diff options
author | android-build-team Robot <android-build-team-robot@google.com> | 2018-05-01 07:21:40 +0000 |
---|---|---|
committer | android-build-team Robot <android-build-team-robot@google.com> | 2018-05-01 07:21:40 +0000 |
commit | fa5ad13b3761cc0d4cfe3780944eed80fb52d842 (patch) | |
tree | 01c0a19f2735e8b5d2407555fe992d4230d089eb /libSBRdec/src/HFgen_preFlat.cpp | |
parent | b0bd68ec6214f10cbb619e4919bb3e75b3f6d148 (diff) | |
parent | 6cfabd35363c3ef5e3b209b867169a500b3ccc3c (diff) | |
download | fdk-aac-fa5ad13b3761cc0d4cfe3780944eed80fb52d842.tar.gz fdk-aac-fa5ad13b3761cc0d4cfe3780944eed80fb52d842.tar.bz2 fdk-aac-fa5ad13b3761cc0d4cfe3780944eed80fb52d842.zip |
Snap for 4754571 from 6cfabd35363c3ef5e3b209b867169a500b3ccc3c to pi-release
Change-Id: I130760e1e9a6c00340ae89ffd327f340c236716e
Diffstat (limited to 'libSBRdec/src/HFgen_preFlat.cpp')
-rw-r--r-- | libSBRdec/src/HFgen_preFlat.cpp | 993 |
1 files changed, 993 insertions, 0 deletions
diff --git a/libSBRdec/src/HFgen_preFlat.cpp b/libSBRdec/src/HFgen_preFlat.cpp new file mode 100644 index 0000000..96adbb9 --- /dev/null +++ b/libSBRdec/src/HFgen_preFlat.cpp @@ -0,0 +1,993 @@ +/* ----------------------------------------------------------------------------- +Software License for The Fraunhofer FDK AAC Codec Library for Android + +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. + + 1. INTRODUCTION +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. + +2. COPYRIGHT LICENSE + +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: + +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. + +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your +modifications thereto to recipients of copies in binary form. + +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. + +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. + +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." + +3. NO PATENT LICENSE + +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. + +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. + +4. DISCLAIMER + +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. + +5. CONTACT INFORMATION + +Fraunhofer Institute for Integrated Circuits IIS +Attention: Audio and Multimedia Departments - FDK AAC LL +Am Wolfsmantel 33 +91058 Erlangen, Germany + +www.iis.fraunhofer.de/amm +amm-info@iis.fraunhofer.de +----------------------------------------------------------------------------- */ + +/**************************** SBR decoder library ****************************** + + Author(s): Oliver Moser, Manuel Jander, Matthias Hildenbrand + + Description: QMF frequency pre-whitening for SBR. + In the documentation the terms "scale factor" and "exponent" + mean the same. Variables containing such information have + the suffix "_sf". + +*******************************************************************************/ + +#include "HFgen_preFlat.h" + +#define POLY_ORDER 3 +#define MAXLOWBANDS 32 +#define LOG10FAC 0.752574989159953f /* == 10/log2(10) * 2^-2 */ +#define LOG10FAC_INV 0.664385618977472f /* == log2(10)/20 * 2^2 */ + +#define FIXP_CHB FIXP_SGL /* STB sinus Tab used in transformation */ +#define CHC(a) (FX_DBL2FXCONST_SGL(a)) +#define FX_CHB2FX_DBL(a) FX_SGL2FX_DBL(a) + +typedef struct backsubst_data { + FIXP_CHB Lnorm1d[3]; /*!< Normalized L matrix */ + SCHAR Lnorm1d_sf[3]; + FIXP_CHB Lnormii + [3]; /*!< The diagonal data points [i][i] of the normalized L matrix */ + SCHAR Lnormii_sf[3]; + FIXP_CHB Bmul0 + [4]; /*!< To normalize L*x=b, Bmul0 is what we need to multiply b with. */ + SCHAR Bmul0_sf[4]; + FIXP_CHB LnormInv1d[6]; /*!< Normalized inverted L matrix (L') */ + SCHAR LnormInv1d_sf[6]; + FIXP_CHB + Bmul1[4]; /*!< To normalize L'*x=b, Bmul1 is what we need to multiply b + with. */ + SCHAR Bmul1_sf[4]; +} backsubst_data; + +/* for each element n do, f(n) = trunc(log2(n))+1 */ +const UCHAR getLog2[32] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; + +/** \def BSD_IDX_OFFSET + * + * bsd[] begins at index 0 with data for numBands=5. The correct bsd[] is + * indexed like bsd[numBands-BSD_IDX_OFFSET]. + */ +#define BSD_IDX_OFFSET 5 + +#define N_NUMBANDS \ + MAXLOWBANDS - BSD_IDX_OFFSET + \ + 1 /*!