aboutsummaryrefslogtreecommitdiffstats
path: root/libFDK/src/fixpoint_math.cpp
diff options
context:
space:
mode:
authorMartin Storsjo <martin@martin.st>2018-08-22 15:49:59 +0300
committerMartin Storsjo <martin@martin.st>2018-09-02 23:16:58 +0300
commitb95b15e51d8c692735df4d38c1335efc06aa0443 (patch)
treede32d94e69c5d00ab69724ab114415b1f74cba3d /libFDK/src/fixpoint_math.cpp
parente45ae429b9ca8f234eb861338a75b2d89cde206a (diff)
parent7027cd87488c2a60becbae7a139d18dbc0370459 (diff)
downloadfdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.gz
fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.bz2
fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.zip
Merge remote-tracking branch 'aosp/master'
Diffstat (limited to 'libFDK/src/fixpoint_math.cpp')
-rw-r--r--libFDK/src/fixpoint_math.cpp1257
1 files changed, 631 insertions, 626 deletions
diff --git a/libFDK/src/fixpoint_math.cpp b/libFDK/src/fixpoint_math.cpp
index 1bf9366..6c656fa 100644
--- a/libFDK/src/fixpoint_math.cpp
+++ b/libFDK/src/fixpoint_math.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,93 +90,42 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
-/*************************** Fraunhofer IIS FDK Tools **********************
+/******************* Library for basic calculation routines ********************
Author(s): M. Gayer
+
Description: Fixed point specific mathematical functions
-******************************************************************************/
+*******************************************************************************/
#include "fixpoint_math.h"
+/*
+ * Hardware specific implementations
+ */
-#define MAX_LD_PRECISION 10
-#define LD_PRECISION 10
-
-/* Taylor series coeffcients for ln(1-x), centered at 0 (MacLaurin polinomial). */
-#ifndef LDCOEFF_16BIT
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = {
- FL2FXCONST_DBL(-1.0),
- FL2FXCONST_DBL(-1.0/2.0),
- FL2FXCONST_DBL(-1.0/3.0),
- FL2FXCONST_DBL(-1.0/4.0),
- FL2FXCONST_DBL(-1.0/5.0),
- FL2FXCONST_DBL(-1.0/6.0),
- FL2FXCONST_DBL(-1.0/7.0),
- FL2FXCONST_DBL(-1.0/8.0),
- FL2FXCONST_DBL(-1.0/9.0),
- FL2FXCONST_DBL(-1.0/10.0)
-};
-#else
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = {
- FL2FXCONST_SGL(-1.0),
- FL2FXCONST_SGL(-1.0/2.0),
- FL2FXCONST_SGL(-1.0/3.0),
- FL2FXCONST_SGL(-1.0/4.0),
- FL2FXCONST_SGL(-1.0/5.0),
- FL2FXCONST_SGL(-1.0/6.0),
- FL2FXCONST_SGL(-1.0/7.0),
- FL2FXCONST_SGL(-1.0/8.0),
- FL2FXCONST_SGL(-1.0/9.0),
- FL2FXCONST_SGL(-1.0/10.0)
-};
-#endif
-
-/*****************************************************************************
-
- functionname: CalcLdData
- description: Delivers the Logarithm Dualis ld(op)/LD_DATA_SCALING with polynomial approximation.
- input: Input op is assumed to be double precision fractional 0 < op < 1.0
- This function does not accept negative values.
- output: For op == 0, the result is saturated to -1.0
- This function does not return positive values since input values are treated as fractional values.
- It does not make sense to input an integer value into this function (and expect a positive output value)
- since input values are treated as fractional values.
-
-*****************************************************************************/
-
-LNK_SECTION_CODE_L1
-FIXP_DBL CalcLdData(FIXP_DBL op)
-{
- return fLog2(op, 0);
-}
-
+/*
+ * Fallback implementations
+ */
/*****************************************************************************
functionname: LdDataVector
*****************************************************************************/
LNK_SECTION_CODE_L1
-void LdDataVector( FIXP_DBL *srcVector,
- FIXP_DBL *destVector,
- INT n)
-{
- INT i;
- for ( i=0; i<n; i++) {
- destVector[i] = CalcLdData(srcVector[i]);
- }
+void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT n) {
+ INT i;
+ for (i = 0; i < n; i++) {
+ destVector[i] = fLog2(srcVector[i], 0);
+ }
}
-
-
#define MAX_POW2_PRECISION 8
#ifndef SINETABLE_16BIT
- #define POW2_PRECISION MAX_POW2_PRECISION
+#define POW2_PRECISION MAX_POW2_PRECISION
#else
- #define POW2_PRECISION 5
+#define POW2_PRECISION 5
#endif
/*
@@ -173,62 +133,37 @@ void LdDataVector( FIXP_DBL *srcVector,
ommited (equal to 1.0).
pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION
- To evaluate the taylor series around x = 0, the coefficients are: 1/!i * ln(2)^i
+ To evaluate the taylor series around x = 0, the coefficients are: 1/!i *
+ ln(2)^i
*/
#ifndef POW2COEFF_16BIT
+RAM_ALIGN
LNK_SECTION_CONSTDATA_L1
static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = {
- FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
- FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
- FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
- FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
- FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
- FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
- FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
- FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
+ FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
+ FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
+ FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
+ FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
+ FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
+ FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
+ FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
+ FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
};
#else
+RAM_ALIGN
LNK_SECTION_CONSTDATA_L1
static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = {
- FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
- FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
- FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
- FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
- FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
- FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
- FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
- FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
+ FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
+ FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
+ FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
+ FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
+ FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
+ FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
+ FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
+ FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
};
#endif
-
-
-/*****************************************************************************
-
- functionname: mul_dbl_sgl_rnd
- description: Multiply with round.
