmic scale.
The vectors diff0 and diff1 are used temporarily here.
*/
- CalcBands( diff0, stopMin, 64, 13);
- shellsort( diff0, 13);
+ CalcBands(diff0, stopMin, 64, 13);
+ shellsort(diff0, 13);
cumSum(stopMin, diff0, 13, diff1);
k2 = diff1[stopFreq];
- }
- else if (stopFreq==14)
- k2 = 2*k0;
+ } else if (stopFreq == 14)
+ k2 = 2 * k0;
else
- k2 = 3*k0;
+ k2 = 3 * k0;
/* Limit to Nyquist */
- if (k2 > (64))
- k2 = (64);
-
+ if (k2 > (64)) k2 = (64);
/* Range checks */
/* 1 <= difference <= 48; 1 <= fs <= 96000 */
- if ( ((k2 - k0) > MAX_FREQ_COEFFS) || (k2 <= k0) ) {
- return 255;
+ {
+ UCHAR max_freq_coeffs = (headerDataFlags & SBRDEC_QUAD_RATE)
+ ? MAX_FREQ_COEFFS_QUAD_RATE
+ : MAX_FREQ_COEFFS;
+ if (((k2 - k0) > max_freq_coeffs) || (k2 <= k0)) {
+ return 255;
+ }
}
- if (headerDataFlags & (SBRDEC_SYNTAX_USAC|SBRDEC_SYNTAX_RSVD50)) {
+ if (headerDataFlags & SBRDEC_QUAD_RATE) {
+ return k2; /* skip other checks: (k2 - k0) must be <=
+ MAX_FREQ_COEFFS_QUAD_RATE for all fs */
+ }
+ if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
/* 1 <= difference <= 35; 42000 <= fs <= 96000 */
- if ( (fs >= 42000) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS44100 ) ) {
+ if ((fs >= 42000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
return 255;
}
/* 1 <= difference <= 32; 46009 <= fs <= 96000 */
- if ( (fs >= 46009) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS48000 ) ) {
+ if ((fs >= 46009) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
return 255;
}
- }
- else {
+ } else {
/* 1 <= difference <= 35; fs == 44100 */
- if ( (fs == 44100) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS44100 ) ) {
+ if ((fs == 44100) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
return 255;
}
/* 1 <= difference <= 32; 48000 <= fs <= 96000 */
- if ( (fs >= 48000) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS48000 ) ) {
+ if ((fs >= 48000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
return 255;
}
}
@@ -241,7 +285,6 @@ getStopBand(UINT fs, /*!< Output sampling frequency */
return k2;
}
-
/*!
\brief Generates master frequency tables
@@ -252,29 +295,33 @@ getStopBand(UINT fs, /*!< Output sampling frequency */
\return errorCode, 0 if successful
*/
SBR_ERROR
-sbrdecUpdateFreqScale(UCHAR * v_k_master, /*!< Master table to be created */
- UCHAR *numMaster, /*!< Number of entries in master table */
- UINT fs, /*!< SBR working sampling rate */
- HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
- UINT flags)
-{
- FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
- INT dk=0;
+sbrdecUpdateFreqScale(
+ UCHAR *v_k_master, /*!< Master table to be created */
+ UCHAR *numMaster, /*!< Number of entries in master table */
+ UINT fs, /*!< SBR working sampling rate */
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
+ UINT flags) {
+ FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
+ INT dk = 0;
/* Internal variables */
- UCHAR k0, k2, i;
- UCHAR num_bands0 = 0;
- UCHAR num_bands1 = 0;
- UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
+ UCHAR k0, k2, i;
+ UCHAR num_bands0 = 0;
