diff options
author | Martin Storsjo <martin@martin.st> | 2018-08-22 15:49:59 +0300 |
---|---|---|
committer | Martin Storsjo <martin@martin.st> | 2018-09-02 23:16:58 +0300 |
commit | b95b15e51d8c692735df4d38c1335efc06aa0443 (patch) | |
tree | de32d94e69c5d00ab69724ab114415b1f74cba3d /libFDK/src/fixpoint_math.cpp | |
parent | e45ae429b9ca8f234eb861338a75b2d89cde206a (diff) | |
parent | 7027cd87488c2a60becbae7a139d18dbc0370459 (diff) | |
download | fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.gz fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.bz2 fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.zip |
Merge remote-tracking branch 'aosp/master'
Diffstat (limited to 'libFDK/src/fixpoint_math.cpp')
-rw-r--r-- | libFDK/src/fixpoint_math.cpp | 1257 |
1 files changed, 631 insertions, 626 deletions
diff --git a/libFDK/src/fixpoint_math.cpp b/libFDK/src/fixpoint_math.cpp index 1bf9366..6c656fa 100644 --- a/libFDK/src/fixpoint_math.cpp +++ b/libFDK/src/fixpoint_math.cpp @@ -1,74 +1,85 @@ - -/* ----------------------------------------------------------------------------------------------------------- +/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android -© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. 2. COPYRIGHT LICENSE -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." 3. NO PATENT LICENSE -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION @@ -79,93 +90,42 @@ Am Wolfsmantel 33 www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ +----------------------------------------------------------------------------- */ -/*************************** Fraunhofer IIS FDK Tools ********************** +/******************* Library for basic calculation routines ******************** Author(s): M. Gayer + Description: Fixed point specific mathematical functions -******************************************************************************/ +*******************************************************************************/ #include "fixpoint_math.h" +/* + * Hardware specific implementations + */ -#define MAX_LD_PRECISION 10 -#define LD_PRECISION 10 - -/* Taylor series coeffcients for ln(1-x), centered at 0 (MacLaurin polinomial). */ -#ifndef LDCOEFF_16BIT -LNK_SECTION_CONSTDATA_L1 -static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = { - FL2FXCONST_DBL(-1.0), - FL2FXCONST_DBL(-1.0/2.0), - FL2FXCONST_DBL(-1.0/3.0), - FL2FXCONST_DBL(-1.0/4.0), - FL2FXCONST_DBL(-1.0/5.0), - FL2FXCONST_DBL(-1.0/6.0), - FL2FXCONST_DBL(-1.0/7.0), - FL2FXCONST_DBL(-1.0/8.0), - FL2FXCONST_DBL(-1.0/9.0), - FL2FXCONST_DBL(-1.0/10.0) -}; -#else -LNK_SECTION_CONSTDATA_L1 -static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = { - FL2FXCONST_SGL(-1.0), - FL2FXCONST_SGL(-1.0/2.0), - FL2FXCONST_SGL(-1.0/3.0), - FL2FXCONST_SGL(-1.0/4.0), - FL2FXCONST_SGL(-1.0/5.0), - FL2FXCONST_SGL(-1.0/6.0), - FL2FXCONST_SGL(-1.0/7.0), - FL2FXCONST_SGL(-1.0/8.0), - FL2FXCONST_SGL(-1.0/9.0), - FL2FXCONST_SGL(-1.0/10.0) -}; -#endif - -/***************************************************************************** - - functionname: CalcLdData - description: Delivers the Logarithm Dualis ld(op)/LD_DATA_SCALING with polynomial approximation. - input: Input op is assumed to be double precision fractional 0 < op < 1.0 - This function does not accept negative values. - output: For op == 0, the result is saturated to -1.0 - This function does not return positive values since input values are treated as fractional values. - It does not make sense to input an integer value into this function (and expect a positive output value) - since input values are treated as fractional values. - -*****************************************************************************/ - -LNK_SECTION_CODE_L1 -FIXP_DBL CalcLdData(FIXP_DBL op) -{ - return fLog2(op, 0); -} - +/* + * Fallback implementations + */ /***************************************************************************** functionname: LdDataVector *****************************************************************************/ LNK_SECTION_CODE_L1 -void LdDataVector( FIXP_DBL *srcVector, - FIXP_DBL *destVector, - INT n) -{ - INT i; - for ( i=0; i<n; i++) { - destVector[i] = CalcLdData(srcVector[i]); - } +void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT n) { + INT i; + for (i = 0; i < n; i++) { + destVector[i] = fLog2(srcVector[i], 0); + } } - - #define MAX_POW2_PRECISION 8 #ifndef SINETABLE_16BIT - #define POW2_PRECISION MAX_POW2_PRECISION +#define POW2_PRECISION MAX_POW2_PRECISION #else - #define POW2_PRECISION 5 +#define POW2_PRECISION 5 #endif /* @@ -173,62 +133,37 @@ void LdDataVector( FIXP_DBL *srcVector, ommited (equal to 1.0). pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION - To evaluate the taylor series around x = 0, the coefficients are: 1/!i * ln(2)^i + To evaluate the taylor series around x = 0, the coefficients are: 1/!i * + ln(2)^i */ #ifndef POW2COEFF_16BIT +RAM_ALIGN LNK_SECTION_CONSTDATA_L1 static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = { - FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ - FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ - FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ - FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ - FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ - FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ - FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ - FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ + FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ + FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ + FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ + FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ + FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ + FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ + FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ + FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ }; #else +RAM_ALIGN LNK_SECTION_CONSTDATA_L1 static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = { - FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ - FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ - FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ - FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ - FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ - FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ - FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ - FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ + FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ + FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ + FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ + FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ + FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ + FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ + FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ + FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ }; #endif - - -/***************************************************************************** - - functionname: mul_dbl_sgl_rnd - description: Multiply with round. -*****************************************************************************/ - -/* for rounding a dfract to fract */ -#define ACCU_R (LONG) 0x00008000 - -LNK_SECTION_CODE_L1 -FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2) -{ - FIXP_DBL prod; - LONG v = (LONG)(op1); - SHORT u = (SHORT)(op2); - - LONG low = u*(v&SGL_MASK); - low = (low+(ACCU_R>>1)) >> (FRACT_BITS-1); /* round */ - LONG high = u * ((v>>FRACT_BITS)<<1); - - prod = (LONG)(high+low); - - return((FIXP_DBL)prod); -} - - /***************************************************************************** functionname: CalcInvLdData @@ -236,530 +171,532 @@ FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2) Delivers 2^(op*LD_DATA_SCALING) input: Input op is assumed to be fractional -1.0 < op < 1.0 output: For op == 0, the result is MAXVAL_DBL (almost 1.0). - For negative input values the output should be treated as a positive fractional value. - For positive input values the output should be treated as a positive integer value. - This function does not output negative values. + For negative input values the output should be treated as a +positive fractional value. For positive input values the output should be +treated as a positive integer value. This function does not output negative +values. *****************************************************************************/ -LNK_SECTION_CODE_L1 +/* Date: 06-JULY-2012 Arthur Tritthart, IIS Fraunhofer Erlangen */ +/* Version with 3 table lookup and 1 linear interpolations */ +/* Algorithm: compute power of 2, argument x is in Q7.25 format */ +/* result = 2^(x/64) */ +/* We split exponent (x/64) into 5 components: */ +/* integer part: represented by b31..b25 (exp) */ +/* fractional part 1: represented by b24..b20 (lookup1) */ +/* fractional part 2: represented by b19..b15 (lookup2) */ +/* fractional part 3: represented by b14..b10 (lookup3) */ +/* fractional part 4: represented by b09..b00 (frac) */ +/* => result = (lookup1*lookup2*(lookup3+C1*frac)<<3)>>exp */ +/* Due to the fact, that all lookup values contain a factor 0.5 */ +/* the result has to be shifted by 3 to the right also. */ +/* Table exp2_tab_long contains the log2 for 0 to 1.0 in steps */ +/* of 1/32, table exp2w_tab_long the log2 for 0 to 1/32 in steps*/ +/* of 1/1024, table exp2x_tab_long the log2 for 0 to 1/1024 in */ +/* steps of 1/32768. Since the 2-logarithm of very very small */ +/* negative value is rather linear, we can use interpolation. */ +/* Limitations: */ +/* For x <= 0, the result is fractional positive */ +/* For x > 0, the result is integer in range 1...7FFF.FFFF */ +/* For x < -31/64, we have to clear the result */ +/* For x = 0, the result is ~1.0 (0x7FFF.FFFF) */ +/* For x >= 31/64, the result is 0x7FFF.FFFF */ + /* This table is used for lookup 2^x with */ /* x in range [0...1.0[ in steps of 1/32 */ -LNK_SECTION_DATA_L1 static const UINT exp2_tab_long[32]={ -0x40000000,0x4166C34C,0x42D561B4,0x444C0740, -0x45CAE0F2,0x47521CC6,0x48E1E9BA,0x4A7A77D4, -0x4C1BF829,0x4DC69CDD,0x4F7A9930,0x51382182, -0x52FF6B55,0x54D0AD5A,0x56AC1F75,0x5891FAC1, -0x5A82799A,0x5C7DD7A4,0x5E8451D0,0x60962665, -0x62B39509,0x64DCDEC3,0x6712460B,0x69540EC9, -0x6BA27E65,0x6DFDDBCC,0x70666F76,0x72DC8374, -0x75606374,0x77F25CCE,0x7A92BE8B,0x7D41D96E -// 0x80000000 +LNK_SECTION_DATA_L1 +const UINT exp2_tab_long[32] = { + 0x40000000, 0x4166C34C, 0x42D561B4, 0x444C0740, 0x45CAE0F2, 0x47521CC6, + 0x48E1E9BA, 0x4A7A77D4, 0x4C1BF829, 0x4DC69CDD, 0x4F7A9930, 0x51382182, + 0x52FF6B55, 0x54D0AD5A, 0x56AC1F75, 0x5891FAC1, 0x5A82799A, 0x5C7DD7A4, + 0x5E8451D0, 0x60962665, 0x62B39509, 0x64DCDEC3, 0x6712460B, 0x69540EC9, + 0x6BA27E65, 0x6DFDDBCC, 0x70666F76, 0x72DC8374, 0x75606374, 0x77F25CCE, + 0x7A92BE8B, 0x7D41D96E + // 0x80000000 }; /* This table is used for lookup 2^x with */ /* x in range [0...1/32[ in steps of 1/1024 */ -LNK_SECTION_DATA_L1 static const UINT exp2w_tab_long[32]={ -0x40000000,0x400B1818,0x4016321B,0x40214E0C, -0x402C6BE9,0x40378BB4,0x4042AD6D,0x404DD113, -0x4058F6A8,0x40641E2B,0x406F479E,0x407A7300, -0x4085A051,0x4090CF92,0x409C00C4,0x40A733E6, -0x40B268FA,0x40BD9FFF,0x40C8D8F5,0x40D413DD, -0x40DF50B8,0x40EA8F86,0x40F5D046,0x410112FA, -0x410C57A2,0x41179E3D,0x4122E6CD,0x412E3152, -0x41397DCC,0x4144CC3B,0x41501CA0,0x415B6EFB, -// 0x4166C34C, +LNK_SECTION_DATA_L1 +const UINT exp2w_tab_long[32] = { + 0x40000000, 0x400B1818, 0x4016321B, 0x40214E0C, 0x402C6BE9, 0x40378BB4, + 0x4042AD6D, 0x404DD113, 0x4058F6A8, 0x40641E2B, 0x406F479E, 0x407A7300, + 0x4085A051, 0x4090CF92, 0x409C00C4, 0x40A733E6, 0x40B268FA, 0x40BD9FFF, + 0x40C8D8F5, 0x40D413DD, 0x40DF50B8, 0x40EA8F86, 0x40F5D046, 0x410112FA, + 0x410C57A2, 0x41179E3D, 0x4122E6CD, 0x412E3152, 0x41397DCC, 0x4144CC3B, + 0x41501CA0, 0x415B6EFB, + // 0x4166C34C, }; /* This table is used for lookup 2^x with */ /* x in range [0...1/1024[ in steps of 1/32768 */ -LNK_SECTION_DATA_L1 static const UINT exp2x_tab_long[32]={ -0x40000000,0x400058B9,0x4000B173,0x40010A2D, -0x400162E8,0x4001BBA3,0x4002145F,0x40026D1B, -0x4002C5D8,0x40031E95,0x40037752,0x4003D011, -0x400428CF,0x4004818E,0x4004DA4E,0x4005330E, -0x40058BCE,0x4005E48F,0x40063D51,0x40069613, -0x4006EED5,0x40074798,0x4007A05B,0x4007F91F, -0x400851E4,0x4008AAA8,0x4009036E,0x40095C33, -0x4009B4FA,0x400A0DC0,0x400A6688,0x400ABF4F, -//0x400B1818 +LNK_SECTION_DATA_L1 +const UINT exp2x_tab_long[32] = { + 0x40000000, 0x400058B9, 0x4000B173, 0x40010A2D, 0x400162E8, 0x4001BBA3, + 0x4002145F, 0x40026D1B, 0x4002C5D8, 0x40031E95, 0x40037752, 0x4003D011, + 0x400428CF, 0x4004818E, 0x4004DA4E, 0x4005330E, 0x40058BCE, 0x4005E48F, + 0x40063D51, 0x40069613, 0x4006EED5, 0x40074798, 0x4007A05B, 0x4007F91F, + 0x400851E4, 0x4008AAA8, 0x4009036E, 0x40095C33, 0x4009B4FA, 0x400A0DC0, + 0x400A6688, 0x400ABF4F, + // 0x400B1818 }; -LNK_SECTION_CODE_L1 FIXP_DBL CalcInvLdData(FIXP_DBL x) -{ - int set_zero = (x < FL2FXCONST_DBL(-31.0/64.0))? 