diff options
author | Martin Storsjo <martin@martin.st> | 2018-08-22 15:49:59 +0300 |
---|---|---|
committer | Martin Storsjo <martin@martin.st> | 2018-09-02 23:16:58 +0300 |
commit | b95b15e51d8c692735df4d38c1335efc06aa0443 (patch) | |
tree | de32d94e69c5d00ab69724ab114415b1f74cba3d /libSBRdec/src/env_dec.cpp | |
parent | e45ae429b9ca8f234eb861338a75b2d89cde206a (diff) | |
parent | 7027cd87488c2a60becbae7a139d18dbc0370459 (diff) | |
download | fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.gz fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.bz2 fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.zip |
Merge remote-tracking branch 'aosp/master'
Diffstat (limited to 'libSBRdec/src/env_dec.cpp')
-rw-r--r-- | libSBRdec/src/env_dec.cpp | 768 |
1 files changed, 392 insertions, 376 deletions
diff --git a/libSBRdec/src/env_dec.cpp b/libSBRdec/src/env_dec.cpp index c65c169..88c92cd 100644 --- a/libSBRdec/src/env_dec.cpp +++ b/libSBRdec/src/env_dec.cpp @@ -1,74 +1,85 @@ - -/* ----------------------------------------------------------------------------------------------------------- +/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android -© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. 2. COPYRIGHT LICENSE -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." 3. NO PATENT LICENSE -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION @@ -79,13 +90,21 @@ Am Wolfsmantel 33 www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ +----------------------------------------------------------------------------- */ + +/**************************** SBR decoder library ****************************** + + Author(s): + + Description: + +*******************************************************************************/ /*! \file - \brief envelope decoding - This module provides envelope decoding and error concealment algorithms. The main - entry point is decodeSbrData(). + \brief envelope decoding + This module provides envelope decoding and error concealment algorithms. The + main entry point is decodeSbrData(). \sa decodeSbrData(),\ref documentationOverview */ @@ -97,43 +116,41 @@ amm-info@iis.fraunhofer.de #include "genericStds.h" - -static void decodeEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, - HANDLE_SBR_FRAME_DATA h_sbr_data, - HANDLE_SBR_PREV_FRAME_DATA h_prev_data, - HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel); -static void sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, - HANDLE_SBR_FRAME_DATA h_data_left, - HANDLE_SBR_FRAME_DATA h_data_right); -static void requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, - int ampResolution); -static void deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, - HANDLE_SBR_FRAME_DATA h_sbr_data, - HANDLE_SBR_PREV_FRAME_DATA h_prev_data); -static void decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, - HANDLE_SBR_FRAME_DATA h_sbr_data, - HANDLE_SBR_PREV_FRAME_DATA h_prev_data); -static void timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, - HANDLE_SBR_FRAME_DATA h_sbr_data, - HANDLE_SBR_PREV_FRAME_DATA h_prev_data); -static int checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, - HANDLE_SBR_FRAME_DATA h_sbr_data, - HANDLE_SBR_PREV_FRAME_DATA h_prev_data); - - - -#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT) -#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT) - -#define DECAY ( 1 << ENV_EXP_FRACT) +static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData, + HANDLE_SBR_FRAME_DATA h_sbr_data, + HANDLE_SBR_PREV_FRAME_DATA h_prev_data, + HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel); +static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData, + HANDLE_SBR_FRAME_DATA h_data_left, + HANDLE_SBR_FRAME_DATA h_data_right); +static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data, + int ampResolution); +static void deltaToLinearPcmEnvelopeDecoding( + HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data, + HANDLE_SBR_PREV_FRAME_DATA h_prev_data); +static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData, + HANDLE_SBR_FRAME_DATA h_sbr_data, + HANDLE_SBR_PREV_FRAME_DATA h_prev_data); +static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData, + HANDLE_SBR_FRAME_DATA h_sbr_data, + HANDLE_SBR_PREV_FRAME_DATA h_prev_data); +static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData, + HANDLE_SBR_FRAME_DATA h_sbr_data, + HANDLE_SBR_PREV_FRAME_DATA h_prev_data); + +#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT) +#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT) + +#define DECAY (1 << ENV_EXP_FRACT) #if ENV_EXP_FRACT -#define DECAY_COUPLING ( 1 << (ENV_EXP_FRACT-1) ) /*!