< Number of backsubst_data elements in bsd */ + +const backsubst_data bsd[N_NUMBANDS] = { + { + /* numBands=5 */ + {CHC(0x66c85a52), CHC(0x4278e587), CHC(0x697dcaff)}, + {-1, 0, 0}, + {CHC(0x66a61789), CHC(0x5253b8e3), CHC(0x5addad81)}, + {3, 4, 1}, + {CHC(0x7525ee90), CHC(0x6e2a1210), CHC(0x6523bb40), CHC(0x59822ead)}, + {-6, -4, -2, 0}, + {CHC(0x609e4cad), CHC(0x59c7e312), CHC(0x681eecac), CHC(0x440ea893), + CHC(0x4a214bb3), CHC(0x53c345a1)}, + {1, 0, -1, -1, -3, -5}, + {CHC(0x7525ee90), CHC(0x58587936), CHC(0x410d0b38), CHC(0x7f1519d6)}, + {-6, -1, 2, 0}, + }, + { + /* numBands=6 */ + {CHC(0x68943285), CHC(0x4841d2c3), CHC(0x6a6214c7)}, + {-1, 0, 0}, + {CHC(0x63c5923e), CHC(0x4e906e18), CHC(0x6285af8a)}, + {3, 4, 1}, + {CHC(0x7263940b), CHC(0x424a69a5), CHC(0x4ae8383a), CHC(0x517b7730)}, + {-7, -4, -2, 0}, + {CHC(0x518aee5f), CHC(0x4823a096), CHC(0x43764a39), CHC(0x6e6faf23), + CHC(0x61bba44f), CHC(0x59d8b132)}, + {1, 0, -1, -2, -4, -6}, + {CHC(0x7263940b), CHC(0x6757bff2), CHC(0x5bf40fe0), CHC(0x7d6f4292)}, + {-7, -2, 1, 0}, + }, + { + /* numBands=7 */ + {CHC(0x699b4c3c), CHC(0x4b8b702f), CHC(0x6ae51a4f)}, + {-1, 0, 0}, + {CHC(0x623a7f49), CHC(0x4ccc91fc), CHC(0x68f048dd)}, + {3, 4, 1}, + {CHC(0x7e6ebe18), CHC(0x5701daf2), CHC(0x74a8198b), CHC(0x4b399aa1)}, + {-8, -5, -3, 0}, + {CHC(0x464a64a6), CHC(0x78e42633), CHC(0x5ee174ba), CHC(0x5d0008c8), + CHC(0x455cff0f), CHC(0x6b9100e7)}, + {1, -1, -2, -2, -4, -7}, + {CHC(0x7e6ebe18), CHC(0x42c52efe), CHC(0x45fe401f), CHC(0x7b5808ef)}, + {-8, -2, 1, 0}, + }, + { + /* numBands=8 */ + {CHC(0x6a3fd9b4), CHC(0x4d99823f), CHC(0x6b372a94)}, + {-1, 0, 0}, + {CHC(0x614c6ef7), CHC(0x4bd06699), CHC(0x6e59cfca)}, + {3, 4, 1}, + {CHC(0x4c389cc5), CHC(0x79686681), CHC(0x5e2544c2), CHC(0x46305b43)}, + {-8, -6, -3, 0}, + {CHC(0x7b4ca7c6), CHC(0x68270ac5), CHC(0x467c644c), CHC(0x505c1b0f), + CHC(0x67a14778), CHC(0x45801767)}, + {0, -1, -2, -2, -5, -7}, + {CHC(0x4c389cc5), CHC(0x5c499ceb), CHC(0x6f863c9f), CHC(0x79059bfc)}, + {-8, -3, 0, 0}, + }, + { + /* numBands=9 */ + {CHC(0x6aad9988), CHC(0x4ef8ac18), CHC(0x6b6df116)}, + {-1, 0, 0}, + {CHC(0x60b159b0), CHC(0x4b33f772), CHC(0x72f5573d)}, + {3, 4, 1}, + {CHC(0x6206cb18), CHC(0x58a7d8dc), CHC(0x4e0b2d0b), CHC(0x4207ad84)}, + {-9, -6, -3, 0}, + {CHC(0x6dadadae), CHC(0x5b8b2cfc), CHC(0x6cf61db2), CHC(0x46c3c90b), + CHC(0x506314ea), CHC(0x5f034acd)}, + {0, -1, -3, -2, -5, -8}, + {CHC(0x6206cb18), CHC(0x42f8b8de), CHC(0x5bb4776f), CHC(0x769acc79)}, + {-9, -3, 0, 0}, + }, + { + /* numBands=10 */ + {CHC(0x6afa7252), CHC(0x4feed3ed), CHC(0x6b94504d)}, + {-1, 0, 0}, + {CHC(0x60467899), CHC(0x4acbafba), CHC(0x76eb327f)}, + {3, 4, 1}, + {CHC(0x42415b15), CHC(0x431080da), CHC(0x420f1c32), CHC(0x7d0c1aeb)}, + {-9, -6, -3, -1}, + {CHC(0x62b2c7a4), CHC(0x51b040a6), CHC(0x56caddb4), CHC(0x7e74a2c8), + CHC(0x4030adf5), CHC(0x43d1dc4f)}, + {0, -1, -3, -3, -5, -8}, + {CHC(0x42415b15), CHC(0x64e299b3), CHC(0x4d33b5e8), CHC(0x742cee5f)}, + {-9, -4, 0, 0}, + }, + { + /* numBands=11 */ + {CHC(0x6b3258bb), CHC(0x50a21233), CHC(0x6bb03c19)}, + {-1, 0, 0}, + {CHC(0x5ff997c6), CHC(0x4a82706e), CHC(0x7a5aae36)}, + {3, 4, 1}, + {CHC(0x5d2fb4fb), CHC(0x685bddd8), CHC(0x71b5e983), CHC(0x7708c90b)}, + {-10, -7, -4, -1}, + {CHC(0x59aceea2), CHC(0x49c428a0), CHC(0x46ca5527), CHC(0x724be884), + CHC(0x68e586da), CHC(0x643485b6)}, + {0, -1, -3, -3, -6, -9}, + {CHC(0x5d2fb4fb), CHC(0x4e3fad1a), CHC(0x42310ba2), CHC(0x71c8b3ce)}, + {-10, -4, 0, 0}, + }, + { + /* numBands=12 */ + {CHC(0x6b5c4726), CHC(0x5128a4a8), CHC(0x6bc52ee1)}, + {-1, 0, 0}, + {CHC(0x5fc06618), CHC(0x4a4ce559), CHC(0x7d5c16e9)}, + {3, 4, 