aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/env_dec.cpp
diff options
context:
space:
mode:
authorMartin Storsjo <martin@martin.st>2018-08-22 15:49:59 +0300
committerMartin Storsjo <martin@martin.st>2018-09-02 23:16:58 +0300
commitb95b15e51d8c692735df4d38c1335efc06aa0443 (patch)
treede32d94e69c5d00ab69724ab114415b1f74cba3d /libSBRdec/src/env_dec.cpp
parente45ae429b9ca8f234eb861338a75b2d89cde206a (diff)
parent7027cd87488c2a60becbae7a139d18dbc0370459 (diff)
downloadfdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.gz
fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.bz2
fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.zip
Merge remote-tracking branch 'aosp/master'
Diffstat (limited to 'libSBRdec/src/env_dec.cpp')
-rw-r--r--libSBRdec/src/env_dec.cpp768
1 files changed, 392 insertions, 376 deletions
diff --git a/libSBRdec/src/env_dec.cpp b/libSBRdec/src/env_dec.cpp
index c65c169..88c92cd 100644
--- a/libSBRdec/src/env_dec.cpp
+++ b/libSBRdec/src/env_dec.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,13 +90,21 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
+
+/**************************** SBR decoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
/*!
\file
- \brief envelope decoding
- This module provides envelope decoding and error concealment algorithms. The main
- entry point is decodeSbrData().
+ \brief envelope decoding
+ This module provides envelope decoding and error concealment algorithms. The
+ main entry point is decodeSbrData().
\sa decodeSbrData(),\ref documentationOverview
*/
@@ -97,43 +116,41 @@ amm-info@iis.fraunhofer.de
#include "genericStds.h"
-
-static void decodeEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData,
- HANDLE_SBR_FRAME_DATA h_sbr_data,
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
-static void sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData,
- HANDLE_SBR_FRAME_DATA h_data_left,
- HANDLE_SBR_FRAME_DATA h_data_right);
-static void requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data,
- int ampResolution);
-static void deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData,
- HANDLE_SBR_FRAME_DATA h_sbr_data,
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
-static void decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData,
- HANDLE_SBR_FRAME_DATA h_sbr_data,
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
-static void timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData,
- HANDLE_SBR_FRAME_DATA h_sbr_data,
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
-static int checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData,
- HANDLE_SBR_FRAME_DATA h_sbr_data,
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
-
-
-
-#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
-#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
-
-#define DECAY ( 1 << ENV_EXP_FRACT)
+static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
+static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_data_left,
+ HANDLE_SBR_FRAME_DATA h_data_right);
+static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
+ int ampResolution);
+static void deltaToLinearPcmEnvelopeDecoding(
+ HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+
+#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
+#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
+
+#define DECAY (1 << ENV_EXP_FRACT)
#if ENV_EXP_FRACT
-#define DECAY_COUPLING ( 1 << (ENV_EXP_FRACT-1) ) /*!< corresponds to a value of 0.5 */
+#define DECAY_COUPLING \
+ (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
#else
-#define DECAY_COUPLING 1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
+#define DECAY_COUPLING \
+ 1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
#endif
-
/*!
\brief Convert table index
*/
@@ -141,29 +158,23 @@ static int indexLow2High(int offset, /*!< mapping factor */
int index, /*!< index to scalefactor band */
int res) /*!< frequency resolution */
{
- if(res == 0)
- {
- if (offset >= 0)
- {
- if (index < offset)
- return(index);
- else
- return(2*index - offset);
- }
- else
- {
- offset = -offset;
- if (index < offset)
- return(2*index+index);
- else
- return(2*index + offset);
+ if (res == 0) {
+ if (offset >= 0) {
+ if (index < offset)
+ return (index);
+ else
+ return (2 * index - offset);
+ } else {
+ offset = -offset;
+ if (index < offset)
+ return (2 * index + index);
+ else
+ return (2 * index + offset);
}
- }
- else
- return(index);
+ } else
+ return (index);
}
-
/*!
\brief Update previous envelope value for delta-coding
@@ -173,115 +184,119 @@ static int indexLow2High(int offset, /*!< mapping factor */
low frequency resolution, the energy value will be mapped to the
corresponding high-res bands.