+ UCHAR num_bands1 = 0;
+ UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
UCHAR *diff0 = diff_tot;
- UCHAR *diff1 = diff_tot+MAX_OCTAVE;
- INT k2_achived;
- INT k2_diff;
- INT incr=0;
+ UCHAR *diff1 = diff_tot + MAX_OCTAVE;
+ INT k2_achived;
+ INT k2_diff;
+ INT incr = 0;
/*
Determine start band
*/
+ if (flags & SBRDEC_QUAD_RATE) {
+ fs >>= 1;
+ }
+
k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
if (k0 == 255) {
return SBRDEC_UNSUPPORTED_CONFIG;
@@ -288,127 +335,134 @@ sbrdecUpdateFreqScale(UCHAR * v_k_master, /*!< Master table to be created */
return SBRDEC_UNSUPPORTED_CONFIG;
}
- if(hHeaderData->bs_data.freqScale>0) { /* Bark */
+ if (hHeaderData->bs_data.freqScale > 0) { /* Bark */
INT k1;
- if(hHeaderData->bs_data.freqScale==1) {
- bpo_div16 = FL2FXCONST_SGL(12.0f/16.0f);
- }
- else if(hHeaderData->bs_data.freqScale==2) {
- bpo_div16 = FL2FXCONST_SGL(10.0f/16.0f);
- }
- else {
- bpo_div16 = FL2FXCONST_SGL(8.0f/16.0f);
+ if (hHeaderData->bs_data.freqScale == 1) {
+ bpo_div16 = FL2FXCONST_SGL(12.0f / 16.0f);
+ } else if (hHeaderData->bs_data.freqScale == 2) {
+ bpo_div16 = FL2FXCONST_SGL(10.0f / 16.0f);
+ } else {
+ bpo_div16 = FL2FXCONST_SGL(8.0f / 16.0f);
}
+ /* Ref: ISO/IEC 23003-3, Figure 12 - Flowchart calculation of fMaster for
+ * 4:1 system when bs_freq_scale > 0 */
+ if (flags & SBRDEC_QUAD_RATE) {
+ if ((SHORT)k0 < (SHORT)(bpo_div16 >> ((FRACT_BITS - 1) - 4))) {
+ bpo_div16 = (FIXP_SGL)(k0 & (UCHAR)0xfe)
+ << ((FRACT_BITS - 1) - 4); /* bpo_div16 = floor(k0/2)*2 */
+ }
+ }
- if( 1000 * k2 > 2245 * k0 ) { /* Two or more regions */
- k1 = 2*k0;
+ if (1000 * k2 > 2245 * k0) { /* Two or more regions */
+ k1 = 2 * k0;
num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
- num_bands1 = numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale );
- if ( num_bands0 < 1) {
+ num_bands1 =
+ numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale);
+ if (num_bands0 < 1) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
- if ( num_bands1 < 1 ) {
+ if (num_bands1 < 1) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
CalcBands(diff0, k0, k1, num_bands0);
- shellsort( diff0, num_bands0);
+ shellsort(diff0, num_bands0);
if (diff0[0] == 0) {
-#ifdef DEBUG_TOOLS
-#endif
return SBRDEC_UNSUPPORTED_CONFIG;
}
cumSum(k0, diff0, num_bands0, v_k_master);
CalcBands(diff1, k1, k2, num_bands1);
- shellsort( diff1, num_bands1);
- if(diff0[num_bands0-1] > diff1[0]) {
+ shellsort(diff1, num_bands1);
+ if (diff0[num_bands0 - 1] > diff1[0]) {
SBR_ERROR err;
- err = modifyBands(diff0[num_bands0-1],diff1, num_bands1);
- if (err)
- return SBRDEC_UNSUPPORTED_CONFIG;
+ err = modifyBands(diff0[num_bands0 - 1], diff1, num_bands1);
+ if (err) return SBRDEC_UNSUPPORTED_CONFIG;
}
/* Add 2nd region */
cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
- *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
+ *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
- }
- else { /* Only one region */
- k1=k2;
+ } else { /* Only one region */
+ k1 = k2;
num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