1}, + {CHC(0x43af8342), CHC(0x531533d3), CHC(0x633660a6), CHC(0x71ce6052)}, + {-10, -7, -4, -1}, + {CHC(0x522373d7), CHC(0x434150cb), CHC(0x75b58afc), CHC(0x68474f2d), + CHC(0x575348a5), CHC(0x4c20973f)}, + {0, -1, -4, -3, -6, -9}, + {CHC(0x43af8342), CHC(0x7c4d3d11), CHC(0x732e13db), CHC(0x6f756ac4)}, + {-10, -5, -1, 0}, + }, + { + /* numBands=13 */ + {CHC(0x6b7c8953), CHC(0x51903fcd), CHC(0x6bd54d2e)}, + {-1, 0, 0}, + {CHC(0x5f94abf0), CHC(0x4a2480fa), CHC(0x40013553)}, + {3, 4, 2}, + {CHC(0x6501236e), CHC(0x436b9c4e), CHC(0x578d7881), CHC(0x6d34f92e)}, + {-11, -7, -4, -1}, + {CHC(0x4bc0e2b2), CHC(0x7b9d12ac), CHC(0x636c1c1b), CHC(0x5fe15c2b), + CHC(0x49d54879), CHC(0x7662cfa5)}, + {0, -2, -4, -3, -6, -10}, + {CHC(0x6501236e), CHC(0x64b059fe), CHC(0x656d8359), CHC(0x6d370900)}, + {-11, -5, -1, 0}, + }, + { + /* numBands=14 */ + {CHC(0x6b95e276), CHC(0x51e1b637), CHC(0x6be1f7ed)}, + {-1, 0, 0}, + {CHC(0x5f727a1c), CHC(0x4a053e9c), CHC(0x412e528c)}, + {3, 4, 2}, + {CHC(0x4d178bd4), CHC(0x6f33b4e8), CHC(0x4e028f7f), CHC(0x691ee104)}, + {-11, -8, -4, -1}, + {CHC(0x46473d3f), CHC(0x725bd0a6), CHC(0x55199885), CHC(0x58bcc56b), + CHC(0x7e7e6288), CHC(0x5ddef6eb)}, + {0, -2, -4, -3, -7, -10}, + {CHC(0x4d178bd4), CHC(0x52ebd467), CHC(0x5a395a6e), CHC(0x6b0f724f)}, + {-11, -5, -1, 0}, + }, + { + /* numBands=15 */ + {CHC(0x6baa2a22), CHC(0x5222eb91), CHC(0x6bec1a86)}, + {-1, 0, 0}, + {CHC(0x5f57393b), CHC(0x49ec8934), CHC(0x423b5b58)}, + {3, 4, 2}, + {CHC(0x77fd2486), CHC(0x5cfbdf2c), CHC(0x46153bd1), CHC(0x65757ed9)}, + {-12, -8, -4, -1}, + {CHC(0x41888ee6), CHC(0x6a661db3), CHC(0x49abc8c8), CHC(0x52965848), + CHC(0x6d9301b7), CHC(0x4bb04721)}, + {0, -2, -4, -3, -7, -10}, + {CHC(0x77fd2486), CHC(0x45424c68), CHC(0x50f33cc6), CHC(0x68ff43f0)}, + {-12, -5, -1, 0}, + }, + { + /* numBands=16 */ + {CHC(0x6bbaa499), CHC(0x5257ed94), CHC(0x6bf456e4)}, + {-1, 0, 0}, + {CHC(0x5f412594), CHC(0x49d8a766), CHC(0x432d1dbd)}, + {3, 4, 2}, + {CHC(0x5ef5cfde), CHC(0x4eafcd2d), CHC(0x7ed36893), CHC(0x62274b45)}, + {-12, -8, -5, -1}, + {CHC(0x7ac438f5), CHC(0x637aab21), CHC(0x4067617a), CHC(0x4d3c6ec7), + CHC(0x5fd6e0dd), CHC(0x7bd5f024)}, + {-1, -2, -4, -3, -7, -11}, + {CHC(0x5ef5cfde), CHC(0x751d0d4f), CHC(0x492b3c41), CHC(0x67065409)}, + {-12, -6, -1, 0}, + }, + { + /* numBands=17 */ + {CHC(0x6bc836c9), CHC(0x5283997e), CHC(0x6bfb1f5e)}, + {-1, 0, 0}, + {CHC(0x5f2f02b6), CHC(0x49c868e9), CHC(0x44078151)}, + {3, 4, 2}, + {CHC(0x4c43b65a), CHC(0x4349dcf6), CHC(0x73799e2d), CHC(0x5f267274)}, + {-12, -8, -5, -1}, + {CHC(0x73726394), CHC(0x5d68511a), CHC(0x7191bbcc), CHC(0x48898c70), + CHC(0x548956e1), CHC(0x66981ce8)}, + {-1, -2, -5, -3, -7, -11}, + {CHC(0x4c43b65a), CHC(0x64131116), CHC(0x429028e2), CHC(0x65240211)}, + {-12, -6, -1, 0}, + }, + { + /* numBands=18 */ + {CHC(0x6bd3860d), CHC(0x52a80156), CHC(0x6c00c68d)}, + {-1, 0, 0}, + {CHC(0x5f1fed86), CHC(0x49baf636), CHC(0x44cdb9dc)}, + {3, 4, 2}, + {CHC(0x7c189389), CHC(0x742666d8), CHC(0x69b8c776), CHC(0x5c67e27d)}, + {-13, -9, -5, -1}, + {CHC(0x6cf1ea76), CHC(0x58095703), CHC(0x64e351a9), CHC(0x4460da90), + CHC(0x4b1f8083), CHC(0x55f2d3e1)}, + {-1, -2, -5, -3, -7, -11}, + {CHC(0x7c189389), CHC(0x5651792a), CHC(0x79cb9b3d), CHC(0x635769c0)}, + {-13, -6, -2, 0}, + }, + { + /* numBands=19 */ + {CHC(0x6bdd0c40), CHC(0x52c6abf6), CHC(0x6c058950)}, + {-1, 0, 0}, + {CHC(0x5f133f88), CHC(0x49afb305), CHC(0x45826d73)}, + {3, 4, 2}, + {CHC(0x6621a164), CHC(0x6512528e), CHC(0x61449fc8), CHC(0x59e2a0c0)}, + {-13, -9, -5, -1}, + {CHC(0x6721cadb), CHC(0x53404cd4), CHC(0x5a389e91), CHC(0x40abcbd2), + CHC(0x43332f01), CHC(0x48b82e46)}, + {-1, -2, -5, -3, -7, -11}, + {CHC(0x6621a164), CHC(0x4b12cc28), CHC(0x6ffd4df8), CHC(0x619f835e)}, + {-13, -6, -2, 0}, + }, + { + /* numBands=20 */ + {CHC(0x6be524c5), CHC(0x52e0beb3), CHC(0x6c099552)}, + {-1, 0, 0}, + {CHC(0x5f087c68), CHC(0x49a62bb5), CHC(0x4627d175)}, + {3, 4, 