< corresponds to a value of 0.5 */ +#define DECAY_COUPLING \ + (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */ #else -#define DECAY_COUPLING 1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */ +#define DECAY_COUPLING \ + 1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */ #endif - /*! \brief Convert table index */ @@ -141,29 +158,23 @@ static int indexLow2High(int offset, /*!< mapping factor */ int index, /*!< index to scalefactor band */ int res) /*!< frequency resolution */ { - if(res == 0) - { - if (offset >= 0) - { - if (index < offset) - return(index); - else - return(2*index - offset); - } - else - { - offset = -offset; - if (index < offset) - return(2*index+index); - else - return(2*index + offset); + if (res == 0) { + if (offset >= 0) { + if (index < offset) + return (index); + else + return (2 * index - offset); + } else { + offset = -offset; + if (index < offset) + return (2 * index + index); + else + return (2 * index + offset); } - } - else - return(index); + } else + return (index); } - /*! \brief Update previous envelope value for delta-coding @@ -173,115 +184,119 @@ static int indexLow2High(int offset, /*!< mapping factor */ low frequency resolution, the energy value will be mapped to the corresponding high-res bands. */ -static void mapLowResEnergyVal(FIXP_SGL currVal, /*!< current energy value */ - FIXP_SGL* prevData,/*!< pointer to previous data vector */ - int offset, /*!< mapping factor */ - int index, /*!< index to scalefactor band */ - int res) /*!< frequeny resolution */ +static void mapLowResEnergyVal( + FIXP_SGL currVal, /*!< current energy value */ + FIXP_SGL *prevData, /*!< pointer to previous data vector */ + int offset, /*!< mapping factor */ + int index, /*!< index to scalefactor band */ + int res) /*!< frequeny resolution */ { - if(res == 0) - { - if (offset >= 0) - { - if(index < offset) - prevData[index] = currVal; - else - { - prevData[2*index - offset] = currVal; - prevData[2*index+1 - offset] = currVal; - } - } - else - { - offset = -offset; - if (index < offset) - { - prevData[3*index] = currVal; - prevData[3*index+1] = currVal; - prevData[3*index+2] = currVal; - } - else - { - prevData[2*index + offset] = currVal; - prevData[2*index + 1 + offset] = currVal; - } + if (res == 0) { + if (offset >= 0) { + if (index < offset) + prevData[index] = currVal; + else { + prevData[2 * index - offset] = currVal; + prevData[2 * index + 1 - offset] = currVal; + } + } else { + offset = -offset; + if (index < offset) { + prevData[3 * index] = currVal; + prevData[3 * index + 1] = currVal; + prevData[3 * index + 2] = currVal; + } else { + prevData[2 * index + offset] = currVal; + prevData[2 * index + 1 + offset] = currVal; + } } - } - else + } else prevData[index] = currVal; } - - /*! \brief Convert raw envelope and noisefloor data to energy levels - This function is being called by sbrDecoder_ParseElement() and provides two important algorithms: + This function is being called by sbrDecoder_ParseElement() and provides two + important algorithms: - First the function decodes envelopes and noise floor levels as described in requantizeEnvelopeData() - and sbr_envelope_unmapping(). The function also implements concealment algorithms in case there are errors - within the sbr data. For both operations fractional arithmetic is used. - Therefore you might encounter different output values on your target - system compared to the reference implementation. + First the function decodes envelopes and noise floor levels as described in + requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also + implements concealment algorithms in case there are errors within the sbr + data. For both operations fractional arithmetic is used. Therefore you might + encounter different output values on your target system compared to the + reference implementation. */ -void -decodeSbrData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel frame data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data_left, /*!< pointer to left channel previous frame data */ - HANDLE_SBR_FRAME_DATA h_data_right, /*!< pointer to right channel frame data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data_right)/*!< pointer to right channel previous frame data */ +void decodeSbrData( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA + h_data_left, /*!< pointer to left channel frame data */ + HANDLE_SBR_PREV_FRAME_DATA + h_prev_data_left, /*!< pointer to left channel previous frame data */ + HANDLE_SBR_FRAME_DATA + h_data_right, /*!< pointer to right channel frame data */ + HANDLE_SBR_PREV_FRAME_DATA + h_prev_data_right) /*!