- if ( num_bands0 < 1) {
+ if (num_bands0 < 1) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
CalcBands(diff0, k0, k1, num_bands0);
shellsort(diff0, num_bands0);
if (diff0[0] == 0) {
-#ifdef DEBUG_TOOLS
-#endif
return SBRDEC_UNSUPPORTED_CONFIG;
}
cumSum(k0, diff0, num_bands0, v_k_master);
- *numMaster = num_bands0; /* Output nr of bands */
-
+ *numMaster = num_bands0; /* Output nr of bands */
+ }
+ } else { /* Linear mode */
+ if (hHeaderData->bs_data.alterScale == 0) {
+ dk = 1;
+ /* FLOOR to get to few number of bands (next lower even number) */
+ num_bands0 = (k2 - k0) & 254;
+ } else {
+ dk = 2;
+ num_bands0 = (((k2 - k0) >> 1) + 1) & 254; /* ROUND to the closest fit */
}
- }
- else { /* Linear mode */
- if (hHeaderData->bs_data.alterScale==0) {
- dk = 1;
- /* FLOOR to get to few number of bands (next lower even number) */
- num_bands0 = (k2 - k0) & 254;
- } else {
- dk = 2;
- num_bands0 = ( ((k2 - k0) >> 1) + 1 ) & 254; /* ROUND to the closest fit */
- }
- if (num_bands0 < 1) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- /* We must return already here because 'i' can become negative below. */
- }
+ if (num_bands0 < 1) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ /* We must return already here because 'i' can become negative below. */
+ }
- k2_achived = k0 + num_bands0*dk;
- k2_diff = k2 - k2_achived;
+ k2_achived = k0 + num_bands0 * dk;
+ k2_diff = k2 - k2_achived;
- for(i=0;i<num_bands0;i++)
- diff_tot[i] = dk;
+ for (i = 0; i < num_bands0; i++) diff_tot[i] = dk;
- /* If linear scale wasn't achieved */
- /* and we got too wide SBR area */
- if (k2_diff < 0) {
- incr = 1;
- i = 0;
- }
+ /* If linear scale wasn't achieved */
+ /* and we got too wide SBR area */
+ if (k2_diff < 0) {
+ incr = 1;
+ i = 0;
+ }
- /* If linear scale wasn't achieved */
- /* and we got too small SBR area */
- if (k2_diff > 0) {
- incr = -1;
- i = num_bands0-1;
- }
+ /* If linear scale wasn't achieved */
+ /* and we got too small SBR area */
+ if (k2_diff > 0) {
+ incr = -1;
+ i = num_bands0 - 1;
+ }
- /* Adjust diff vector to get sepc. SBR range */
- while (k2_diff != 0) {
- diff_tot[i] = diff_tot[i] - incr;
- i = i + incr;
- k2_diff = k2_diff + incr;
- }
+ /* Adjust diff vector to get sepc. SBR range */
+ while (k2_diff != 0) {
+ diff_tot[i] = diff_tot[i] - incr;
+ i = i + incr;
+ k2_diff = k2_diff + incr;
+ }
- cumSum(k0, diff_tot, num_bands0, v_k_master);/* cumsum */
- *numMaster = num_bands0; /* Output nr of bands */
+ cumSum(k0, diff_tot, num_bands0, v_k_master); /* cumsum */
+ *numMaster = num_bands0; /* Output nr of bands */
}
if (*numMaster < 1) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
+ /* Ref: ISO/IEC 23003-3 Cor.3, "In 7.5.5.2, add to the requirements:"*/
+ if (flags & SBRDEC_QUAD_RATE) {
+ int k;
+ for (k = 1; k < *numMaster; k++) {
+ if (!(v_k_master[k] - v_k_master[k - 1] <= k0 - 2)) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+ }
+ }
/*
Print out the calculated table
@@ -417,7 +471,6 @@ sbrdecUpdateFreqScale(UCHAR * v_k_master, /*!< Master table to be created */
return SBRDEC_OK;
}
-
/*!