2}, + {CHC(0x54ec6afe), CHC(0x58991a42), CHC(0x59e23e8c), CHC(0x578f4ef4)}, + {-13, -9, -5, -1}, + {CHC(0x61e78f6f), CHC(0x4ef5e1e9), CHC(0x5129c3b8), CHC(0x7ab0f7b2), + CHC(0x78efb076), CHC(0x7c2567ea)}, + {-1, -2, -5, -4, -8, -12}, + {CHC(0x54ec6afe), CHC(0x41c7812c), CHC(0x676f6f8d), CHC(0x5ffb383f)}, + {-13, -6, -2, 0}, + }, + { + /* numBands=21 */ + {CHC(0x6bec1542), CHC(0x52f71929), CHC(0x6c0d0d5e)}, + {-1, 0, 0}, + {CHC(0x5eff45c5), CHC(0x499e092d), CHC(0x46bfc0c9)}, + {3, 4, 2}, + {CHC(0x47457a78), CHC(0x4e2d99b3), CHC(0x53637ea5), CHC(0x5567d0e9)}, + {-13, -9, -5, -1}, + {CHC(0x5d2dc61b), CHC(0x4b1760c8), CHC(0x4967cf39), CHC(0x74b113d8), + CHC(0x6d6676b6), CHC(0x6ad114e9)}, + {-1, -2, -5, -4, -8, -12}, + {CHC(0x47457a78), CHC(0x740accaa), CHC(0x5feb6609), CHC(0x5e696f95)}, + {-13, -7, -2, 0}, + }, + { + /* numBands=22 */ + {CHC(0x6bf21387), CHC(0x530a683c), CHC(0x6c100c59)}, + {-1, 0, 0}, + {CHC(0x5ef752ea), CHC(0x499708c6), CHC(0x474bcd1b)}, + {3, 4, 2}, + {CHC(0x78a21ab7), CHC(0x45658aec), CHC(0x4da3c4fe), CHC(0x5367094b)}, + {-14, -9, -5, -1}, + {CHC(0x58e2df6a), CHC(0x4795990e), CHC(0x42b5e0f7), CHC(0x6f408c64), + CHC(0x6370bebf), CHC(0x5c91ca85)}, + {-1, -2, -5, -4, -8, -12}, + {CHC(0x78a21ab7), CHC(0x66f951d6), CHC(0x594605bb), CHC(0x5ce91657)}, + {-14, -7, -2, 0}, + }, + { + /* numBands=23 */ + {CHC(0x6bf749b2), CHC(0x531b3348), CHC(0x6c12a750)}, + {-1, 0, 0}, + {CHC(0x5ef06b17), CHC(0x4990f6c9), CHC(0x47cd4c5b)}, + {3, 4, 2}, + {CHC(0x66dede36), CHC(0x7bdf90a9), CHC(0x4885b2b9), CHC(0x5188a6b7)}, + {-14, -10, -5, -1}, + {CHC(0x54f85812), CHC(0x446414ae), CHC(0x79c8d519), CHC(0x6a4c2f31), + CHC(0x5ac8325f), CHC(0x50bf9200)}, + {-1, -2, -6, -4, -8, -12}, + {CHC(0x66dede36), CHC(0x5be0d90e), CHC(0x535cc453), CHC(0x5b7923f0)}, + {-14, -7, -2, 0}, + }, + { + /* numBands=24 */ + {CHC(0x6bfbd91d), CHC(0x5329e580), CHC(0x6c14eeed)}, + {-1, 0, 0}, + {CHC(0x5eea6179), CHC(0x498baa90), CHC(0x4845635d)}, + {3, 4, 2}, + {CHC(0x58559b7e), CHC(0x6f1b231f), CHC(0x43f1789b), CHC(0x4fc8fcb8)}, + {-14, -10, -5, -1}, + {CHC(0x51621775), CHC(0x417881a3), CHC(0x6f9ba9b6), CHC(0x65c412b2), + CHC(0x53352c61), CHC(0x46db9caf)}, + {-1, -2, -6, -4, -8, -12}, + {CHC(0x58559b7e), CHC(0x52636003), CHC(0x4e13b316), CHC(0x5a189cdf)}, + {-14, -7, -2, 0}, + }, + { + /* numBands=25 */ + {CHC(0x6bffdc73), CHC(0x5336d4af), CHC(0x6c16f084)}, + {-1, 0, 0}, + {CHC(0x5ee51249), CHC(0x498703cc), CHC(0x48b50e4f)}, + {3, 4, 2}, + {CHC(0x4c5616cf), CHC(0x641b9fad), CHC(0x7fa735e0), CHC(0x4e24e57a)}, + {-14, -10, -6, -1}, + {CHC(0x4e15f47a), CHC(0x7d9481d6), CHC(0x66a82f8a), CHC(0x619ae971), + CHC(0x4c8b2f5f), CHC(0x7d09ec11)}, + {-1, -3, -6, -4, -8, -13}, + {CHC(0x4c5616cf), CHC(0x4a3770fb), CHC(0x495402de), CHC(0x58c693fa)}, + {-14, -7, -2, 0}, + }, + { + /* numBands=26 */ + {CHC(0x6c036943), CHC(0x53424625), CHC(0x6c18b6dc)}, + {-1, 0, 0}, + {CHC(0x5ee060aa), CHC(0x4982e88a), CHC(0x491d277f)}, + {3, 4, 2}, + {CHC(0x425ada5b), CHC(0x5a9368ac), CHC(0x78380a42), CHC(0x4c99aa05)}, + {-14, -10, -6, -1}, + {CHC(0x4b0b569c), CHC(0x78a420da), CHC(0x5ebdf203), CHC(0x5dc57e63), + CHC(0x46a650ff), CHC(0x6ee13fb8)}, + {-1, -3, -6, -4, -8, -13}, + {CHC(0x425ada5b), CHC(0x4323073c), CHC(0x450ae92b), CHC(0x57822ad5)}, + {-14, -7, -2, 0}, + }, + { + /* numBands=27 */ + {CHC(0x6c06911a), CHC(0x534c7261), CHC(0x6c1a4aba)}, + {-1, 0, 0}, + {CHC(0x5edc3524), CHC(0x497f43c0), CHC(0x497e6cd8)}, + {3, 4, 2}, + {CHC(0x73fb550e), CHC(0x5244894f), CHC(0x717aad78), CHC(0x4b24ef6c)}, + {-15, -10, -6, -1}, + {CHC(0x483aebe4), CHC(0x74139116), CHC(0x57b58037), CHC(0x5a3a4f3c), + CHC(0x416950fe), CHC(0x62c7f4f2)}, + {-1, -3, -6, -4, -8, -13}, + {CHC(0x73fb550e), CHC(0x79efb994), CHC(0x4128cab7), CHC(0x564a919a)}, + {-15, -8, -2, 0}, + }, + { + /* numBands=28 */ + {CHC(0x6c096264), CHC(0x535587cd), CHC(0x6c1bb355)}, + {-1, 0, 0}, + {CHC(0x5ed87c76), CHC(0x497c0439), CHC(0x49d98452)}, + {3, 4, 2}, + {CHC(0x65dec5bf), CHC(0x4afd1ba3), CHC(0x6b58b4b3), CHC(0x49c4a7b0)}, + {-15, -10, -6, -1}, + {CHC(0x459e6eb1), CHC(0x6fd850b7), CHC(0x516e7be9), CHC(0x56f13d05), + CHC(0x79785594), CHC(0x58617de7)}, + {-1, -3, -6, -4, -9, -13}, + {CHC(0x65dec5bf), CHC(0x6f2168aa), CHC(0x7b41310f), CHC(0x551f0692)}, + {-15, -8, -3, 