0 : 1; - int set_max = (x >= FL2FXCONST_DBL( 31.0/64.0)) | (x == FL2FXCONST_DBL(0.0)); - - FIXP_SGL frac = (FIXP_SGL)(LONG)(x & 0x3FF); - UINT index3 = (UINT)(LONG)(x >> 10) & 0x1F; - UINT index2 = (UINT)(LONG)(x >> 15) & 0x1F; - UINT index1 = (UINT)(LONG)(x >> 20) & 0x1F; - int exp = (x > FL2FXCONST_DBL(0.0f)) ? (31 - (int)(x>>25)) : (int)(-(x>>25)); - - UINT lookup1 = exp2_tab_long[index1]*set_zero; - UINT lookup2 = exp2w_tab_long[index2]; - UINT lookup3 = exp2x_tab_long[index3]; - UINT lookup3f = lookup3 + (UINT)(LONG)fMultDiv2((FIXP_DBL)(0x0016302F),(FIXP_SGL)frac); - - UINT lookup12 = (UINT)(LONG)fMult((FIXP_DBL)lookup1, (FIXP_DBL) lookup2); - UINT lookup = (UINT)(LONG)fMult((FIXP_DBL)lookup12, (FIXP_DBL) lookup3f); - - FIXP_DBL retVal = (lookup<<3) >> exp; - - if (set_max) - retVal=FL2FXCONST_DBL(1.0f); - - return retVal; -} - - - - - /***************************************************************************** functionname: InitLdInt and CalcLdInt - description: Create and access table with integer LdData (0 to 193) + description: Create and access table with integer LdData (0 to +LD_INT_TAB_LEN) *****************************************************************************/ +#ifndef LD_INT_TAB_LEN +#define LD_INT_TAB_LEN \ + 193 /* Default tab length. Lower value should be set in fix.h */ +#endif +#if (LD_INT_TAB_LEN <= 120) +LNK_SECTION_CONSTDATA_L1 +static const FIXP_DBL ldIntCoeff[] = { + (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000, + (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2, + (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000, + (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f, + (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0, + (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee, + (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2, + (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050, + (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009, + (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949, + (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000, + (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162, + (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b, + (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e, + (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f, + (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312, + (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785, + (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd, + (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0, + (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca, + (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b, + (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb, + (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee, + (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8, + (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79, + (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f, + (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2, + (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b, + (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60, + (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355, + (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050, + (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d, + (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40, + (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118, + (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009, + (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190, + (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61, + (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f, + (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949, + (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e}; + +#elif (LD_INT_TAB_LEN <= 193) +LNK_SECTION_CONSTDATA_L1 +static const FIXP_DBL ldIntCoeff[] = { + (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000, + (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2, + (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000, + (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f, + (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0, + (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee, + (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2, + (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050, + (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009, + (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949, + (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000, + (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162, + (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b, + (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e, + (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f, + (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312, + (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785, + (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd, + (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0, + (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca, + (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b, + (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb, + (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee, + (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8, + (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