\brief Calculate frequency ratio of one SBR band
@@ -427,56 +480,52 @@ sbrdecUpdateFreqScale(UCHAR * v_k_master, /*!< Master table to be created */
\return num_band-th root of k_start/k_stop
*/
-static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands)
-{
-/* Scaled bandfactor and step 1 bit right to avoid overflow
- * use double data type */
+static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands) {
+ /* Scaled bandfactor and step 1 bit right to avoid overflow
+ * use double data type */
FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
- FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
+ FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
- int direction = 1;
+ int direction = 1;
-/* Because saturation can't be done in INT IIS,
- * changed start and stop data type from FIXP_SGL to FIXP_DBL */
- FIXP_DBL start = k_start << (DFRACT_BITS-8);
- FIXP_DBL stop = k_stop << (DFRACT_BITS-8);
+ /* Because saturation can't be done in INT IIS,
+ * changed start and stop data type from FIXP_SGL to FIXP_DBL */
+ FIXP_DBL start = k_start << (DFRACT_BITS - 8);
+ FIXP_DBL stop = k_stop << (DFRACT_BITS - 8);
FIXP_DBL temp;
- int j, i=0;
+ int j, i = 0;
- while ( step > FL2FXCONST_DBL(0.0f)) {
+ while (step > FL2FXCONST_DBL(0.0f)) {
i++;
temp = stop;
/* Calculate temp^num_bands: */
- for (j=0; j<num_bands; j++)
- //temp = fMult(temp,bandfactor);
- temp = fMultDiv2(temp,bandfactor)<<2;
+ for (j = 0; j < num_bands; j++)
+ // temp = fMult(temp,bandfactor);
+ temp = fMultDiv2(temp, bandfactor) << 2;
- if (temp<start) { /* Factor too strong, make it weaker */
+ if (temp < start) { /* Factor too strong, make it weaker */
if (direction == 0)
/* Halfen step. Right shift is not done as fract because otherwise the
lowest bit cannot be cleared due to rounding */
step = (FIXP_DBL)((LONG)step >> 1);
direction = 1;
bandfactor = bandfactor + step;
- }
- else { /* Factor is too weak: make it stronger */
- if (direction == 1)
- step = (FIXP_DBL)((LONG)step >> 1);
+ } else { /* Factor is too weak: make it stronger */
+ if (direction == 1) step = (FIXP_DBL)((LONG)step >> 1);
direction = 0;
bandfactor = bandfactor - step;
}
- if (i>100) {
+ if (i > 100) {
step = FL2FXCONST_DBL(0.0f);
}
}
- return FX_DBL2FX_SGL(bandfactor<<1);
+ return FX_DBL2FX_SGL(bandfactor << 1);
}
-
/*!
\brief Calculate number of SBR bands between start and stop band
@@ -487,34 +536,35 @@ static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands)
\return number of bands
*/
-static int
-numberOfBands(FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
- int start, /*!< First QMF band of SBR frequency range */
- int stop, /*!< Last QMF band of SBR frequency range + 1 */
- int warpFlag) /*!< Stretching flag */
+static int numberOfBands(
+ FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
+ int start, /*!< First QMF band of SBR frequency range */
+ int stop, /*!< Last QMF band of SBR frequency range + 1 */
+ int warpFlag) /*!< Stretching flag */
{
FIXP_SGL num_bands_div128;
- int num_bands;
+ int num_bands;
- num_bands_div128 = FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start,stop),bpo_div16));
+ num_bands_div128 =
+ FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start, stop), bpo_div16));
if (warpFlag) {
/* Apply the warp factor of 1.3 to get wider bands. We use a value
of 32768/25200 instead of the exact value to avoid critical cases
of rounding.
*/
- num_bands_div128 = FX_DBL2FX_SGL(fMult(num_bands_div128, FL2FXCONST_SGL(25200.0/32768.0)));
+ num_bands_div128 = FX_DBL2FX_SGL(
+ fMult(num_bands_div128, FL2FXCONST_SGL(25200.0 / 32768.0)));
}
/* add scaled 1 for rounding to even numbers: */
- num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL( 1.0f/128.0f );
+ num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL(1.0f / 128.0f);
/* scale back to right aligned integer and double the value: */
num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
- return(num_bands);
+ return (num_bands);
}
-
/*!
\brief Calculate width of SBR bands
@@ -522,11 +572,10 @@ numberOfBands(FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided
this function calculates the width of each SBR band in QMF channels.
The bands get wider from start to stop (bark scale).