0}, + }, + { + /* numBands=29 */ + {CHC(0x6c0be913), CHC(0x535dacd5), CHC(0x6c1cf6a3)}, + {-1, 0, 0}, + {CHC(0x5ed526b4), CHC(0x49791bc5), CHC(0x4a2eff99)}, + {3, 4, 2}, + {CHC(0x59e44afe), CHC(0x44949ada), CHC(0x65bf36f5), CHC(0x487705a0)}, + {-15, -10, -6, -1}, + {CHC(0x43307779), CHC(0x6be959c4), CHC(0x4bce2122), CHC(0x53e34d89), + CHC(0x7115ff82), CHC(0x4f6421a1)}, + {-1, -3, -6, -4, -9, -13}, + {CHC(0x59e44afe), CHC(0x659eab7d), CHC(0x74cea459), CHC(0x53fed574)}, + {-15, -8, -3, 0}, + }, + { + /* numBands=30 */ + {CHC(0x6c0e2f17), CHC(0x53650181), CHC(0x6c1e199d)}, + {-1, 0, 0}, + {CHC(0x5ed2269f), CHC(0x49767e9e), CHC(0x4a7f5f0b)}, + {3, 4, 2}, + {CHC(0x4faa4ae6), CHC(0x7dd3bf11), CHC(0x609e2732), CHC(0x473a72e9)}, + {-15, -11, -6, -1}, + {CHC(0x40ec57c6), CHC(0x683ee147), CHC(0x46be261d), CHC(0x510a7983), + CHC(0x698a84cb), CHC(0x4794a927)}, + {-1, -3, -6, -4, -9, -13}, + {CHC(0x4faa4ae6), CHC(0x5d3615ad), CHC(0x6ee74773), CHC(0x52e956a1)}, + {-15, -8, -3, 0}, + }, + { + /* numBands=31 */ + {CHC(0x6c103cc9), CHC(0x536ba0ac), CHC(0x6c1f2070)}, + {-1, 0, 0}, + {CHC(0x5ecf711e), CHC(0x497422ea), CHC(0x4acb1438)}, + {3, 4, 2}, + {CHC(0x46e322ad), CHC(0x73c32f3c), CHC(0x5be7d172), CHC(0x460d8800)}, + {-15, -11, -6, -1}, + {CHC(0x7d9bf8ad), CHC(0x64d22351), CHC(0x422bdc81), CHC(0x4e6184aa), + CHC(0x62ba2375), CHC(0x40c325de)}, + {-2, -3, -6, -4, -9, -13}, + {CHC(0x46e322ad), CHC(0x55bef2a3), CHC(0x697b3135), CHC(0x51ddee4d)}, + {-15, -8, -3, 0}, + }, + { + // numBands=32 + {CHC(0x6c121933), CHC(0x5371a104), CHC(0x6c200ea0)}, + {-1, 0, 0}, + {CHC(0x5eccfcd3), CHC(0x49720060), CHC(0x4b1283f0)}, + {3, 4, 2}, + {CHC(0x7ea12a52), CHC(0x6aca3303), CHC(0x579072bf), CHC(0x44ef056e)}, + {-16, -11, -6, -1}, + {CHC(0x79a3a9ab), CHC(0x619d38fc), CHC(0x7c0f0734), CHC(0x4be3dd5d), + CHC(0x5c8d7163), CHC(0x7591065f)}, + {-2, -3, -7, -4, -9, -14}, + {CHC(0x7ea12a52), CHC(0x4f1782a6), CHC(0x647cbcb2), CHC(0x50dc0bb1)}, + {-16, -8, -3, 0}, + }, +}; + +/** \def SUM_SAFETY + * + * SUM_SAFTEY defines the bits needed to right-shift every summand in + * order to be overflow-safe. In the two backsubst functions we sum up 4 + * values. Since one of which is definitely not MAXVAL_DBL (the L[x][y]), + * we spare just 2 safety bits instead of 3. + */ +#define SUM_SAFETY 2 + +/** + * \brief Solves L*x=b via backsubstitution according to the following + * structure: + * + * x[0] = b[0]; + * x[1] = (b[1] - x[0]) / L[1][1]; + * x[2] = (b[2] - x[1]*L[2][1] - x[0]) / L[2][2]; + * x[3] = (b[3] - x[2]*L[3][2] - x[1]*L[3][1] - x[0]) / L[3][3]; + * + * \param[in] numBands SBR crossover band index + * \param[in] b the b in L*x=b (one-dimensional) + * \param[out] x output polynomial coefficients (mantissa) + * \param[out] x_sf exponents of x[] + */ +static void backsubst_fw(const int numBands, const FIXP_DBL *const b, + FIXP_DBL *RESTRICT x, int *RESTRICT x_sf) { + int i, k; + int m; /* the trip counter that indexes incrementally through Lnorm1d[] */ + + const FIXP_CHB *RESTRICT pLnorm1d = bsd[numBands - BSD_IDX_OFFSET].Lnorm1d; + const SCHAR *RESTRICT pLnorm1d_sf = bsd[numBands - BSD_IDX_OFFSET].Lnorm1d_sf; + const FIXP_CHB *RESTRICT pLnormii = bsd[numBands - BSD_IDX_OFFSET].Lnormii; + const SCHAR *RESTRICT pLnormii_sf = bsd[numBands - BSD_IDX_OFFSET].Lnormii_sf; + + x[0] = b[0]; + + for (i = 1, m = 0; i <= POLY_ORDER; ++i) { + FIXP_DBL sum = b[i] >> SUM_SAFETY; + int sum_sf = x_sf[i]; + for (k = i - 1; k > 0; --k, ++m) { + int e; + FIXP_DBL mult = fMultNorm(FX_CHB2FX_DBL(pLnorm1d[m]), x[k], &e); + int mult_sf = pLnorm1d_sf[m] + x_sf[k] + e; + + /* check if the new summand mult has a different sf than the sum currently + * has */ + int diff = mult_sf - sum_sf; + + if (diff > 0) { + /* yes, and it requires the sum to be adjusted (scaled down) */ + sum >>= diff; + sum_sf = mult_sf; + } else