*/
-static void mapLowResEnergyVal(FIXP_SGL currVal, /*!< current energy value */
- FIXP_SGL* prevData,/*!< pointer to previous data vector */
- int offset, /*!< mapping factor */
- int index, /*!< index to scalefactor band */
- int res) /*!< frequeny resolution */
+static void mapLowResEnergyVal(
+ FIXP_SGL currVal, /*!< current energy value */
+ FIXP_SGL *prevData, /*!< pointer to previous data vector */
+ int offset, /*!< mapping factor */
+ int index, /*!< index to scalefactor band */
+ int res) /*!< frequeny resolution */
{
- if(res == 0)
- {
- if (offset >= 0)
- {
- if(index < offset)
- prevData[index] = currVal;
- else
- {
- prevData[2*index - offset] = currVal;
- prevData[2*index+1 - offset] = currVal;
- }
- }
- else
- {
- offset = -offset;
- if (index < offset)
- {
- prevData[3*index] = currVal;
- prevData[3*index+1] = currVal;
- prevData[3*index+2] = currVal;
- }
- else
- {
- prevData[2*index + offset] = currVal;
- prevData[2*index + 1 + offset] = currVal;
- }
+ if (res == 0) {
+ if (offset >= 0) {
+ if (index < offset)
+ prevData[index] = currVal;
+ else {
+ prevData[2 * index - offset] = currVal;
+ prevData[2 * index + 1 - offset] = currVal;
+ }
+ } else {
+ offset = -offset;
+ if (index < offset) {
+ prevData[3 * index] = currVal;
+ prevData[3 * index + 1] = currVal;
+ prevData[3 * index + 2] = currVal;
+ } else {
+ prevData[2 * index + offset] = currVal;
+ prevData[2 * index + 1 + offset] = currVal;
+ }
}
- }
- else
+ } else
prevData[index] = currVal;
}
-
-
/*!
\brief Convert raw envelope and noisefloor data to energy levels
- This function is being called by sbrDecoder_ParseElement() and provides two important algorithms:
+ This function is being called by sbrDecoder_ParseElement() and provides two
+ important algorithms:
- First the function decodes envelopes and noise floor levels as described in requantizeEnvelopeData()
- and sbr_envelope_unmapping(). The function also implements concealment algorithms in case there are errors
- within the sbr data. For both operations fractional arithmetic is used.
- Therefore you might encounter different output values on your target
- system compared to the reference implementation.
+ First the function decodes envelopes and noise floor levels as described in
+ requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
+ implements concealment algorithms in case there are errors within the sbr
+ data. For both operations fractional arithmetic is used. Therefore you might
+ encounter different output values on your target system compared to the
+ reference implementation.
*/
-void
-decodeSbrData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel frame data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data_left, /*!< pointer to left channel previous frame data */
- HANDLE_SBR_FRAME_DATA h_data_right, /*!< pointer to right channel frame data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data_right)/*!< pointer to right channel previous frame data */
+void decodeSbrData(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA
+ h_data_left, /*!< pointer to left channel frame data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data_left, /*!< pointer to left channel previous frame data */
+ HANDLE_SBR_FRAME_DATA
+ h_data_right, /*!< pointer to right channel frame data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data_right) /*!< pointer to right channel previous frame data */
{
FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
int errLeft;
- /* Save previous energy values to be able to reuse them later for concealment. */
- FDKmemcpy (tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev, MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+ /* Save previous energy values to be able to reuse them later for concealment.
+ */
+ FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
- decodeEnvelope (hHeaderData, h_data_left, h_prev_data_left, h_prev_data_right);
- decodeNoiseFloorlevels (hHeaderData, h_data_left, h_prev_data_left);
+ if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
+ decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
+ h_prev_data_right);
+ } else {
+ FDK_ASSERT(h_data_right == NULL);
+ }
+ decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
- if(h_data_right != NULL) {
+ if (h_data_right != NULL) {
errLeft = hHeaderData->frameErrorFlag;
- decodeEnvelope (hHeaderData, h_data_right, h_prev_data_right, h_prev_data_left);
- decodeNoiseFloorlevels (hHeaderData, h_data_right, h_prev_data_right);
+ decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
+ h_prev_data_left);
+ decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
if (!errLeft && hHeaderData->frameErrorFlag) {
- /* If an error occurs in the right channel where the left channel seemed ok,
- we apply concealment also on the left channel. This ensures that the coupling
- modes of both channels match and that we have the same number of envelopes in
- coupling mode.