< pointer to right channel previous frame data */ { FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS]; int errLeft; - /* Save previous energy values to be able to reuse them later for concealment. */ - FDKmemcpy (tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev, MAX_FREQ_COEFFS * sizeof(FIXP_SGL)); + /* Save previous energy values to be able to reuse them later for concealment. + */ + FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev, + MAX_FREQ_COEFFS * sizeof(FIXP_SGL)); - decodeEnvelope (hHeaderData, h_data_left, h_prev_data_left, h_prev_data_right); - decodeNoiseFloorlevels (hHeaderData, h_data_left, h_prev_data_left); + if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) { + decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left, + h_prev_data_right); + } else { + FDK_ASSERT(h_data_right == NULL); + } + decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left); - if(h_data_right != NULL) { + if (h_data_right != NULL) { errLeft = hHeaderData->frameErrorFlag; - decodeEnvelope (hHeaderData, h_data_right, h_prev_data_right, h_prev_data_left); - decodeNoiseFloorlevels (hHeaderData, h_data_right, h_prev_data_right); + decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right, + h_prev_data_left); + decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right); if (!errLeft && hHeaderData->frameErrorFlag) { - /* If an error occurs in the right channel where the left channel seemed ok, - we apply concealment also on the left channel. This ensures that the coupling - modes of both channels match and that we have the same number of envelopes in - coupling mode. - However, as the left channel has already been processed before, the resulting - energy levels are not the same as if the left channel had been concealed - during the first call of decodeEnvelope(). + /* If an error occurs in the right channel where the left channel seemed + ok, we apply concealment also on the left channel. This ensures that + the coupling modes of both channels match and that we have the same + number of envelopes in coupling mode. However, as the left channel has + already been processed before, the resulting energy levels are not the + same as if the left channel had been concealed during the first call of + decodeEnvelope(). */ - /* Restore previous energy values for concealment, because the values have been - overwritten by the first call of decodeEnvelope(). */ - FDKmemcpy (h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev, MAX_FREQ_COEFFS * sizeof(FIXP_SGL)); + /* Restore previous energy values for concealment, because the values have + been overwritten by the first call of decodeEnvelope(). */ + FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev, + MAX_FREQ_COEFFS * sizeof(FIXP_SGL)); /* Do concealment */ - decodeEnvelope (hHeaderData, h_data_left, h_prev_data_left, h_prev_data_right); + decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left, + h_prev_data_right); } if (h_data_left->coupling) { - sbr_envelope_unmapping (hHeaderData, h_data_left, h_data_right); + sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right); } } /* Display the data for debugging: */ } - /*! \brief Convert from coupled channels to independent L/R data */ -static void -sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */ - HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */ +static void sbr_envelope_unmapping( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */ + HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */ { int i; FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m; - SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e; - + SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e; /* 1. Unmap (already dequantized) coupled envelope energies */ @@ -289,51 +304,53 @@ sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M); tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E); - tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE / h_data_right->nChannels) */ + tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE / + h_data_right->nChannels) */ tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M); tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E); tempL_e -= NRG_EXP_OFFSET; /* Calculate tempRight+1 */ - FDK_add_MantExp( tempR_m, tempR_e, - FL2FXCONST_SGL(0.5f), 1, /* 1.0 */ - &tempRplus1_m, &tempRplus1_e); + FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */ + &tempRplus1_m, &tempRplus1_e); - FDK_divide_MantExp( tempL_m, tempL_e+1, /* 2 * tempLeft */ - tempRplus1_m, tempRplus1_e, - &newR_m, &newR_e ); + FDK_divide_MantExp(tempL_m, tempL_e + 1, /* 2 * tempLeft */ + tempRplus1_m, tempRplus1_e, &newR_m, &newR_e); if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) { newR_m >>= 1; newR_e += 1; } - newL_m = FX_DBL2FX_SGL(fMult(tempR_m,newR_m)); + newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m)); newL_e = tempR_e + newR_e; - h_data_right->iEnvelope[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) + - (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E); - h_data_left->iEnvelope[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) + - (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E); + h_data_right->iEnvelope[i] = + ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) + + (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E); + h_data_left->iEnvelope[i] = + ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) + + (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E); } /* 2. Dequantize and unmap coupled noise floor levels */ - for (i = 0; i < hHeaderData->freqBandData.nNfb * h_data_left->frameInfo.nNoiseEnvelopes; i++) { - + for (i = 0; i < hHeaderData->freqBandData.nNfb * + h_data_left->frameInfo.nNoiseEnvelopes; + i++) { tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]); - tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] - 12) /*SBR_ENERGY_PAN_OFFSET*/; + tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] - + 12) /*SBR_ENERGY_PAN_OFFSET*/; /* Calculate tempR+1 */ - FDK_add_MantExp( FL2FXCONST_SGL(0.5f), 1+tempR_e, /* tempR */ - FL2FXCONST_SGL(0.5f), 1, /* 1.0 */ - &tempRplus1_m, &tempRplus1_e); + FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */ + FL2FXCONST_SGL(0.5f), 1, /* 1.0 */ + &tempRplus1_m, &tempRplus1_e); /* Calculate 2*tempLeft/(tempR+1) */ - FDK_divide_MantExp( FL2FXCONST_SGL(0.5f), tempL_e+2, /* 2 * tempLeft */ - tempRplus1_m, tempRplus1_e, - &newR_m, &newR_e ); + FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /* 2 * tempLeft */ + tempRplus1_m, tempRplus1_e, &newR_m, &newR_e); /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) { newR_m >>= 1; @@ -343,14 +360,15 @@ sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control /* L = tempR * R */ newL_m = newR_m; newL_e = newR_e + tempR_e; - h_data_right->sbrNoiseFloorLevel[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) + - (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E); - h_data_left->sbrNoiseFloorLevel[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) + - (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E); + h_data_right->sbrNoiseFloorLevel[i] = + ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) + + (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E); + h_data_left->sbrNoiseFloorLevel[i] = + ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) + + (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E); } } - /*! \brief Simple alternative to the real SBR concealment @@ -359,24 +377,23 @@ sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control The delta-coded energies are set to negative values, resulting in a fade-down. In case of coupling, the balance-channel will move towards the center. */ -static void -leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */ - ) -{ - FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */ - FIXP_SGL step; /* speed of fade */ +static void leanSbrConcealment( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ + HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */ +) { + FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */ + FIXP_SGL step; /* speed of fade */ int i; - int currentStartPos = FDKmax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots); + int currentStartPos = + fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots); int currentStopPos = hHeaderData->numberTimeSlots; - /* Use some settings of the previous frame */ h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes; h_sbr_data->coupling = h_prev_data->coupling; - for(i=0;i<MAX_INVF_BANDS;i++) + for (i = 0; i < MAX_INVF_BANDS; i++) h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i]; /* Generate concealing control data */ @@ -385,7 +402,7 @@ leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d h_sbr_data->frameInfo.borders[0] = currentStartPos; h_sbr_data->frameInfo.borders[1] = currentStopPos; h_sbr_data->frameInfo.freqRes[0] = 1; - h_sbr_data->frameInfo.tranEnv = -1; /* no transient */ + h_sbr_data->frameInfo.tranEnv = -1; /* no transient */ h_sbr_data->frameInfo.nNoiseEnvelopes = 1; h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos; h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos; @@ -399,17 +416,16 @@ leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d if (h_sbr_data->coupling == COUPLING_BAL) { target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET; step = (FIXP_SGL)DECAY_COUPLING; - } - else { + } else { target = FL2FXCONST_SGL(0.0f); - step = (FIXP_SGL)DECAY; + step = (FIXP_SGL)DECAY; } if (hHeaderData->bs_info.ampResolution == 0) { target <<= 1; - step <<= 1; + step <<= 1; } - for (i=0; i < h_sbr_data->nScaleFactors; i++) { + for (i = 0; i < h_sbr_data->nScaleFactors; i++) { if (h_prev_data->sfb_nrg_prev[i] > target) h_sbr_data->iEnvelope[i] = -step; else @@ -419,123 +435,125 @@ leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d /* Noisefloor levels are always cleared ... */ h_sbr_data->domain_vec_noise[0] = 1; - for (i=0; i < hHeaderData->freqBandData.nNfb; i++) + for (i = 0; i < hHeaderData->freqBandData.nNfb; i++) h_sbr_data->sbrNoiseFloorLevel[i] = FL2FXCONST_SGL(0.0f); /* ... and so are the sines */ - FDKmemclear(h_sbr_data->addHarmonics, MAX_FREQ_COEFFS); + FDKmemclear(h_sbr_data->addHarmonics, + sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE); } - /*! \brief Build reference energies and noise levels from bitstream elements */ -static void -decodeEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data, /*!< pointer to data of last frame */ - HANDLE_SBR_PREV_FRAME_DATA otherChannel /*!< other channel's last frame data */ - ) -{ +static void decodeEnvelope( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ + HANDLE_SBR_PREV_FRAME_DATA + h_prev_data, /*!< pointer to data of last frame */ + HANDLE_SBR_PREV_FRAME_DATA + otherChannel /*!< other channel's last frame data */ +) { int i; int fFrameError = hHeaderData->frameErrorFlag; FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS]; if (!fFrameError) { /* - To avoid distortions after bad frames, set the error flag if delta coding in time occurs. - However, SBR can take a little longer to come up again. + To avoid distortions after bad frames, set the error flag if delta coding + in time occurs. However, SBR can take a little longer to come up again. */ - if ( h_prev_data->frameErrorFlag ) { + if (h_prev_data->frameErrorFlag) { if (h_sbr_data->domain_vec[0] != 0) { fFrameError = 1; } } else { - /* Check that the previous stop position and the current start position match. - (Could be done in checkFrameInfo(), but the previous frame data is not available there) */ - if ( h_sbr_data->frameInfo.borders[0] != h_prev_data->stopPos - hHeaderData->numberTimeSlots ) { - /* Both the previous as well as the current frame are flagged to be ok, but they do not match! */ + /* Check that the previous stop position and the current start position + match. (Could be done in checkFrameInfo(), but the previous frame data + is not available there) */ + if (h_sbr_data->frameInfo.borders[0] != + h_prev_data->stopPos - hHeaderData->numberTimeSlots) { + /* Both the previous as well as the current frame are flagged to be ok, + * but they do not match! */ if (h_sbr_data->domain_vec[0] == 1) { - /* Prefer concealment over delta-time coding between the mismatching frames */ + /* Prefer concealment over delta-time coding between the mismatching + * frames */ fFrameError = 1; - } - else { - /* Close the gap in time by triggering timeCompensateFirstEnvelope() */ + } else { + /* Close the gap in time by triggering timeCompensateFirstEnvelope() + */ fFrameError = 1; } } } } + if (fFrameError) /* Error is detected */ + { + leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data); - if (fFrameError) /* Error is detected */ - { - leanSbrConcealment(hHeaderData, - h_sbr_data, - h_prev_data); - - /* decode the envelope data to linear PCM */ - deltaToLinearPcmEnvelopeDecoding (hHeaderData, h_sbr_data, h_prev_data); - } - else /*Do a temporary dummy decoding and check that the envelope values are within limits */ - { - if (h_prev_data->frameErrorFlag) { - timeCompensateFirstEnvelope (hHeaderData, h_sbr_data, h_prev_data); - if (h_sbr_data->coupling != h_prev_data->coupling) { - /* - Coupling mode has changed during concealment. - The stored energy levels need to be converted. - */ - for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) { - /* Former Level-Channel will be used for both channels */ - if (h_prev_data->coupling == COUPLING_BAL) - h_prev_data->sfb_nrg_prev[i] = otherChannel->sfb_nrg_prev[i]; - /* Former L/R will be combined as the new Level-Channel */ - else if (h_sbr_data->coupling == COUPLING_LEVEL) - h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] + otherChannel->sfb_nrg_prev[i]) >> 1; - else if (h_sbr_data->coupling == COUPLING_BAL) - h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET; - } + /* decode the envelope data to linear PCM */ + deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data); + } else /*Do a temporary dummy decoding and check that the envelope values are + within limits */ + { + if (h_prev_data->frameErrorFlag) { + timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data); + if (h_sbr_data->coupling != h_prev_data->coupling) { + /* + Coupling mode has changed during concealment. + The stored energy levels need to be converted. + */ + for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) { + /* Former Level-Channel will be used for both channels */ + if (h_prev_data->coupling == COUPLING_BAL) + h_prev_data->sfb_nrg_prev[i] = otherChannel->sfb_nrg_prev[i]; + /* Former L/R will be combined as the new Level-Channel */ + else if (h_sbr_data->coupling == COUPLING_LEVEL) + h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] + + otherChannel->sfb_nrg_prev[i]) >> + 1; + else if (h_sbr_data->coupling == COUPLING_BAL) + h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET; } } - FDKmemcpy (tempSfbNrgPrev, h_prev_data->sfb_nrg_prev, - MAX_FREQ_COEFFS * sizeof (FIXP_SGL)); + } + FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev, + MAX_FREQ_COEFFS * sizeof(FIXP_SGL)); - deltaToLinearPcmEnvelopeDecoding (hHeaderData, h_sbr_data, h_prev_data); + deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data); - fFrameError = checkEnvelopeData (hHeaderData, h_sbr_data, h_prev_data); + fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data); - if (fFrameError) - { - hHeaderData->frameErrorFlag = 1; - FDKmemcpy (h_prev_data->sfb_nrg_prev, tempSfbNrgPrev, - MAX_FREQ_COEFFS * sizeof (FIXP_SGL)); - decodeEnvelope (hHeaderData, h_sbr_data, h_prev_data, otherChannel); - return; - } + if (fFrameError) { + hHeaderData->frameErrorFlag = 1; + FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev, + MAX_FREQ_COEFFS * sizeof(FIXP_SGL)); + decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel); + return; } + } - requantizeEnvelopeData (h_sbr_data, h_sbr_data->ampResolutionCurrentFrame); + requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame); hHeaderData->frameErrorFlag = fFrameError; } - /*! \brief Verify that envelope energies are within the allowed range \return 0 if all is fine, 1 if an envelope value was too high */ -static int -checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */ - ) -{ +static int checkEnvelopeData( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ + HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */ +) { FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope; FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev; - int i = 0, errorFlag = 0; - FIXP_SGL sbr_max_energy = - (h_sbr_data->ampResolutionCurrentFrame == 1) ? SBR_MAX_ENERGY : (SBR_MAX_ENERGY << 1); + int i = 0, errorFlag = 0; + FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1) + ? SBR_MAX_ENERGY + : (SBR_MAX_ENERGY << 1); /* Range check for current energies @@ -561,7 +579,6 @@ checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d return (errorFlag); } - /*! \brief Verify that the noise levels are within the allowed range @@ -569,49 +586,55 @@ checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d When the noise-levels are being decoded, it is already too late for concealment. Therefore the noise levels are simply limited here. */ -static void -limitNoiseLevels(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */ +static void limitNoiseLevels( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */ { int i; int nNfb = hHeaderData->freqBandData.nNfb; - /* - Set range limits. The exact values depend on the coupling mode. - However this limitation is primarily intended to avoid unlimited - accumulation of the delta-coded noise levels. - */ - #define lowerLimit ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */ - #define upperLimit ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */ +/* + Set range limits. The exact values depend on the coupling mode. + However this limitation is primarily intended to avoid unlimited + accumulation of the delta-coded noise levels. +*/ +#define lowerLimit \ + ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */ +#define upperLimit \ + ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */ /* Range check for current noise levels */ for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) { - h_sbr_data->sbrNoiseFloorLevel[i] = fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit); - h_sbr_data->sbrNoiseFloorLevel[i] = fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit); + h_sbr_data->sbrNoiseFloorLevel[i] = + fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit); + h_sbr_data->sbrNoiseFloorLevel[i] = + fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit); } } - /*! \brief Compensate for the wrong timing that might occur after a frame error. */ -static void -timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to data of last frame */ +static void timeCompensateFirstEnvelope( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */ + HANDLE_SBR_PREV_FRAME_DATA + h_prev_data) /*!