if (diff < 0) { + /* yes, but here mult needs to be scaled down */ + mult >>= -diff; + } + sum -= (mult >> SUM_SAFETY); + } + + /* - x[0] */ + if (x_sf[0] > sum_sf) { + sum >>= (x_sf[0] - sum_sf); + sum_sf = x_sf[0]; + } + sum -= (x[0] >> (sum_sf - x_sf[0] + SUM_SAFETY)); + + /* instead of the division /L[i][i], we multiply by the inverse */ + int e; + x[i] = fMultNorm(sum, FX_CHB2FX_DBL(pLnormii[i - 1]), &e); + x_sf[i] = sum_sf + pLnormii_sf[i - 1] + e + SUM_SAFETY; + } +} + +/** + * \brief Solves L*x=b via backsubstitution according to the following + * structure: + * + * x[3] = b[3]; + * x[2] = b[2] - L[2][3]*x[3]; + * x[1] = b[1] - L[1][2]*x[2] - L[1][3]*x[3]; + * x[0] = b[0] - L[0][1]*x[1] - L[0][2]*x[2] - L[0][3]*x[3]; + * + * \param[in] numBands SBR crossover band index + * \param[in] b the b in L*x=b (one-dimensional) + * \param[out] x solution vector + * \param[out] x_sf exponents of x[] + */ +static void backsubst_bw(const int numBands, const FIXP_DBL *const b, + FIXP_DBL *RESTRICT x, int *RESTRICT x_sf) { + int i, k; + int m; /* the trip counter that indexes incrementally through LnormInv1d[] */ + + const FIXP_CHB *RESTRICT pLnormInv1d = + bsd[numBands - BSD_IDX_OFFSET].LnormInv1d; + const SCHAR *RESTRICT pLnormInv1d_sf = + bsd[numBands - BSD_IDX_OFFSET].LnormInv1d_sf; + + x[POLY_ORDER] = b[POLY_ORDER]; + + for (i = POLY_ORDER - 1, m = 0; i >= 0; i--) { + FIXP_DBL sum = b[i] >> SUM_SAFETY; + int sum_sf = x_sf[i]; /* sum's sf but disregarding SUM_SAFETY (added at the + iteration's end) */ + + for (k = i + 1; k <= POLY_ORDER; ++k, ++m) { + int e; + FIXP_DBL mult = fMultNorm(FX_CHB2FX_DBL(pLnormInv1d[m]), x[k], &e); + int mult_sf = pLnormInv1d_sf[m] + x_sf[k] + e; + + /* check if the new summand mult has a different sf than sum currently has + */ + int diff = mult_sf - sum_sf; + + if (diff > 0) { + /* yes, and it requires the sum v to be adjusted (scaled down) */ + sum >>= diff; + sum_sf = mult_sf; + } else if (diff < 0) { + /* yes, but here mult needs to be scaled down */ + mult >>= -diff; + } + + /* mult has now the same sf than what it is about to be added to. */ + /* scale mult down additionally so that building the sum is overflow-safe. + */ + sum -= (mult >> SUM_SAFETY); + } + + x_sf[i] = sum_sf + SUM_SAFETY; + x[i] = sum; + } +} + +/** + * \brief Solves a system of linear equations (L*x=b) with the Cholesky + * algorithm. + * + * \param[in] numBands SBR crossover band index + * \param[in,out] b input: vector b, output: solution vector p. + * \param[in,out] b_sf input: exponent of b; output: exponent of solution + * p. + */ +static void choleskySolve(const int numBands, FIXP_DBL *RESTRICT b, + int *RESTRICT b_sf) { + int i, e; + + const FIXP_CHB *RESTRICT pBmul0 = bsd[numBands - BSD_IDX_OFFSET].Bmul0; + const SCHAR *RESTRICT pBmul0_sf = bsd[numBands - BSD_IDX_OFFSET].Bmul0_sf; + const FIXP_CHB *RESTRICT pBmul1 = bsd[numBands - BSD_IDX_OFFSET].Bmul1; + const SCHAR *RESTRICT pBmul1_sf = bsd[numBands - BSD_IDX_OFFSET].Bmul1_sf; + + /* normalize b */ + FIXP_DBL bnormed[POLY_ORDER + 1]; + for (i = 0; i <= POLY_ORDER; ++i) { + bnormed[i] = fMultNorm(b[i], FX_CHB2FX_DBL(pBmul0[i]), &e); + b_sf[i] += pBmul0_sf[i] + e; + } + + backsubst_fw(numBands, bnormed, b, b_sf); + + /* normalize b again */ + for (i = 0; i <= POLY_ORDER; ++i) { + bnormed[i] = fMultNorm(b[i], FX_CHB2FX_DBL(pBmul1[i]), &e); + b_sf[i] += pBmul1_sf[i] + e; + } + + backsubst_bw(numBands, bnormed, b, b_sf); +} + +/** + * \brief Find polynomial approximation of vector y with implicit abscisas + * x=0,1,2,3..n-1 + * + * The problem (V^T * V * p = V^T * y) is solved with Cholesky. + * V is the Vandermode Matrix constructed with x = 0...n-1; + * A = V^T * V; b = V^T * y; + * + * \param[in] numBands SBR crossover band index (BSD_IDX_OFFSET <= numBands <= + * MAXLOWBANDS) + * \param[in] y input vector (mantissa) + * \param[in] y_sf exponents of y[] + * \param[out] p output polynomial coefficients (mantissa) + * \param[out] p_sf exponents of p[] + */ +static void polyfit(const int numBands, const FIXP_DBL *const y, const int y_sf, + FIXP_DBL *RESTRICT p, int *RESTRICT p_sf) { + int i, k; + LONG v[POLY_ORDER + 1]; + int sum_saftey = getLog2[numBands - 1]; + + FDK_ASSERT((numBands >= BSD_IDX_OFFSET) && (numBands <= MAXLOWBANDS)); + + /* construct vector b[] temporarily stored in array p[] */ + FDKmemclear(p, (POLY_ORDER + 1) * sizeof(FIXP_DBL)); + + /* p[] are the sums over n values and each p[i] has its own sf */ + for (i = 0; i <= POLY_ORDER; ++i) p_sf[i] = 1 - DFRACT_BITS; + + for (k = 0; k < numBands; k++) { + v[0] = (LONG)1; + for (i = 1; i <= POLY_ORDER; i++) { + v[i] = k * v[i - 1]; + } + + for (i = 0; i <= POLY_ORDER; i++) { + if (v[POLY_ORDER - i] != 0 && y[k] != FIXP_DBL(0)) { + int e; + FIXP_DBL mult = fMultNorm((FIXP_DBL)v[POLY_ORDER - i], y[k], &e); + int sf = DFRACT_BITS - 1 + y_sf + e; + + /* check if the new summand has a different sf than the sum p[i] + * currently has */ + int diff = sf - p_sf[i]; + + if (diff > 0) { + /* yes, and it requires the sum p[i] to be adjusted (scaled down) */ + p[i] >>= fMin(DFRACT_BITS - 1, diff); + p_sf[i] = sf; + } else if (diff < 0) { + /* yes, but here mult needs to be scaled down */ + mult >>= -diff; + } + + /* mult has now the same sf than what it is about to be added to. + scale mult down additionally so that building the sum is + overflow-safe. */ + p[i] += mult >> sum_saftey; + } + } + } + + p_sf[0] += sum_saftey; + p_sf[1] += sum_saftey; + p_sf[2] += sum_saftey; + p_sf[3] += sum_saftey; + + choleskySolve(numBands, p, p_sf); +} + +/** + * \brief Calculates the output of a POLY_ORDER-degree polynomial function + * with Horner scheme: + * + * y(x) = p3 + p2*x + p1*x^2 + p0*x^3 + * = p3 + x*(p2 + x*(p1 + x*p0)) + * + * The for loop iterates through the mult/add parts in y(x) as above, + * during which regular upscaling ensures a stable exponent of the + * result. + * + * \param[in] p coefficients as in y(x) + * \param[in] p_sf exponents of p[] + * \param[in] x_int non-fractional integer representation of x as in y(x) + * \param[out] out_sf exponent of return value + * + * \return result y(x) + */ +static FIXP_DBL polyval(const FIXP_DBL *const p, const int *const p_sf, + const int x_int, int *out_sf) { + FDK_ASSERT(x_int <= 31); /* otherwise getLog2[] needs more elements */ + + int k, x_sf; + int result_sf; /* working space to compute return value *out_sf */ + FIXP_DBL x; /* fractional value of x_int */ + FIXP_DBL result; /* return value */ + + /* if x == 0, then y(x) is just p3 */ + if (x_int != 0) { + x_sf = getLog2[x_int]; + x = (FIXP_DBL)x_int << (DFRACT_BITS - 1 - x_sf); + } else { + *out_sf = p_sf[3]; + return p[3]; + } + + result = p[0]; + result_sf = p_sf[0]; + + for (k = 1; k <= POLY_ORDER; ++k) { + FIXP_DBL mult = fMult(x, result); + int mult_sf = x_sf + result_sf; + + int room = CountLeadingBits(mult); + mult <<= room; + mult_sf -= room; + + FIXP_DBL pp = p[k]; + int pp_sf = p_sf[k]; + + /* equalize the shift factors of pp and mult so that we can sum them up */ + int diff = pp_sf - mult_sf; + + if (diff > 0) { + diff = fMin(diff, DFRACT_BITS - 1); + mult >>= diff; + } else if (diff < 0) { + diff = fMax(diff, 1 - DFRACT_BITS); + pp >>= -diff; + } + + /* downshift by 1 to ensure safe summation */ + mult >>= 1; + mult_sf++; + pp >>= 1; + pp_sf++; + + result_sf = fMax(pp_sf, mult_sf); + + result = mult + pp; + /* rarely, mult and pp happen to be almost equal except their sign, + and then upon summation, result becomes so small, that it is within + the inaccuracy range of a few bits, and then the relative error + produced by this function may become HUGE */ + } + + *out_sf = result_sf; + return result; +} + +void sbrDecoder_calculateGainVec(FIXP_DBL **sourceBufferReal, + FIXP_DBL **sourceBufferImag, + int sourceBuf_e_overlap, + int sourceBuf_e_current, int overlap, + FIXP_DBL *RESTRICT GainVec, int *GainVec_exp, + int