- However, as the left channel has already been processed before, the resulting
- energy levels are not the same as if the left channel had been concealed
- during the first call of decodeEnvelope().
+ /* If an error occurs in the right channel where the left channel seemed
+ ok, we apply concealment also on the left channel. This ensures that
+ the coupling modes of both channels match and that we have the same
+ number of envelopes in coupling mode. However, as the left channel has
+ already been processed before, the resulting energy levels are not the
+ same as if the left channel had been concealed during the first call of
+ decodeEnvelope().
*/
- /* Restore previous energy values for concealment, because the values have been
- overwritten by the first call of decodeEnvelope(). */
- FDKmemcpy (h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev, MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+ /* Restore previous energy values for concealment, because the values have
+ been overwritten by the first call of decodeEnvelope(). */
+ FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
/* Do concealment */
- decodeEnvelope (hHeaderData, h_data_left, h_prev_data_left, h_prev_data_right);
+ decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
+ h_prev_data_right);
}
if (h_data_left->coupling) {
- sbr_envelope_unmapping (hHeaderData, h_data_left, h_data_right);
+ sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
}
}
/* Display the data for debugging: */
}
-
/*!
\brief Convert from coupled channels to independent L/R data
*/
-static void
-sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */
- HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
+static void sbr_envelope_unmapping(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */
+ HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
{
int i;
FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
- SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
-
+ SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
/* 1. Unmap (already dequantized) coupled envelope energies */
@@ -289,51 +304,53 @@ sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control
tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
- tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE / h_data_right->nChannels) */
+ tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
+ h_data_right->nChannels) */
tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
tempL_e -= NRG_EXP_OFFSET;
/* Calculate tempRight+1 */
- FDK_add_MantExp( tempR_m, tempR_e,
- FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
- &tempRplus1_m, &tempRplus1_e);
+ FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
+ &tempRplus1_m, &tempRplus1_e);
- FDK_divide_MantExp( tempL_m, tempL_e+1, /* 2 * tempLeft */
- tempRplus1_m, tempRplus1_e,
- &newR_m, &newR_e );
+ FDK_divide_MantExp(tempL_m, tempL_e + 1, /* 2 * tempLeft */
+ tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
newR_m >>= 1;
newR_e += 1;
}
- newL_m = FX_DBL2FX_SGL(fMult(tempR_m,newR_m));
+ newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
newL_e = tempR_e + newR_e;
- h_data_right->iEnvelope[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
- (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
- h_data_left->iEnvelope[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
- (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
+ h_data_right->iEnvelope[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
+ h_data_left->iEnvelope[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
}
/* 2. Dequantize and unmap coupled noise floor levels */
- for (i = 0; i < hHeaderData->freqBandData.nNfb * h_data_left->frameInfo.nNoiseEnvelopes; i++) {
-
+ for (i = 0; i < hHeaderData->freqBandData.nNfb *
+ h_data_left->frameInfo.nNoiseEnvelopes;
+ i++) {
tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
- tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] - 12) /*SBR_ENERGY_PAN_OFFSET*/;
+ tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
+ 12) /*SBR_ENERGY_PAN_OFFSET*/;
/* Calculate tempR+1 */
- FDK_add_MantExp( FL2FXCONST_SGL(0.5f), 1+tempR_e, /* tempR */
- FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
- &tempRplus1_m, &tempRplus1_e);
+ FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
+ FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
+ &tempRplus1_m, &tempRplus1_e);
/* Calculate 2*tempLeft/(tempR+1) */
- FDK_divide_MantExp( FL2FXCONST_SGL(0.5f), tempL_e+2, /* 2 * tempLeft */
- tempRplus1_m, tempRplus1_e,
- &newR_m, &newR_e );
+ FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /* 2 * tempLeft */
+ tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
/* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
newR_m >>= 1;
@@ -343,14 +360,15 @@ sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control
/* L = tempR * R */
newL_m = newR_m;
newL_e = newR_e + tempR_e;
- h_data_right->sbrNoiseFloorLevel[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
- (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
- h_data_left->sbrNoiseFloorLevel[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
- (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
+ h_data_right->sbrNoiseFloorLevel[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
+ h_data_left->sbrNoiseFloorLevel[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
}
}
-
/*!