79, + (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f, + (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2, + (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b, + (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60, + (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355, + (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050, + (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d, + (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40, + (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118, + (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009, + (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190, + (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61, + (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f, + (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949, + (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e, + (FIXP_DBL)0x0dd053f7, (FIXP_DBL)0x0dd6753e, (FIXP_DBL)0x0ddc899b, + (FIXP_DBL)0x0de29143, (FIXP_DBL)0x0de88c6b, (FIXP_DBL)0x0dee7b47, + (FIXP_DBL)0x0df45e09, (FIXP_DBL)0x0dfa34e1, (FIXP_DBL)0x0e000000, + (FIXP_DBL)0x0e05bf94, (FIXP_DBL)0x0e0b73cb, (FIXP_DBL)0x0e111cd2, + (FIXP_DBL)0x0e16bad3, (FIXP_DBL)0x0e1c4dfb, (FIXP_DBL)0x0e21d671, + (FIXP_DBL)0x0e275460, (FIXP_DBL)0x0e2cc7ee, (FIXP_DBL)0x0e323143, + (FIXP_DBL)0x0e379085, (FIXP_DBL)0x0e3ce5d8, (FIXP_DBL)0x0e423162, + (FIXP_DBL)0x0e477346, (FIXP_DBL)0x0e4caba8, (FIXP_DBL)0x0e51daa8, + (FIXP_DBL)0x0e570069, (FIXP_DBL)0x0e5c1d0b, (FIXP_DBL)0x0e6130af, + (FIXP_DBL)0x0e663b74, (FIXP_DBL)0x0e6b3d79, (FIXP_DBL)0x0e7036db, + (FIXP_DBL)0x0e7527b9, (FIXP_DBL)0x0e7a1030, (FIXP_DBL)0x0e7ef05b, + (FIXP_DBL)0x0e83c857, (FIXP_DBL)0x0e88983f, (FIXP_DBL)0x0e8d602e, + (FIXP_DBL)0x0e92203d, (FIXP_DBL)0x0e96d888, (FIXP_DBL)0x0e9b8926, + (FIXP_DBL)0x0ea03232, (FIXP_DBL)0x0ea4d3c2, (FIXP_DBL)0x0ea96df0, + (FIXP_DBL)0x0eae00d2, (FIXP_DBL)0x0eb28c7f, (FIXP_DBL)0x0eb7110e, + (FIXP_DBL)0x0ebb8e96, (FIXP_DBL)0x0ec0052b, (FIXP_DBL)0x0ec474e4, + (FIXP_DBL)0x0ec8ddd4, (FIXP_DBL)0x0ecd4012, (FIXP_DBL)0x0ed19bb0, + (FIXP_DBL)0x0ed5f0c4, (FIXP_DBL)0x0eda3f60, (FIXP_DBL)0x0ede8797, + (FIXP_DBL)0x0ee2c97d, (FIXP_DBL)0x0ee70525, (FIXP_DBL)0x0eeb3a9f, + (FIXP_DBL)0x0eef69ff, (FIXP_DBL)0x0ef39355, (FIXP_DBL)0x0ef7b6b4, + (FIXP_DBL)0x0efbd42b, (FIXP_DBL)0x0effebcd, (FIXP_DBL)0x0f03fda9, + (FIXP_DBL)0x0f0809cf, (FIXP_DBL)0x0f0c1050, (FIXP_DBL)0x0f10113b, + (FIXP_DBL)0x0f140ca0, (FIXP_DBL)0x0f18028d, (FIXP_DBL)0x0f1bf312, + (FIXP_DBL)0x0f1fde3d, (FIXP_DBL)0x0f23c41d, (FIXP_DBL)0x0f27a4c0, + (FIXP_DBL)0x0f2b8034}; - LNK_SECTION_CONSTDATA_L1 - static const FIXP_DBL ldIntCoeff[] = { - (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000, (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2, (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, - (FIXP_DBL)0x06000000, (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f, (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0, (FIXP_DBL)0x07d053f7, - (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee, (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2, (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050, - (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009, (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949, (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, - (FIXP_DBL)0x0a000000, (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162, (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b, (FIXP_DBL)0x0a92203d, - (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e, (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f, (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312, - (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785, (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd, (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, - (FIXP_DBL)0x0b9d5da0, (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca, (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b, (FIXP_DBL)0x0bf45e09, - (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb, (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee, (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8, - (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79, (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f, (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, - (FIXP_DBL)0x0ca4d3c2, (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b, (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60, (FIXP_DBL)0x0ce2c97d, - (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355, (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050, (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d, - (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40, (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118, (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, - (FIXP_DBL)0x0d66a009, (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190, (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61, (FIXP_DBL)0x0d96bdad, - (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f, (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949, (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e, - (FIXP_DBL)0x0dd053f7, (FIXP_DBL)0x0dd6753e, (FIXP_DBL)0x0ddc899b, (FIXP_DBL)0x0de29143, (FIXP_DBL)0x0de88c6b, (FIXP_DBL)0x0dee7b47, (FIXP_DBL)0x0df45e09, (FIXP_DBL)0x0dfa34e1, - (FIXP_DBL)0x0e000000, (FIXP_DBL)0x0e05bf94, (FIXP_DBL)0x0e0b73cb, (FIXP_DBL)0x0e111cd2, (FIXP_DBL)0x0e16bad3, (FIXP_DBL)0x0e1c4dfb, (FIXP_DBL)0x0e21d671, (FIXP_DBL)0x0e275460, - (FIXP_DBL)0x0e2cc7ee, (FIXP_DBL)0x0e323143, (FIXP_DBL)0x0e379085, (FIXP_DBL)0x0e3ce5d8, (FIXP_DBL)0x0e423162, (FIXP_DBL)0x0e477346, (FIXP_DBL)0x0e4caba8, (FIXP_DBL)0x0e51daa8, - (FIXP_DBL)0x0e570069, (FIXP_DBL)0x0e5c1d0b, (FIXP_DBL)0x0e6130af, (FIXP_DBL)0x0e663b74, (FIXP_DBL)0x0e6b3d79, (FIXP_DBL)0x0e7036db, (FIXP_DBL)0x0e7527b9, (FIXP_DBL)0x0e7a1030, - (FIXP_DBL)0x0e7ef05b, (FIXP_DBL)0x0e83c857, (FIXP_DBL)0x0e88983f, (FIXP_DBL)0x0e8d602e, (FIXP_DBL)0x0e92203d, (FIXP_DBL)0x0e96d888, (FIXP_DBL)0x0e9b8926, (FIXP_DBL)0x0ea03232, - (FIXP_DBL)0x0ea4d3c2, (FIXP_DBL)0x0ea96df0, (FIXP_DBL)0x0eae00d2, (FIXP_DBL)0x0eb28c7f, (FIXP_DBL)0x0eb7110e, (FIXP_DBL)0x0ebb8e96, (FIXP_DBL)0x0ec0052b, (FIXP_DBL)0x0ec474e4, - (FIXP_DBL)0x0ec8ddd4, (FIXP_DBL)0x0ecd4012, (FIXP_DBL)0x0ed19bb0, (FIXP_DBL)0x0ed5f0c4, (FIXP_DBL)0x0eda3f60, (FIXP_DBL)0x0ede8797, (FIXP_DBL)0x0ee2c97d, (FIXP_DBL)0x0ee70525, - (FIXP_DBL)0x0eeb3a9f, (FIXP_DBL)0x0eef69ff, (FIXP_DBL)0x0ef39355, (FIXP_DBL)0x0ef7b6b4, (FIXP_DBL)0x0efbd42b, (FIXP_DBL)0x0effebcd, (FIXP_DBL)0x0f03fda9, (FIXP_DBL)0x0f0809cf, - (FIXP_DBL)0x0f0c1050, (FIXP_DBL)0x0f10113b, (FIXP_DBL)0x0f140ca0, (FIXP_DBL)0x0f18028d, (FIXP_DBL)0x0f1bf312, (FIXP_DBL)0x0f1fde3d, (FIXP_DBL)0x0f23c41d, (FIXP_DBL)0x0f27a4c0, - (FIXP_DBL)0x0f2b8034 - }; - - - LNK_SECTION_INITCODE - void InitLdInt() - { - /* nothing to do! Use preinitialized logarithm table */ - } +#else +#error "ldInt table size too small" +#endif +LNK_SECTION_INITCODE +void InitLdInt() { /* nothing to do! Use preinitialized logarithm table */ +} + +#if (LD_INT_TAB_LEN != 0) LNK_SECTION_CODE_L1 -FIXP_DBL CalcLdInt(INT i) -{ +FIXP_DBL CalcLdInt(INT i) { /* calculates ld(op)/LD_DATA_SCALING */ - /* op is assumed to be an integer value between 1 and 193 */ + /* op is assumed to be an integer value between 1 and LD_INT_TAB_LEN */ - FDK_ASSERT((193>0) && ((FIXP_DBL)ldIntCoeff[0]==(FIXP_DBL)0x80000001)); /* tab has to be initialized */ + FDK_ASSERT((LD_INT_TAB_LEN > 0) && + ((FIXP_DBL)ldIntCoeff[0] == + (FIXP_DBL)0x80000001)); /* tab has to be initialized */ - if ((i>0)&&(i<193)) + if ((i > 0) && (i < LD_INT_TAB_LEN)) return ldIntCoeff[i]; - else - { + else { return (0); } } +#endif /* (LD_INT_TAB_LEN!=0) */ - +#if !defined(FUNCTION_schur_div) /***************************************************************************** - functionname: invSqrtNorm2 - description: delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT + functionname: schur_div + description: delivers op1/op2 with op3-bit accuracy *****************************************************************************/ -#define SQRT_BITS 7 -#define SQRT_VALUES 128 -#define SQRT_BITS_MASK 0x7f -LNK_SECTION_CONSTDATA_L1 -static const FIXP_DBL invSqrtTab[SQRT_VALUES] = { - 0x5a827999, 0x5a287e03, 0x59cf8cbb, 0x5977a0ab, 0x5920b4de, 0x58cac480, 0x5875cade, 0x5821c364, - 0x57cea99c, 0x577c792f, 0x572b2ddf, 0x56dac38d, 0x568b3631, 0x563c81df, 0x55eea2c3, 0x55a19521, - 0x55555555, 0x5509dfd0, 0x54bf311a, 0x547545d0, 0x542c1aa3, 0x53e3ac5a, 0x539bf7cc, 0x5354f9e6, - 0x530eafa4, 0x52c91617, 0x52842a5e, 0x523fe9ab, 0x51fc513f, 0x51b95e6b, 0x51770e8e, 0x51355f19, - 0x50f44d88, 0x50b3d768, 0x5073fa4f, 0x5034b3e6, 0x4ff601df, 0x4fb7e1f9, 0x4f7a5201, 0x4f3d4fce, - 0x4f00d943, 0x4ec4ec4e, 0x4e8986e9, 0x4e4ea718, 0x4e144ae8, 0x4dda7072, 0x4da115d9, 0x4d683948, - 0x4d2fd8f4, 0x4cf7f31b, 0x4cc08604, 0x4c898fff, 0x4c530f64, 0x4c1d0293, 0x4be767f5, 0x4bb23df9, - 0x4b7d8317, 0x4b4935ce, 0x4b1554a6, 0x4ae1de2a, 0x4aaed0f0, 0x4a7c2b92, 0x4a49ecb3, 0x4a1812fa, - 0x49e69d16, 0x49b589bb, 0x4984d7a4, 0x49548591, 0x49249249, 0x48f4fc96, 0x48c5c34a, 0x4896e53c, - 0x48686147, 0x483a364c, 0x480c6331, 0x47dee6e0, 0x47b1c049, 0x4784ee5f, 0x4758701c, 0x472c447c, - 0x47006a80, 0x46d4e130, 0x46a9a793, 0x467ebcb9, 0x46541fb3, 0x4629cf98, 0x45ffcb80, 0x45d61289, - 0x45aca3d5, 0x45837e88, 0x455aa1ca, 0x45320cc8, 0x4509beb0, 0x44e1b6b4, 0x44b9f40b, 0x449275ec, - 0x446b3b95, 0x44444444, 0x441d8f3b, 0x43f71bbe, 0x43d0e917, 0x43aaf68e, 0x43854373, 0x435fcf14, - 0x433a98c5, 0x43159fdb, 0x42f0e3ae, 0x42cc6397, 0x42a81ef5, 0x42841527, 0x4260458d, 0x423caf8c, - 0x4219528b, 0x41f62df1, 0x41d3412a, 0x41b08ba1, 0x418e0cc7, 0x416bc40d, 0x4149b0e4, 0x4127d2c3, - 0x41062920, 0x40e4b374, 0x40c3713a, 0x40a261ef, 0x40818511, 0x4060da21, 0x404060a1, 0x40201814 -}; - -LNK_SECTION_INITCODE -void InitInvSqrtTab() -{ - /* nothing to do ! - use preinitialized square root table - */ +FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) { + INT L_num = (LONG)num >> 1; + INT L_denum = (LONG)denum >> 1; + INT div = 0; + INT k = count; + + FDK_ASSERT(num >= (FIXP_DBL)0); + FDK_ASSERT(denum > (FIXP_DBL)0); + FDK_ASSERT(num <= denum); + + if (L_num != 0) + while (--k) { + div <<= 1; + L_num <<= 1; + if (L_num >= L_denum) { + L_num -= L_denum; + div++; + } + } + return (FIXP_DBL)(div << (DFRACT_BITS - count)); } +#endif /* !defined(FUNCTION_schur_div) */ +#ifndef FUNCTION_fMultNorm +FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e) { + INT product = 0; + INT norm_f1, norm_f2; -#if !defined(FUNCTION_invSqrtNorm2) -/***************************************************************************** - delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT, - i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift) - uses Newton-iteration for approximation - Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2) - with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0 -*****************************************************************************/ -FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift) -{ - - FIXP_DBL val = op ; - FIXP_DBL reg1, reg2, regtmp ; - - if (val == FL2FXCONST_DBL(0.0)) { - *shift = 1 ; - return((LONG)1); /* minimum positive value */ + if ((f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0)) { + *result_e = 0; + return (FIXP_DBL)0; + } + norm_f1 = CountLeadingBits(f1); + f1 = f1 << norm_f1; + norm_f2 = CountLeadingBits(f2); + f2 = f2 << norm_f2; + + if ((f1 == (FIXP_DBL)MINVAL_DBL) && (f2 == (FIXP_DBL)MINVAL_DBL)) { + product = -((FIXP_DBL)MINVAL_DBL >> 1); + *result_e = -(norm_f1 + norm_f2 - 1); + } else { + product = fMult(f1, f2); + *result_e = -(norm_f1 + norm_f2); } + return (FIXP_DBL)product; +} +#endif - /* normalize input, calculate shift value */ - FDK_ASSERT(val > FL2FXCONST_DBL(0.0)); - *shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */ - val <<=*shift ; /* normalized input V */ - *shift+=2 ; /* bias for exponent */ - - /* Newton iteration of 1/sqrt(V) */ - reg1 = invSqrtTab[ (INT)(val>>(DFRACT_BITS-1-(SQRT_BITS+1))) & SQRT_BITS_MASK ]; - reg2 = FL2FXCONST_DBL(0.0625f); /* 0.5 >> 3 */ +#ifndef FUNCTION_fDivNorm +FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) { + FIXP_DBL div; + INT norm_num, norm_den; - regtmp= fPow2Div2(reg1); /* a = Q^2 */ - regtmp= reg2 - fMultDiv2(regtmp, val); /* b = 0.5 - 2 * V * Q^2 */ - reg1 += (fMultDiv2(regtmp, reg1)<<4); /* Q = Q + Q*b */ + FDK_ASSERT(L_num >= (FIXP_DBL)0); + FDK_ASSERT(L_denum > (FIXP_DBL)0); - /* calculate the output exponent = input exp/2 */ - if (*shift & 0x00000001) { /* odd shift values ? */ - reg2 = FL2FXCONST_DBL(0.707106781186547524400844362104849f); /* 1/sqrt(2); */ - reg1 = fMultDiv2(reg1, reg2) << 2; + if (L_num == (FIXP_DBL)0) { + *result_e = 0; + return ((FIXP_DBL)0); } - *shift = *shift>>1; + norm_num = CountLeadingBits(L_num); + L_num = L_num << norm_num; + L_num = L_num >> 1; + *result_e = -norm_num + 1; - return(reg1); -} -#endif /* !defined(FUNCTION_invSqrtNorm2) */ + norm_den = CountLeadingBits(L_denum); + L_denum = L_denum << norm_den; + *result_e -= -norm_den; -/***************************************************************************** - - functionname: sqrtFixp - description: delivers sqrt(op) + div = schur_div(L_num, L_denum, FRACT_BITS); -*****************************************************************************/ -FIXP_DBL sqrtFixp(FIXP_DBL op) -{ - INT tmp_exp = 0; - FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp); - - FDK_ASSERT(tmp_exp > 0) ; - return( (FIXP_DBL) ( fMultDiv2( (op<<(tmp_exp-1)), tmp_inv ) << 2 )); + return div; } +#endif /* !FUNCTION_fDivNorm */ +#ifndef FUNCTION_fDivNorm +FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom) { + INT e; + FIXP_DBL res; -#if !defined(FUNCTION_schur_div) -/***************************************************************************** - - functionname: schur_div - description: delivers op1/op2 with op3-bit accuracy + FDK_ASSERT(denom >= num); -*****************************************************************************/ + res = fDivNorm(num, denom, &e); + /* Avoid overflow since we must output a value with exponent 0 + there is no other choice than saturating to almost 1.0f */ + if (res == (FIXP_DBL)(1 << (DFRACT_BITS - 2)) && e == 1) { + res = (FIXP_DBL)MAXVAL_DBL; + } else { + res = scaleValue(res, e); + } -FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) -{ - INT L_num = (LONG)num>>1; - INT L_denum = (LONG)denum>>1; - INT div = 0; - INT k = count; - - FDK_ASSERT (num>=(FIXP_DBL)0); - FDK_ASSERT (denum>(FIXP_DBL)0); - FDK_ASSERT (num <= denum); - - if (L_num != 0) - while (--k) - { - div <<= 1; - L_num <<= 1; - if (L_num >= L_denum) - { - L_num -= L_denum; - div++; - } - } - return (FIXP_DBL)(div << (DFRACT_BITS - count)); + return res; } +#endif /* !FUNCTION_fDivNorm */ +#ifndef FUNCTION_fDivNormSigned +FIXP_DBL fDivNormSigned(FIXP_DBL num, FIXP_DBL denom) { + INT e; + FIXP_DBL res; + int sign; -#endif /* !defined(FUNCTION_schur_div) */ - + if (denom == (FIXP_DBL)0) { + return (FIXP_DBL)MAXVAL_DBL; + } -#ifndef FUNCTION_fMultNorm -FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e) -{ - INT product = 0; - INT norm_f1, norm_f2; + sign = ((num >= (FIXP_DBL)0) != (denom >= (FIXP_DBL)0)); + res = fDivNormSigned(num, denom, &e); - if ( (f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0) ) { - *result_e = 0; - return (FIXP_DBL)0; + /* Saturate since we must output a value with exponent 0 */ + if ((e > 0) && (fAbs(res) >= FL2FXCONST_DBL(0.5))) { + if (sign) { + res = (FIXP_DBL)MINVAL_DBL; + } else { + res = (FIXP_DBL)MAXVAL_DBL; } - norm_f1 = CountLeadingBits(f1); - f1 = f1 << norm_f1; - norm_f2 = CountLeadingBits(f2); - f2 = f2 << norm_f2; - - product = fMult(f1, f2); - *result_e = - (norm_f1 + norm_f2); + } else { + res = scaleValue(res, e); + } - return (FIXP_DBL)product; + return res; } -#endif +FIXP_DBL fDivNormSigned(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) { + FIXP_DBL div; + INT norm_num, norm_den; + int sign; -#ifndef FUNCTION_fDivNorm -FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) -{ - FIXP_DBL div; - INT norm_num, norm_den; - - FDK_ASSERT (L_num >= (FIXP_DBL)0); - FDK_ASSERT (L_denum > (FIXP_DBL)0); - - if(L_num == (FIXP_DBL)0) - { - *result_e = 0; - return ((FIXP_DBL)0); - } - - norm_num = CountLeadingBits(L_num); - L_num = L_num << norm_num; - L_num = L_num >> 1; - *result_e = - norm_num + 1; - - norm_den = CountLeadingBits(L_denum); - L_denum = L_denum << norm_den; - *result_e -= - norm_den; + sign = ((L_num >= (FIXP_DBL)0) != (L_denum >= (FIXP_DBL)0)); - div = schur_div(L_num, L_denum, FRACT_BITS); - - return div; -} -#endif /* !FUNCTION_fDivNorm */ + if (L_num == (FIXP_DBL)0) { + *result_e = 0; + return ((FIXP_DBL)0); + } + if (L_denum == (FIXP_DBL)0) { + *result_e = 14; + return ((FIXP_DBL)MAXVAL_DBL); + } -#ifndef FUNCTION_fDivNorm -FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom) -{ - INT e; - FIXP_DBL res; + norm_num = CountLeadingBits(L_num); + L_num = L_num << norm_num; + L_num = L_num >> 2; + L_num = fAbs(L_num); + *result_e = -norm_num + 1; - FDK_ASSERT (denom >= num); + norm_den = CountLeadingBits(L_denum); + L_denum = L_denum << norm_den; + L_denum = L_denum >> 1; + L_denum = fAbs(L_denum); + *result_e -= -norm_den; - res = fDivNorm(num, denom, &e); + div = schur_div(L_num, L_denum, FRACT_BITS); - /* Avoid overflow since we must output a value with exponent 0 - there is no other choice than saturating to almost 1.0f */ - if(res == (FIXP_DBL)(1<<(DFRACT_BITS-2)) && e == 1) - { - res = (FIXP_DBL)MAXVAL_DBL; - } - else - { - res = scaleValue(res, e); - } + if (sign) { + div = -div; + } - return res; + return div; } -#endif /* !FUNCTION_fDivNorm */ +#endif /* FUNCTION_fDivNormSigned */ #ifndef FUNCTION_fDivNormHighPrec -FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e) -{ - FIXP_DBL div; - INT norm_num, norm_den; +FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e) { + FIXP_DBL div; + INT norm_num, norm_den; - FDK_ASSERT (num >= (FIXP_DBL)0); - FDK_ASSERT (denom > (FIXP_DBL)0); + FDK_ASSERT(num >= (FIXP_DBL)0); + FDK_ASSERT(denom > (FIXP_DBL)0); - if(num == (FIXP_DBL)0) - { - *result_e = 0; - return ((FIXP_DBL)0); - } + if (num == (FIXP_DBL)0) { + *result_e = 0; + return ((FIXP_DBL)0); + } - norm_num = CountLeadingBits(num); - num = num << norm_num; - num = num >> 1; - *result_e = - norm_num + 1; + norm_num = CountLeadingBits(num); + num = num << norm_num; + num = num >> 1; + *result_e = -norm_num + 1; - norm_den = CountLeadingBits(denom); - denom = denom << norm_den; - *result_e -= - norm_den; + norm_den = CountLeadingBits(denom); + denom = denom << norm_den; + *result_e -= -norm_den; - div = schur_div(num, denom, 31); - return div; + div = schur_div(num, denom, 31); + return div; } #endif /* !FUNCTION_fDivNormHighPrec */ - - -FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e) -{ - return fLog2(base_m, base_e, result_e); -} - -FIXP_DBL f2Pow( - const FIXP_DBL exp_m, const INT exp_e, - INT *result_e - ) -{ +#ifndef FUNCTION_fPow +FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e) { FIXP_DBL frac_part, result_m; INT int_part; - if (exp_e > 0) - { - INT exp_bits = DFRACT_BITS-1 - exp_e; - int_part = exp_m >> exp_bits; - frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits); - frac_part = frac_part << exp_e; - } - else - { - int_part = 0; - frac_part = exp_m >> -exp_e; + if (exp_e > 0) { + INT exp_bits = DFRACT_BITS - 1 - exp_e; + int_part = exp_m >> exp_bits; + frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits); + frac_part = frac_part << exp_e; + } else { + int_part = 0; + frac_part = exp_m >> -exp_e; } /* Best accuracy is around 0, so try to get there with the fractional part. */ - if( frac_part > FL2FXCONST_DBL(0.5f) ) - { - int_part = int_part + 1; - frac_part = frac_part + FL2FXCONST_DBL(-1.0f); + if (frac_part > FL2FXCONST_DBL(0.5f)) { + int_part = int_part + 1; + frac_part = frac_part + FL2FXCONST_DBL(-1.0f); } - if( frac_part < FL2FXCONST_DBL(-0.5f) ) - { - int_part = int_part - 1; - frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part); + if (frac_part < FL2FXCONST_DBL(-0.5f)) { + int_part = int_part - 1; + frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part); } + /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation below. */ + *result_e = int_part + 1; + /* Evaluate taylor polynomial which approximates 2^x */ { FIXP_DBL p; /* result_m ~= 2^frac_part */ p = frac_part; - /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to fMultDiv2(). */ - result_m = FL2FXCONST_DBL(1.0f/2.0f); + /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to + * fMultDiv2(). */ + result_m = FL2FXCONST_DBL(1.0f / 2.0f); for (INT i = 0; i < POW2_PRECISION; i++) { /* next taylor series term: a_i * x^i, x=0 */ result_m = fMultAddDiv2(result_m, pow2Coeff[i], p); - p = fMult(p, frac_part); + p = fMult(p, frac_part); } } - - /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation above. */ - *result_e = int_part + 1; - return result_m; } -FIXP_DBL f2Pow( - const FIXP_DBL exp_m, const INT exp_e - ) -{ +FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e) { FIXP_DBL result_m; INT result_e; result_m = f2Pow(exp_m, exp_e, &result_e); - result_e = fixMin(DFRACT_BITS-1,fixMax(-(DFRACT_BITS-1),result_e)); + result_e = fixMin(DFRACT_BITS - 1, fixMax(-(DFRACT_BITS - 1), result_e)); return scaleValue(result_m, result_e); } -FIXP_DBL fPow( - FIXP_DBL base_m, INT base_e, - FIXP_DBL exp_m, INT exp_e, - INT *result_e - ) -{ - INT ans_lg2_e, baselg2_e; - FIXP_DBL base_lg2, ans_lg2, result; +FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, + INT *result_e) { + INT ans_lg2_e, baselg2_e; + FIXP_DBL base_lg2, ans_lg2, result; - /* Calc log2 of base */ - base_lg2 = fLog2(base_m, base_e, &baselg2_e); + /* Calc log2 of base */ + base_lg2 = fLog2(base_m, base_e, &baselg2_e); - /* Prepare exp */ - { - INT leadingBits; + /* Prepare exp */ + { + INT leadingBits; - leadingBits = CountLeadingBits(fAbs(exp_m)); - exp_m = exp_m << leadingBits; - exp_e -= leadingBits; - } + leadingBits = CountLeadingBits(fAbs(exp_m)); + exp_m = exp_m << leadingBits; + exp_e -= leadingBits; + } - /* Calc base pow exp */ - ans_lg2 = fMult(base_lg2, exp_m); - ans_lg2_e = exp_e + baselg2_e; + /* Calc base pow exp */ + ans_lg2 = fMult(base_lg2, exp_m); + ans_lg2_e = exp_e + baselg2_e; - /* Calc antilog */ - result = f2Pow(ans_lg2, ans_lg2_e, result_e); + /* Calc antilog */ + result = f2Pow(ans_lg2, ans_lg2_e, result_e); - return result; + return result; } -FIXP_DBL fLdPow( - FIXP_DBL baseLd_m, - INT baseLd_e, - FIXP_DBL exp_m, INT exp_e, - INT *result_e - ) -{ - INT ans_lg2_e; - FIXP_DBL ans_lg2, result; +FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e, + INT *result_e) { + INT ans_lg2_e; + FIXP_DBL ans_lg2, result; - /* Prepare exp */ - { - INT leadingBits; + /* Prepare exp */ + { + INT leadingBits; - leadingBits = CountLeadingBits(fAbs(exp_m)); - exp_m = exp_m << leadingBits; - exp_e -= leadingBits; - } + leadingBits = CountLeadingBits(fAbs(exp_m)); + exp_m = exp_m << leadingBits; + exp_e -= leadingBits; + } - /* Calc base pow exp */ - ans_lg2 = fMult(baseLd_m, exp_m); - ans_lg2_e = exp_e + baseLd_e; + /* Calc base pow exp */ + ans_lg2 = fMult(baseLd_m, exp_m); + ans_lg2_e = exp_e + baseLd_e; - /* Calc antilog */ - result = f2Pow(ans_lg2, ans_lg2_e, result_e); + /* Calc antilog */ + result = f2Pow(ans_lg2, ans_lg2_e, result_e); - return result; + return result; } -FIXP_DBL fLdPow( - FIXP_DBL baseLd_m, INT baseLd_e, - FIXP_DBL exp_m, INT exp_e - ) -{ +FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e) { FIXP_DBL result_m; int result_e; @@ -768,12 +705,7 @@ FIXP_DBL fLdPow( return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS); } -FIXP_DBL fPowInt( - FIXP_DBL base_m, INT base_e, - INT exp, - INT *pResult_e - ) -{ +FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT exp, INT *pResult_e) { FIXP_DBL result; if (exp != 0) { @@ -782,7 +714,7 @@ FIXP_DBL fPowInt( if (base_m != (FIXP_DBL)0) { { INT leadingBits; - leadingBits = CountLeadingBits( base_m ); + leadingBits = CountLeadingBits(base_m); base_m <<= leadingBits; base_e -= leadingBits; } @@ -798,10 +730,10 @@ FIXP_DBL fPowInt( if (exp < 0) { /* 1.0 / ans */ - result = fDivNorm( FL2FXCONST_DBL(0.5f), result, &result_e ); + result = fDivNorm(FL2FXCONST_DBL(0.5f), result, &result_e); result_e++; } else { - int ansScale = CountLeadingBits( result ); + int ansScale = CountLeadingBits(result); result <<= ansScale; result_e -= ansScale; } @@ -812,84 +744,157 @@ FIXP_DBL fPowInt( result = (FIXP_DBL)0; } *pResult_e = result_e; - } - else { - result = FL2FXCONST_DBL(0.5f); + } else { + result = FL2FXCONST_DBL(0.5f); *pResult_e = 1; } return result; } +#endif /* FUNCTION_fPow */ -FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e) -{ - FIXP_DBL result_m; - - /* Short cut for zero and negative numbers. */ - if ( x_m <= FL2FXCONST_DBL(0.0f) ) { - *result_e = DFRACT_BITS-1; - return FL2FXCONST_DBL(-1.0f); - } +#ifndef FUNCTION_fLog2 +FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e) { + return fLog2(base_m, base_e, result_e); +} +#endif /* FUNCTION_fLog2 */ - /* Calculate log2() */ - { - FIXP_DBL px2_m, x2_m; +INT fixp_floorToInt(FIXP_DBL f_inp, INT sf) { + FDK_ASSERT(sf >= 0); + INT floorInt = (INT)(f_inp >> ((DFRACT_BITS - 1) - sf)); + return floorInt; +} - /* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation - of the function log(1-x) centered at 0 is most accurate. */ - { - INT b_norm; +FIXP_DBL fixp_floor(FIXP_DBL f_inp, INT sf) { + FDK_ASSERT(sf >= 0); + INT floorInt = fixp_floorToInt(f_inp, sf); + FIXP_DBL f_floor = (FIXP_DBL)(floorInt << ((DFRACT_BITS - 1) - sf)); + return f_floor; +} - b_norm = fNormz(x_m)-1; - x2_m = x_m << b_norm; - x_e = x_e - b_norm; - } +INT fixp_ceilToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot +{ + FDK_ASSERT(sf >= 0); + INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot + INT inpINT = (INT)f_inp; - /* map x from log(x) domain to log(1-x) domain. */ - x2_m = - (x2_m + FL2FXCONST_DBL(-1.0) ); + INT mask = (0x1 << sx) - 1; + INT ceilInt = (INT)(f_inp >> sx); - /* Taylor polinomial approximation of ln(1-x) */ - result_m = FL2FXCONST_DBL(0.0); - px2_m = x2_m; - for (int i=0; i<LD_PRECISION; i++) { - result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m); - px2_m = fMult(px2_m, x2_m); - } - /* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from ln(x) result). */ - result_m = fMultAddDiv2(result_m, result_m, FL2FXCONST_DBL(2.0*0.4426950408889634073599246810019)); + if (inpINT & mask) { + ceilInt++; // increment only, if there is at least one set mantissaBit + // right of dot [in inpINT] + } - /* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */ - if (x_e != 0) - { - int enorm; + return ceilInt; +} - enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e); - /* The -1 in the right shift of result_m compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/ - result_m = (result_m >> (enorm-1)) + ((FIXP_DBL)x_e << (DFRACT_BITS-1-enorm)); +FIXP_DBL fixp_ceil(FIXP_DBL f_inp, INT sf) { + FDK_ASSERT(sf >= 0); + INT sx = (DFRACT_BITS - 1) - sf; + INT ceilInt = fixp_ceilToInt(f_inp, sf); + ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000 + ceilInt = ceilInt + << sx; // no fract warn bec. shift into saturation done on int side - *result_e = enorm; - } else { - /* 1 compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/ - *result_e = 1; - } + if ((f_inp > FL2FXCONST_DBL(0.0f)) && (ceilInt & mask)) { + --ceilInt; } + FIXP_DBL f_ceil = (FIXP_DBL)ceilInt; - return result_m; + return f_ceil; } -FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e) +/***************************************************************************** + fixp_truncateToInt() + Just remove the fractional part which is located right of decimal point + Same as which is done when a float is casted to (INT) : + result_INTtype = (INT)b_floatTypeInput; + + returns INT +*****************************************************************************/ +INT fixp_truncateToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot + // (without sign) e.g. at width + // 32 this would be [sign]7. + // supposed sf equals 8. { - if ( x_m <= FL2FXCONST_DBL(0.0f) ) { - x_m = FL2FXCONST_DBL(-1.0f); + FDK_ASSERT(sf >= 0); + INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot + // at width 32 this would be .24 + // supposed sf equals 8. + INT fbaccu = (INT)f_inp; + INT mask = (0x1 << sx); + + if ((fbaccu < 0) && (fbaccu & (mask - 1))) { + fbaccu = fbaccu + mask; } - else { - INT result_e; - x_m = fLog2(x_m, x_e, &result_e); - x_m = scaleValue(x_m, result_e-LD_DATA_SHIFT); - } - return x_m; + + fbaccu = fbaccu >> sx; + return fbaccu; } +/***************************************************************************** + fixp_truncate() + Just remove the fractional part which is located right of decimal point + returns FIXP_DBL +*****************************************************************************/ +FIXP_DBL fixp_truncate(FIXP_DBL f_inp, INT sf) { + FDK_ASSERT(sf >= 0); + INT truncateInt = fixp_truncateToInt(f_inp, sf); + FIXP_DBL f_truncate = (FIXP_DBL)(truncateInt << ((DFRACT_BITS - 1) - sf)); + return f_truncate; +} +/***************************************************************************** + fixp_roundToInt() + round [typical rounding] + See fct roundRef() [which is the reference] + returns INT +*****************************************************************************/ +INT fixp_roundToInt(FIXP_DBL f_inp, INT sf) { + FDK_ASSERT(sf >= 0); + INT sx = DFRACT_BITS - 1 - sf; + INT inp = (INT)f_inp; + INT mask1 = (0x1 << (sx - 1)); + INT mask2 = (0x1 << (sx)) - 1; + INT mask3 = 0x7FFFFFFF; + INT iam = inp & mask2; + INT rnd; + + if ((inp < 0) && !(iam == mask1)) + rnd = inp + mask1; + else if ((inp > 0) && !(inp == mask3)) + rnd = inp + mask1; + else + rnd = inp; + + rnd = rnd >> sx; + + if (inp == mask3) rnd++; + + return rnd; +} + +/***************************************************************************** + fixp_round() + round [typical rounding] + + See fct roundRef() [which is the reference] + returns FIXP_DBL +*****************************************************************************/ +FIXP_DBL fixp_round(FIXP_DBL f_inp, INT sf) { + FDK_ASSERT(sf >= 0); + INT sx = DFRACT_BITS - 1 - sf; + INT r = fixp_roundToInt(f_inp, sf); + ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000 + r = r << sx; + + if ((f_inp > FL2FXCONST_DBL(0.0f)) && (r & mask)) { + --r; + } + + FIXP_DBL f_round = (FIXP_DBL)r; + return f_round; +} |