numBands, const int startSample, + const int stopSample) { + FIXP_DBL p[POLY_ORDER + 1]; + FIXP_DBL meanNrg; + FIXP_DBL LowEnv[MAXLOWBANDS]; + FIXP_DBL invNumBands = GetInvInt(numBands); + FIXP_DBL invNumSlots = GetInvInt(stopSample - startSample); + int i, loBand, exp, scale_nrg, scale_nrg_ov; + int sum_scale = 5, sum_scale_ov = 3; + + if (overlap > 8) { + FDK_ASSERT(overlap <= 16); + sum_scale_ov += 1; + sum_scale += 1; + } + + /* exponents of energy values */ + sourceBuf_e_overlap = sourceBuf_e_overlap * 2 + sum_scale_ov; + sourceBuf_e_current = sourceBuf_e_current * 2 + sum_scale; + exp = fMax(sourceBuf_e_overlap, sourceBuf_e_current); + scale_nrg = sourceBuf_e_current - exp; + scale_nrg_ov = sourceBuf_e_overlap - exp; + + meanNrg = (FIXP_DBL)0; + /* Calculate the spectral envelope in dB over the current copy-up frame. */ + for (loBand = 0; loBand < numBands; loBand++) { + FIXP_DBL nrg_ov, nrg; + INT reserve = 0, exp_new; + FIXP_DBL maxVal = FL2FX_DBL(0.0f); + + for (i = startSample; i < stopSample; i++) { + maxVal |= + (FIXP_DBL)((LONG)(sourceBufferReal[i][loBand]) ^ + ((LONG)sourceBufferReal[i][loBand] >> (SAMPLE_BITS - 1))); + maxVal |= + (FIXP_DBL)((LONG)(sourceBufferImag[i][loBand]) ^ + ((LONG)sourceBufferImag[i][loBand] >> (SAMPLE_BITS - 1))); + } + + if (maxVal != FL2FX_DBL(0.0f)) { + reserve = fixMax(0, CntLeadingZeros(maxVal) - 2); + } + + nrg_ov = nrg = (FIXP_DBL)0; + if (scale_nrg_ov > -31) { + for (i = startSample; i < overlap; i++) { + nrg_ov += (fPow2Div2(sourceBufferReal[i][loBand] << reserve) + + fPow2Div2(sourceBufferImag[i][loBand] << reserve)) >> + sum_scale_ov; + } + } else { + scale_nrg_ov = 0; + } + if (scale_nrg > -31) { + for (i = overlap; i < stopSample; i++) { + nrg += (fPow2Div2(sourceBufferReal[i][loBand] << reserve) + + fPow2Div2(sourceBufferImag[i][loBand] << reserve)) >> + sum_scale; + } + } else { + scale_nrg = 0; + } + + nrg = (scaleValue(nrg_ov, scale_nrg_ov) >> 1) + + (scaleValue(nrg, scale_nrg) >> 1); + nrg = fMult(nrg, invNumSlots); + + exp_new = + exp - (2 * reserve) + + 2; /* +1 for addition directly above, +1 for fPow2Div2 in loops above */ + + /* LowEnv = 10*log10(nrg) = log2(nrg) * 10/log2(10) */ + /* exponent of logarithmic energy is 8 */ + if (nrg > (FIXP_DBL)0) { + int exp_log2; + nrg = CalcLog2(nrg, exp_new, &exp_log2); + nrg = scaleValue(nrg, exp_log2 - 6); + nrg = fMult(FL2FXCONST_SGL(LOG10FAC), nrg); + } else { + nrg = (FIXP_DBL)0; + } + LowEnv[loBand] = nrg; + meanNrg += fMult(nrg, invNumBands); + } + exp = 6 + 2; /* exponent of LowEnv: +2 is exponent of LOG10FAC */ + + /* subtract mean before polynomial approximation to reduce dynamic of p[] */ + for (loBand = 0; loBand < numBands; loBand++) { + LowEnv[loBand] = meanNrg - LowEnv[loBand]; + } + + /* For numBands < BSD_IDX_OFFSET (== POLY_ORDER+2) we dont get an + overdetermined equation system. The calculated polynomial will exactly fit + the input data and evaluating the polynomial will lead to the same vector + than the original input vector: lowEnvSlope[] == lowEnv[] + */ + if (numBands > POLY_ORDER + 1) { + /* Find polynomial approximation of LowEnv */ + int p_sf[POLY_ORDER + 1]; + + polyfit(numBands, LowEnv, exp, p, p_sf); + + for (i = 0; i < numBands; i++) { + int sf; + + /* lowBandEnvSlope[i] = tmp; */ + FIXP_DBL tmp = polyval(p, p_sf, i, &sf); + + /* GainVec = 10^((mean(y)-y)/20) = 2^( (mean(y)-y) * log2(10)/20 ) */ + tmp = fMult(tmp, FL2FXCONST_SGL(LOG10FAC_INV)); + GainVec[i] = f2Pow(tmp, sf - 2, + &GainVec_exp[i]); /* -2 is exponent of LOG10FAC_INV */ + } + } else { /* numBands <= POLY_ORDER+1 */ + for (i = 0; i < numBands; i++) { + int sf = exp; /* exponent of LowEnv[] */ + + /* lowBandEnvSlope[i] = LowEnv[i]; */ + FIXP_DBL tmp = LowEnv[i]; + + /* GainVec = 10^((mean(y)-y)/20) = 2^( (mean(y)-y) * log2(10)/20 ) */ + tmp = fMult(tmp, FL2FXCONST_SGL(LOG10FAC_INV)); + GainVec[i] = f2Pow(tmp, sf - 2, + &GainVec_exp[i]); /* -2 is exponent of LOG10FAC_INV */ + } + } +} |