\brief Simple alternative to the real SBR concealment
@@ -359,24 +377,23 @@ sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control
The delta-coded energies are set to negative values, resulting in a fade-down.
In case of coupling, the balance-channel will move towards the center.
*/
-static void
-leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
- )
-{
- FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
- FIXP_SGL step; /* speed of fade */
+static void leanSbrConcealment(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
+) {
+ FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
+ FIXP_SGL step; /* speed of fade */
int i;
- int currentStartPos = FDKmax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
+ int currentStartPos =
+ fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
int currentStopPos = hHeaderData->numberTimeSlots;
-
/* Use some settings of the previous frame */
h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
h_sbr_data->coupling = h_prev_data->coupling;
- for(i=0;i<MAX_INVF_BANDS;i++)
+ for (i = 0; i < MAX_INVF_BANDS; i++)
h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
/* Generate concealing control data */
@@ -385,7 +402,7 @@ leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d
h_sbr_data->frameInfo.borders[0] = currentStartPos;
h_sbr_data->frameInfo.borders[1] = currentStopPos;
h_sbr_data->frameInfo.freqRes[0] = 1;
- h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
+ h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
@@ -399,17 +416,16 @@ leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d
if (h_sbr_data->coupling == COUPLING_BAL) {
target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
step = (FIXP_SGL)DECAY_COUPLING;
- }
- else {
+ } else {
target = FL2FXCONST_SGL(0.0f);
- step = (FIXP_SGL)DECAY;
+ step = (FIXP_SGL)DECAY;
}
if (hHeaderData->bs_info.ampResolution == 0) {
target <<= 1;
- step <<= 1;
+ step <<= 1;
}
- for (i=0; i < h_sbr_data->nScaleFactors; i++) {
+ for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
if (h_prev_data->sfb_nrg_prev[i] > target)
h_sbr_data->iEnvelope[i] = -step;
else
@@ -419,123 +435,125 @@ leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d
/* Noisefloor levels are always cleared ... */
h_sbr_data->domain_vec_noise[0] = 1;
- for (i=0; i < hHeaderData->freqBandData.nNfb; i++)
+ for (i = 0; i < hHeaderData->freqBandData.nNfb; i++)
h_sbr_data->sbrNoiseFloorLevel[i] = FL2FXCONST_SGL(0.0f);
/* ... and so are the sines */
- FDKmemclear(h_sbr_data->addHarmonics, MAX_FREQ_COEFFS);
+ FDKmemclear(h_sbr_data->addHarmonics,
+ sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
}
-
/*!
\brief Build reference energies and noise levels from bitstream elements
*/
-static void
-decodeEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data, /*!< pointer to data of last frame */
- HANDLE_SBR_PREV_FRAME_DATA otherChannel /*!< other channel's last frame data */
- )
-{
+static void decodeEnvelope(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data, /*!< pointer to data of last frame */
+ HANDLE_SBR_PREV_FRAME_DATA
+ otherChannel /*!< other channel's last frame data */
+) {
int i;
int fFrameError = hHeaderData->frameErrorFlag;
FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
if (!fFrameError) {
/*
- To avoid distortions after bad frames, set the error flag if delta coding in time occurs.
- However, SBR can take a little longer to come up again.
+ To avoid distortions after bad frames, set the error flag if delta coding
+ in time occurs. However, SBR can take a little longer to come up again.
*/
- if ( h_prev_data->frameErrorFlag ) {
+ if (h_prev_data->frameErrorFlag) {
if (h_sbr_data->domain_vec[0] != 0) {
fFrameError = 1;
}
} else {
- /* Check that the previous stop position and the current start position match.