*/
-static void
-CalcBands(UCHAR * diff, /*!< Vector of widths to be calculated */
- UCHAR start, /*!< Lower end of subband range */
- UCHAR stop, /*!< Upper end of subband range */
- UCHAR num_bands) /*!< Desired number of bands */
+static void CalcBands(UCHAR *diff, /*!< Vector of widths to be calculated */
+ UCHAR start, /*!< Lower end of subband range */
+ UCHAR stop, /*!< Upper end of subband range */
+ UCHAR num_bands) /*!< Desired number of bands */
{
int i;
int previous;
@@ -535,18 +584,20 @@ CalcBands(UCHAR * diff, /*!< Vector of widths to be calculated */
FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
previous = stop; /* Start with highest QMF channel */
- exact = (FIXP_SGL)(stop << (FRACT_BITS-8)); /* Shift left to gain some accuracy */
+ exact = (FIXP_SGL)(
+ stop << (FRACT_BITS - 8)); /* Shift left to gain some accuracy */
- for(i=num_bands-1; i>=0; i--) {
+ for (i = num_bands - 1; i >= 0; i--) {
/* Calculate border of next lower sbr band */
- exact = FX_DBL2FX_SGL(fMult(exact,bandfactor));
+ exact = FX_DBL2FX_SGL(fMult(exact, bandfactor));
/* Add scaled 0.5 for rounding:
- We use a value 128/256 instead of 0.5 to avoid some critical cases of rounding. */
- temp = exact + FL2FXCONST_SGL(128.0/32768.0);
+ We use a value 128/256 instead of 0.5 to avoid some critical cases of
+ rounding. */
+ temp = exact + FL2FXCONST_SGL(128.0 / 32768.0);
/* scale back to right alinged integer: */
- current = (LONG)temp >> (FRACT_BITS-8);
+ current = (LONG)temp >> (FRACT_BITS - 8);
/* Save width of band i */
diff[i] = previous - current;
@@ -554,20 +605,17 @@ CalcBands(UCHAR * diff, /*!< Vector of widths to be calculated */
}
}
-
/*!
\brief Calculate cumulated sum vector from delta vector
*/
-static void
-cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress)
-{
+static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
+ UCHAR *start_adress) {
int i;
- start_adress[0]=start_value;
- for(i=1; i<=length; i++)
- start_adress[i] = start_adress[i-1] + diff[i-1];
+ start_adress[0] = start_value;
+ for (i = 1; i <= length; i++)
+ start_adress[i] = start_adress[i - 1] + diff[i - 1];
}
-
/*!
\brief Adapt width of frequency bands in the second region
@@ -575,116 +623,96 @@ cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress)
is calculated separately. This function tries to avoid that the second region
starts with a band smaller than the highest band of the first region.
*/
-static SBR_ERROR
-modifyBands(UCHAR max_band_previous, UCHAR * diff, UCHAR length)
-{
+static SBR_ERROR modifyBands(UCHAR max_band_previous, UCHAR *diff,
+ UCHAR length) {
int change = max_band_previous - diff[0];
- /* Limit the change so that the last band cannot get narrower than the first one */
- if ( change > (diff[length-1]-diff[0])>>1 )
- change = (diff[length-1]-diff[0])>>1;
+ /* Limit the change so that the last band cannot get narrower than the first
+ * one */
+ if (change > (diff[length - 1] - diff[0]) >> 1)
+ change = (diff[length - 1] - diff[0]) >> 1;
diff[0] += change;
- diff[length-1] -= change;
+ diff[length - 1] -= change;
shellsort(diff, length);
return SBRDEC_OK;
}
-
/*!
\brief Update high resolution frequency band table
*/
-static void
-sbrdecUpdateHiRes(UCHAR * h_hires,
- UCHAR * num_hires,
- UCHAR * v_k_master,
- UCHAR num_bands,
- UCHAR xover_band)
-{
+static void sbrdecUpdateHiRes(UCHAR *h_hires, UCHAR *num_hires,
+ UCHAR *v_k_master, UCHAR num_bands,
+ UCHAR xover_band) {
UCHAR i;
- *num_hires = num_bands-xover_band;
+ *num_hires = num_bands - xover_band;
- for(i=xover_band; i<=num_bands; i++) {
- h_hires[i-xover_band] = v_k_master[i];
+ for (i = xover_band; i <= num_bands; i++) {
+ h_hires[i - xover_band] = v_k_master[i];
}
}
-
/*!