< pointer to data of last frame */ { int i, nScalefactors; FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo; UCHAR *nSfb = hHeaderData->freqBandData.nSfb; - int estimatedStartPos = h_prev_data->stopPos - hHeaderData->numberTimeSlots; + int estimatedStartPos = + fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots); int refLen, newLen, shift; - FIXP_SGL deltaExp; + FIXP_SGL deltaExp; /* Original length of first envelope according to bitstream */ refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0]; - /* Corrected length of first envelope (concealing can make the first envelope longer) */ + /* Corrected length of first envelope (concealing can make the first envelope + * longer) */ newLen = pFrameInfo->borders[1] - estimatedStartPos; if (newLen <= 0) { @@ -625,7 +648,8 @@ timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static con deltaExp = FDK_getNumOctavesDiv8(newLen, refLen); /* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */ - shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 + h_sbr_data->ampResolutionCurrentFrame - 3); + shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 + + h_sbr_data->ampResolutionCurrentFrame - 3); deltaExp = deltaExp >> shift; pFrameInfo->borders[0] = estimatedStartPos; pFrameInfo->bordersNoise[0] = estimatedStartPos; @@ -638,8 +662,6 @@ timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static con } } - - /*! \brief Convert each envelope value from logarithmic to linear domain @@ -660,9 +682,8 @@ timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static con The data is then used in calculateSbrEnvelope(). */ -static void -requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution) -{ +static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data, + int ampResolution) { int i; FIXP_SGL mantissa; int ampShift = 1 - ampResolution; @@ -672,16 +693,15 @@ requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution) the initialization of this array has to be adapted! */ #if ENV_EXP_FRACT - static const FIXP_SGL pow2[ENV_EXP_FRACT] = - { - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */ - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */ - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))), - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))), - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))), - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))), - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))), - FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */ + static const FIXP_SGL pow2[ENV_EXP_FRACT] = { + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */ + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */ + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))), + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))), + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))), + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))), + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))), + FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */ }; int bit, mask; @@ -698,13 +718,13 @@ requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution) /* Amplify mantissa according to the fractional part of the exponent (result will be between 0.500000 and 0.999999) */ - mask = 1; /* begin with lowest bit of exponent */ + mask = 1; /* begin with lowest bit of exponent */ - for ( bit=ENV_EXP_FRACT-1; bit>=0; bit-- ) { + for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) { if (exponent & mask) { /* The current bit of the exponent is set, multiply mantissa with the corresponding factor: */ - mantissa = (FIXP_SGL)( (mantissa * pow2[bit]) << 1); + mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1); } /* Advance to next bit */ mask = mask << 1; @@ -714,40 +734,43 @@ requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution) exponent = exponent >> ENV_EXP_FRACT; #else - /* In case of the high amplitude resolution, 1 bit of the exponent gets lost by the shift. - This will be compensated by a mantissa of 0.5*sqrt(2) instead of 0.5 if that bit is 1. */ - mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f) : FL2FXCONST_SGL(0.5f); + /* In case of the high amplitude resolution, 1 bit of the exponent gets lost + by the shift. This will be compensated by a mantissa of 0.5*sqrt(2) + instead of 0.5 if that bit is 1. */ + mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f) + : FL2FXCONST_SGL(0.5f); exponent = exponent >> ampShift; #endif /* - Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by 1). - Multiply by L=nChannels=64 by increasing exponent by another 6. + Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by + 1). Multiply by L=nChannels=64 by increasing exponent by another 6. => Increase exponent by 7 */ exponent += 7 + NRG_EXP_OFFSET; /* Combine mantissa and exponent and write back the result */ - h_sbr_data->iEnvelope[i] = (FIXP_SGL)(((LONG)mantissa & MASK_M) | (exponent & MASK_E)); - + h_sbr_data->iEnvelope[i] = + ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) + + (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E); } } - /*! \brief Build new reference energies from old ones and delta coded data */ -static void -deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */ +static void deltaToLinearPcmEnvelopeDecoding( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ + HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */ { int i, domain, no_of_bands, band, freqRes; FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev; FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope; - int offset = 2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1]; + int offset = + 2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1]; for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) { domain = h_sbr_data->domain_vec[i]; @@ -759,22 +782,18 @@ deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< S FDK_ASSERT(no_of_bands < (64)); - if (domain == 0) - { + if (domain == 0) { mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes); ptr_nrg++; - for (band = 1; band < no_of_bands; band++) - { - *ptr_nrg = *ptr_nrg + *(ptr_nrg-1); + for (band = 1; band < no_of_bands; band++) { + *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1); mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes); ptr_nrg++; } - } - else - { - for (band = 0; band < no_of_bands; band++) - { - *ptr_nrg = *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)]; + } else { + for (band = 0; band < no_of_bands; band++) { + *ptr_nrg = + *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)]; mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes); ptr_nrg++; } @@ -782,14 +801,13 @@ deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< S } } - /*! \brief Build new noise levels from old ones and delta coded data */ -static void -decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ - HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ - HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */ +static void decodeNoiseFloorlevels( + HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */ + HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */ + HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */ { int i; int nNfb = hHeaderData->freqBandData.nNfb; @@ -803,8 +821,7 @@ decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static cont noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i]; h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel; } - } - else { + } else { for (i = 0; i < nNfb; i++) { h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i]; } @@ -816,14 +833,14 @@ decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static cont if (nNoiseFloorEnvelopes > 1) { if (h_sbr_data->domain_vec_noise[1] == 0) { FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb]; - for (i = nNfb + 1; i < 2*nNfb; i++) { + for (i = nNfb + 1; i < 2 * nNfb; i++) { noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i]; h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel; } - } - else { + } else { for (i = 0; i < nNfb; i++) { - h_sbr_data->sbrNoiseFloorLevel[i + nNfb] += h_sbr_data->sbrNoiseFloorLevel[i]; + h_sbr_data->sbrNoiseFloorLevel[i + nNfb] += + h_sbr_data->sbrNoiseFloorLevel[i]; } } } @@ -832,21 +849,20 @@ decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static cont /* Update prevNoiseLevel with the last noise envelope */ for (i = 0; i < nNfb; i++) - h_prev_data->prevNoiseLevel[i] = h_sbr_data->sbrNoiseFloorLevel[i + nNfb*(nNoiseFloorEnvelopes-1)]; - + h_prev_data->prevNoiseLevel[i] = + h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)]; /* Requantize the noise floor levels in COUPLING_OFF-mode */ if (!h_sbr_data->coupling) { int nf_e; - for (i = 0; i < nNoiseFloorEnvelopes*nNfb; i++) { + for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) { nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET; /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */ h_sbr_data->sbrNoiseFloorLevel[i] = - (FIXP_SGL)( ((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */ - (nf_e & MASK_E) ); /* exponent */ - + (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */ + (nf_e & MASK_E)); /* exponent */ } } } |