- (Could be done in checkFrameInfo(), but the previous frame data is not available there) */
- if ( h_sbr_data->frameInfo.borders[0] != h_prev_data->stopPos - hHeaderData->numberTimeSlots ) {
- /* Both the previous as well as the current frame are flagged to be ok, but they do not match! */
+ /* Check that the previous stop position and the current start position
+ match. (Could be done in checkFrameInfo(), but the previous frame data
+ is not available there) */
+ if (h_sbr_data->frameInfo.borders[0] !=
+ h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
+ /* Both the previous as well as the current frame are flagged to be ok,
+ * but they do not match! */
if (h_sbr_data->domain_vec[0] == 1) {
- /* Prefer concealment over delta-time coding between the mismatching frames */
+ /* Prefer concealment over delta-time coding between the mismatching
+ * frames */
fFrameError = 1;
- }
- else {
- /* Close the gap in time by triggering timeCompensateFirstEnvelope() */
+ } else {
+ /* Close the gap in time by triggering timeCompensateFirstEnvelope()
+ */
fFrameError = 1;
}
}
}
}
+ if (fFrameError) /* Error is detected */
+ {
+ leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
- if (fFrameError) /* Error is detected */
- {
- leanSbrConcealment(hHeaderData,
- h_sbr_data,
- h_prev_data);
-
- /* decode the envelope data to linear PCM */
- deltaToLinearPcmEnvelopeDecoding (hHeaderData, h_sbr_data, h_prev_data);
- }
- else /*Do a temporary dummy decoding and check that the envelope values are within limits */
- {
- if (h_prev_data->frameErrorFlag) {
- timeCompensateFirstEnvelope (hHeaderData, h_sbr_data, h_prev_data);
- if (h_sbr_data->coupling != h_prev_data->coupling) {
- /*
- Coupling mode has changed during concealment.
- The stored energy levels need to be converted.
- */
- for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
- /* Former Level-Channel will be used for both channels */
- if (h_prev_data->coupling == COUPLING_BAL)
- h_prev_data->sfb_nrg_prev[i] = otherChannel->sfb_nrg_prev[i];
- /* Former L/R will be combined as the new Level-Channel */
- else if (h_sbr_data->coupling == COUPLING_LEVEL)
- h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] + otherChannel->sfb_nrg_prev[i]) >> 1;
- else if (h_sbr_data->coupling == COUPLING_BAL)
- h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
- }
+ /* decode the envelope data to linear PCM */
+ deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
+ } else /*Do a temporary dummy decoding and check that the envelope values are
+ within limits */
+ {
+ if (h_prev_data->frameErrorFlag) {
+ timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
+ if (h_sbr_data->coupling != h_prev_data->coupling) {
+ /*
+ Coupling mode has changed during concealment.
+ The stored energy levels need to be converted.
+ */
+ for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
+ /* Former Level-Channel will be used for both channels */
+ if (h_prev_data->coupling == COUPLING_BAL)
+ h_prev_data->sfb_nrg_prev[i] = otherChannel->sfb_nrg_prev[i];
+ /* Former L/R will be combined as the new Level-Channel */
+ else if (h_sbr_data->coupling == COUPLING_LEVEL)
+ h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
+ otherChannel->sfb_nrg_prev[i]) >>
+ 1;
+ else if (h_sbr_data->coupling == COUPLING_BAL)
+ h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
}
}
- FDKmemcpy (tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
- MAX_FREQ_COEFFS * sizeof (FIXP_SGL));
+ }
+ FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
- deltaToLinearPcmEnvelopeDecoding (hHeaderData, h_sbr_data, h_prev_data);
+ deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
- fFrameError = checkEnvelopeData (hHeaderData, h_sbr_data, h_prev_data);
+ fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
- if (fFrameError)
- {
- hHeaderData->frameErrorFlag = 1;
- FDKmemcpy (h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
- MAX_FREQ_COEFFS * sizeof (FIXP_SGL));
- decodeEnvelope (hHeaderData, h_sbr_data, h_prev_data, otherChannel);
- return;
- }
+ if (fFrameError) {
+ hHeaderData->frameErrorFlag = 1;
+ FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+ decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
+ return;
}
+ }
- requantizeEnvelopeData (h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
+ requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
hHeaderData->frameErrorFlag = fFrameError;
}
-
/*!