\brief Build low resolution table out of high resolution table
*/
-static void
-sbrdecUpdateLoRes(UCHAR * h_lores,
- UCHAR * num_lores,
- UCHAR * h_hires,
- UCHAR num_hires)
-{
+static void sbrdecUpdateLoRes(UCHAR *h_lores, UCHAR *num_lores, UCHAR *h_hires,
+ UCHAR num_hires) {
UCHAR i;
- if( (num_hires & 1) == 0) {
+ if ((num_hires & 1) == 0) {
/* If even number of hires bands */
*num_lores = num_hires >> 1;
/* Use every second lores=hires[0,2,4...] */
- for(i=0; i<=*num_lores; i++)
- h_lores[i] = h_hires[i*2];
- }
- else {
+ for (i = 0; i <= *num_lores; i++) h_lores[i] = h_hires[i * 2];
+ } else {
/* Odd number of hires, which means xover is odd */
- *num_lores = (num_hires+1) >> 1;
+ *num_lores = (num_hires + 1) >> 1;
/* Use lores=hires[0,1,3,5 ...] */
h_lores[0] = h_hires[0];
- for(i=1; i<=*num_lores; i++) {
- h_lores[i] = h_hires[i*2-1];
+ for (i = 1; i <= *num_lores; i++) {
+ h_lores[i] = h_hires[i * 2 - 1];
}
}
}
-
/*!
- \brief Derive a low-resolution frequency-table from the master frequency table
+ \brief Derive a low-resolution frequency-table from the master frequency
+ table
*/
-void
-sbrdecDownSampleLoRes(UCHAR *v_result,
- UCHAR num_result,
- UCHAR *freqBandTableRef,
- UCHAR num_Ref)
-{
+void sbrdecDownSampleLoRes(UCHAR *v_result, UCHAR num_result,
+ UCHAR *freqBandTableRef, UCHAR num_Ref) {
int step;
- int i,j;
- int org_length,result_length;
- int v_index[MAX_FREQ_COEFFS>>1];
+ int i, j;
+ int org_length, result_length;
+ int v_index[MAX_FREQ_COEFFS >> 1];
/* init */
org_length = num_Ref;
result_length = num_result;
- v_index[0] = 0; /* Always use left border */
- i=0;
- while(org_length > 0) {
+ v_index[0] = 0; /* Always use left border */
+ i = 0;
+ while (org_length > 0) {
/* Create downsample vector */
i++;
step = org_length / result_length;
org_length = org_length - step;
result_length--;
- v_index[i] = v_index[i-1] + step;
+ v_index[i] = v_index[i - 1] + step;
}
- for(j=0;j<=i;j++) {
+ for (j = 0; j <= i; j++) {
/* Use downsample vector to index LoResolution vector */
- v_result[j]=freqBandTableRef[v_index[j]];
+ v_result[j] = freqBandTableRef[v_index[j]];
}
-
}
-
/*!
\brief Sorting routine
*/
-void shellsort(UCHAR *in, UCHAR n)
-{
-
+void shellsort(UCHAR *in, UCHAR n) {
int i, j, v, w;
int inc = 1;
@@ -697,115 +725,110 @@ void shellsort(UCHAR *in, UCHAR n)
for (i = inc; i < n; i++) {
v = in[i];
j = i;
- while ((w=in[j-inc]) > v) {
+ while ((w = in[j - inc]) > v) {
in[j] = w;
j -= inc;
- if (j < inc)
- break;
+ if (j < inc) break;
}
in[j] = v;
}
} while (inc > 1);
-
}
-
-
/*!