\brief Verify that envelope energies are within the allowed range
\return 0 if all is fine, 1 if an envelope value was too high
*/
-static int
-checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
- )
-{
+static int checkEnvelopeData(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
+) {
FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
- int i = 0, errorFlag = 0;
- FIXP_SGL sbr_max_energy =
- (h_sbr_data->ampResolutionCurrentFrame == 1) ? SBR_MAX_ENERGY : (SBR_MAX_ENERGY << 1);
+ int i = 0, errorFlag = 0;
+ FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
+ ? SBR_MAX_ENERGY
+ : (SBR_MAX_ENERGY << 1);
/*
Range check for current energies
@@ -561,7 +579,6 @@ checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d
return (errorFlag);
}
-
/*!
\brief Verify that the noise levels are within the allowed range
@@ -569,49 +586,55 @@ checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control d
When the noise-levels are being decoded, it is already too late for
concealment. Therefore the noise levels are simply limited here.
*/
-static void
-limitNoiseLevels(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */
+static void limitNoiseLevels(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */
{
int i;
int nNfb = hHeaderData->freqBandData.nNfb;
- /*
- Set range limits. The exact values depend on the coupling mode.
- However this limitation is primarily intended to avoid unlimited
- accumulation of the delta-coded noise levels.
- */
- #define lowerLimit ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
- #define upperLimit ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
+/*
+ Set range limits. The exact values depend on the coupling mode.
+ However this limitation is primarily intended to avoid unlimited
+ accumulation of the delta-coded noise levels.
+*/
+#define lowerLimit \
+ ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
+#define upperLimit \
+ ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
/*
Range check for current noise levels
*/
for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
- h_sbr_data->sbrNoiseFloorLevel[i] = fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
- h_sbr_data->sbrNoiseFloorLevel[i] = fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
+ h_sbr_data->sbrNoiseFloorLevel[i] =
+ fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
+ h_sbr_data->sbrNoiseFloorLevel[i] =
+ fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
}
}
-
/*!
\brief Compensate for the wrong timing that might occur after a frame error.
*/
-static void
-timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to data of last frame */
+static void timeCompensateFirstEnvelope(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data) /*!< pointer to data of last frame */
{
int i, nScalefactors;
FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
- int estimatedStartPos = h_prev_data->stopPos - hHeaderData->numberTimeSlots;
+ int estimatedStartPos =
+ fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
int refLen, newLen, shift;
- FIXP_SGL deltaExp;
+ FIXP_SGL deltaExp;
/* Original length of first envelope according to bitstream */
refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
- /* Corrected length of first envelope (concealing can make the first envelope longer) */
+ /* Corrected length of first envelope (concealing can make the first envelope
+ * longer) */
newLen = pFrameInfo->borders[1] - estimatedStartPos;
if (newLen <= 0) {
@@ -625,7 +648,8 @@ timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static con
deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
/* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
- shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 + h_sbr_data->ampResolutionCurrentFrame - 3);
+ shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
+ h_sbr_data->ampResolutionCurrentFrame - 3);
deltaExp = deltaExp >> shift;
pFrameInfo->borders[0] = estimatedStartPos;
pFrameInfo->bordersNoise[0] = estimatedStartPos;
@@ -638,8 +662,6 @@ timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static con
}
}
-
-
/*!
\brief Convert each envelope value from logarithmic to linear domain
@@ -660,9 +682,8 @@ timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static con
The data is then used in calculateSbrEnvelope().
*/
-static void
-requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution)
-{
+static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
+ int ampResolution) {
int i;
FIXP_SGL mantissa;
int ampShift = 1 - ampResolution;
@@ -672,16 +693,15 @@ requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution)
the initialization of this array has to be adapted!
*/
#if ENV_EXP_FRACT
- static const FIXP_SGL pow2[ENV_EXP_FRACT] =
- {
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
- FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
+ static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
};
int bit, mask;
@@ -698,13 +718,13 @@ requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution)
/* Amplify mantissa according to the fractional part of the
exponent (result will be between 0.500000 and 0.999999)
*/
- mask = 1; /* begin with lowest bit of exponent */
+ mask = 1; /* begin with lowest bit of exponent */
- for ( bit=ENV_EXP_FRACT-1; bit>=0; bit-- ) {
+ for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
if (exponent & mask) {
/* The current bit of the exponent is set,
multiply mantissa with the corresponding factor: */
- mantissa = (FIXP_SGL)( (mantissa * pow2[bit]) << 1);
+ mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
}
/* Advance to next bit */
mask = mask << 1;
@@ -714,40 +734,43 @@ requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution)
exponent = exponent >> ENV_EXP_FRACT;
#else
- /* In case of the high amplitude resolution, 1 bit of the exponent gets lost by the shift.