\brief Reset frequency band tables
\return errorCode, 0 if successful
*/
SBR_ERROR
-resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags)
-{
+resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags) {
SBR_ERROR err = SBRDEC_OK;
- int k2,kx, lsb, usb;
- int intTemp;
- UCHAR nBandsLo, nBandsHi;
+ int k2, kx, lsb, usb;
+ int intTemp;
+ UCHAR nBandsLo, nBandsHi;
HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
/* Calculate master frequency function */
- err = sbrdecUpdateFreqScale(hFreq->v_k_master,
- &hFreq->numMaster,
- hHeaderData->sbrProcSmplRate,
- hHeaderData,
- flags);
+ err = sbrdecUpdateFreqScale(hFreq->v_k_master, &hFreq->numMaster,
+ hHeaderData->sbrProcSmplRate, hHeaderData, flags);
- if ( err || (hHeaderData->bs_info.xover_band > hFreq->numMaster) ) {
+ if (err || (hHeaderData->bs_info.xover_band > hFreq->numMaster)) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
/* Derive Hiresolution from master frequency function */
- sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master, hFreq->numMaster, hHeaderData->bs_info.xover_band );
+ sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master,
+ hFreq->numMaster, hHeaderData->bs_info.xover_band);
/* Derive Loresolution from Hiresolution */
- sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1], nBandsHi);
-
+ sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1],
+ nBandsHi);
hFreq->nSfb[0] = nBandsLo;
hFreq->nSfb[1] = nBandsHi;
/* Check index to freqBandTable[0] */
- if ( !(nBandsLo > 0) || (nBandsLo > (MAX_FREQ_COEFFS>>1)) ) {
+ if (!(nBandsLo > 0) ||
+ (nBandsLo > (((hHeaderData->numberOfAnalysisBands == 16)
+ ? MAX_FREQ_COEFFS_QUAD_RATE
+ : MAX_FREQ_COEFFS_DUAL_RATE) >>
+ 1))) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
lsb = hFreq->freqBandTable[0][0];
usb = hFreq->freqBandTable[0][nBandsLo];
- /* Additional check for lsb */
- if ( (lsb > (32)) || (lsb >= usb) ) {
+ /* Check for start frequency border k_x:
+ - ISO/IEC 14496-3 4.6.18.3.6 Requirements
+ - ISO/IEC 23003-3 7.5.5.2 Modifications and additions to the MPEG-4 SBR
+ tool
+ */
+ /* Note that lsb > as hHeaderData->numberOfAnalysisBands is a valid SBR config
+ * for 24 band QMF analysis. */
+ if ((lsb > ((flags & SBRDEC_QUAD_RATE) ? 16 : (32))) || (lsb >= usb)) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
-
/* Calculate number of noise bands */
k2 = hFreq->freqBandTable[1][nBandsHi];
kx = hFreq->freqBandTable[1][0];
- if (hHeaderData->bs_data.noise_bands == 0)
- {
+ if (hHeaderData->bs_data.noise_bands == 0) {
hFreq->nNfb = 1;
- }
- else /* Calculate no of noise bands 1,2 or 3 bands/octave */
+ } else /* Calculate no of noise bands 1,2 or 3 bands/octave */
{
/* Fetch number of octaves divided by 32 */
- intTemp = (LONG)FDK_getNumOctavesDiv8(kx,k2) >> 2;
+ intTemp = (LONG)FDK_getNumOctavesDiv8(kx, k2) >> 2;
/* Integer-Multiplication with number of bands: */
intTemp = intTemp * hHeaderData->bs_data.noise_bands;
/* Add scaled 0.5 for rounding: */
- intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f/32.0f);
+ intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f / 32.0f);
/* Convert to right-aligned integer: */
intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
- /* Compare with float calculation */
- FDK_ASSERT( intTemp == (int)((hHeaderData->bs_data.noise_bands * FDKlog( (float)k2/kx) / (float)(FDKlog(2.0)))+0.5) );
-
- if( intTemp==0)
- intTemp=1;
+ if (intTemp == 0) intTemp = 1;
hFreq->nNfb = intTemp;
}
hFreq->nInvfBands = hFreq->nNfb;
- if( hFreq->nNfb > MAX_NOISE_COEFFS ) {
+ if (hFreq->nNfb > MAX_NOISE_COEFFS) {
return SBRDEC_UNSUPPORTED_CONFIG;
}
/* Get noise bands */
- sbrdecDownSampleLoRes(hFreq->freqBandTableNoise,
- hFreq->nNfb,
- hFreq->freqBandTable[0],
- nBandsLo);
-
-
+ sbrdecDownSampleLoRes(hFreq->freqBandTableNoise, hFreq->nNfb,
+ hFreq->freqBandTable[0], nBandsLo);
+ /* save old highband; required for overlap in usac
+ when headerchange occurs at XVAR and VARX frame; */
+ hFreq->ov_highSubband = hFreq->highSubband;
- hFreq->lowSubband = lsb;
+ hFreq->lowSubband = lsb;
hFreq->highSubband = usb;
return SBRDEC_OK;