- This will be compensated by a mantissa of 0.5*sqrt(2) instead of 0.5 if that bit is 1. */
- mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f) : FL2FXCONST_SGL(0.5f);
+ /* In case of the high amplitude resolution, 1 bit of the exponent gets lost
+ by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
+ instead of 0.5 if that bit is 1. */
+ mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
+ : FL2FXCONST_SGL(0.5f);
exponent = exponent >> ampShift;
#endif
/*
- Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by 1).
- Multiply by L=nChannels=64 by increasing exponent by another 6.
+ Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
+ 1). Multiply by L=nChannels=64 by increasing exponent by another 6.
=> Increase exponent by 7
*/
exponent += 7 + NRG_EXP_OFFSET;
/* Combine mantissa and exponent and write back the result */
- h_sbr_data->iEnvelope[i] = (FIXP_SGL)(((LONG)mantissa & MASK_M) | (exponent & MASK_E));
-
+ h_sbr_data->iEnvelope[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
}
}
-
/*!
\brief Build new reference energies from old ones and delta coded data
*/
-static void
-deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
+static void deltaToLinearPcmEnvelopeDecoding(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
{
int i, domain, no_of_bands, band, freqRes;
FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
- int offset = 2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
+ int offset =
+ 2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
domain = h_sbr_data->domain_vec[i];
@@ -759,22 +782,18 @@ deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< S
FDK_ASSERT(no_of_bands < (64));
- if (domain == 0)
- {
+ if (domain == 0) {
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
ptr_nrg++;
- for (band = 1; band < no_of_bands; band++)
- {
- *ptr_nrg = *ptr_nrg + *(ptr_nrg-1);
+ for (band = 1; band < no_of_bands; band++) {
+ *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
ptr_nrg++;
}
- }
- else
- {
- for (band = 0; band < no_of_bands; band++)
- {
- *ptr_nrg = *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
+ } else {
+ for (band = 0; band < no_of_bands; band++) {
+ *ptr_nrg =
+ *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
ptr_nrg++;
}
@@ -782,14 +801,13 @@ deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< S
}
}
-
/*!
\brief Build new noise levels from old ones and delta coded data
*/
-static void
-decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
- HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
- HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
+static void decodeNoiseFloorlevels(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
{
int i;
int nNfb = hHeaderData->freqBandData.nNfb;
@@ -803,8 +821,7 @@ decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static cont
noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
}
- }
- else {
+ } else {
for (i = 0; i < nNfb; i++) {
h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
}
@@ -816,14 +833,14 @@ decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static cont
if (nNoiseFloorEnvelopes > 1) {
if (h_sbr_data->domain_vec_noise[1] == 0) {
FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
- for (i = nNfb + 1; i < 2*nNfb; i++) {
+ for (i = nNfb + 1; i < 2 * nNfb; i++) {
noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
}
- }
- else {
+ } else {
for (i = 0; i < nNfb; i++) {
- h_sbr_data->sbrNoiseFloorLevel[i + nNfb] += h_sbr_data->sbrNoiseFloorLevel[i];
+ h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
+ h_sbr_data->sbrNoiseFloorLevel[i];
}
}
}
@@ -832,21 +849,20 @@ decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static cont
/* Update prevNoiseLevel with the last noise envelope */
for (i = 0; i < nNfb; i++)
- h_prev_data->prevNoiseLevel[i] = h_sbr_data->sbrNoiseFloorLevel[i + nNfb*(nNoiseFloorEnvelopes-1)];
-
+ h_prev_data->prevNoiseLevel[i] =
+ h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
/* Requantize the noise floor levels in COUPLING_OFF-mode */
if (!h_sbr_data->coupling) {
int nf_e;
- for (i = 0; i < nNoiseFloorEnvelopes*nNfb; i++) {
+ for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
/* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
h_sbr_data->sbrNoiseFloorLevel[i] =
- (FIXP_SGL)( ((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
- (nf_e & MASK_E) ); /* exponent */
-
+ (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
+ (nf_e & MASK_E)); /* exponent */
}
}
}