-*****************************************************************************/
-
-/* for rounding a dfract to fract */
-#define ACCU_R (LONG) 0x00008000
-
-LNK_SECTION_CODE_L1
-FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2)
-{
- FIXP_DBL prod;
- LONG v = (LONG)(op1);
- SHORT u = (SHORT)(op2);
-
- LONG low = u*(v&SGL_MASK);
- low = (low+(ACCU_R>>1)) >> (FRACT_BITS-1); /* round */
- LONG high = u * ((v>>FRACT_BITS)<<1);
-
- prod = (LONG)(high+low);
-
- return((FIXP_DBL)prod);
-}
-
-
/*****************************************************************************
functionname: CalcInvLdData
@@ -236,530 +171,532 @@ FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2)
Delivers 2^(op*LD_DATA_SCALING)
input: Input op is assumed to be fractional -1.0 < op < 1.0
output: For op == 0, the result is MAXVAL_DBL (almost 1.0).
- For negative input values the output should be treated as a positive fractional value.
- For positive input values the output should be treated as a positive integer value.
- This function does not output negative values.
+ For negative input values the output should be treated as a
+positive fractional value. For positive input values the output should be
+treated as a positive integer value. This function does not output negative
+values.
*****************************************************************************/
-LNK_SECTION_CODE_L1
+/* Date: 06-JULY-2012 Arthur Tritthart, IIS Fraunhofer Erlangen */
+/* Version with 3 table lookup and 1 linear interpolations */
+/* Algorithm: compute power of 2, argument x is in Q7.25 format */
+/* result = 2^(x/64) */
+/* We split exponent (x/64) into 5 components: */
+/* integer part: represented by b31..b25 (exp) */
+/* fractional part 1: represented by b24..b20 (lookup1) */
+/* fractional part 2: represented by b19..b15 (lookup2) */
+/* fractional part 3: represented by b14..b10 (lookup3) */
+/* fractional part 4: represented by b09..b00 (frac) */
+/* => result = (lookup1*lookup2*(lookup3+C1*frac)<<3)>>exp */
+/* Due to the fact, that all lookup values contain a factor 0.5 */
+/* the result has to be shifted by 3 to the right also. */
+/* Table exp2_tab_long contains the log2 for 0 to 1.0 in steps */
+/* of 1/32, table exp2w_tab_long the log2 for 0 to 1/32 in steps*/
+/* of 1/1024, table exp2x_tab_long the log2 for 0 to 1/1024 in */
+/* steps of 1/32768. Since the 2-logarithm of very very small */
+/* negative value is rather linear, we can use interpolation. */
+/* Limitations: */
+/* For x <= 0, the result is fractional positive */
+/* For x > 0, the result is integer in range 1...7FFF.FFFF */
+/* For x < -31/64, we have to clear the result */
+/* For x = 0, the result is ~1.0 (0x7FFF.FFFF) */
+/* For x >= 31/64, the result is 0x7FFF.FFFF */
+
/* This table is used for lookup 2^x with */
/* x in range [0...1.0[ in steps of 1/32 */
-LNK_SECTION_DATA_L1 static const UINT exp2_tab_long[32]={
-0x40000000,0x4166C34C,0x42D561B4,0x444C0740,
-0x45CAE0F2,0x47521CC6,0x48E1E9BA,0x4A7A77D4,
-0x4C1BF829,0x4DC69CDD,0x4F7A9930,0x51382182,
-0x52FF6B55,0x54D0AD5A,0x56AC1F75,0x5891FAC1,
-0x5A82799A,0x5C7DD7A4,0x5E8451D0,0x60962665,
-0x62B39509,0x64DCDEC3,0x6712460B,0x69540EC9,
-0x6BA27E65,0x6DFDDBCC,0x70666F76,0x72DC8374,
-0x75606374,0x77F25CCE,0x7A92BE8B,0x7D41D96E
-// 0x80000000
+LNK_SECTION_DATA_L1
+const UINT exp2_tab_long[32] = {
+ 0x40000000, 0x4166C34C, 0x42D561B4, 0x444C0740, 0x45CAE0F2, 0x47521CC6,
+ 0x48E1E9BA, 0x4A7A77D4, 0x4C1BF829, 0x4DC69CDD, 0x4F7A9930, 0x51382182,
+ 0x52FF6B55, 0x54D0AD5A, 0x56AC1F75, 0x5891FAC1, 0x5A82799A, 0x5C7DD7A4,
+ 0x5E8451D0, 0x60962665, 0x62B39509, 0x64DCDEC3, 0x6712460B, 0x69540EC9,
+ 0x6BA27E65, 0x6DFDDBCC, 0x70666F76, 0x72DC8374, 0x75606374, 0x77F25CCE,
+ 0x7A92BE8B, 0x7D41D96E
+ // 0x80000000
};
/* This table is used for lookup 2^x with */
/* x in range [0...1/32[ in steps of 1/1024 */
-LNK_SECTION_DATA_L1 static const UINT exp2w_tab_long[32]={
-0x40000000,0x400B1818,0x4016321B,0x40214E0C,
-0x402C6BE9,0x40378BB4,0x4042AD6D,0x404DD113,
-0x4058F6A8,0x40641E2B,0x406F479E,0x407A7300,
-0x4085A051,0x4090CF92,0x409C00C4,0x40A733E6,
-0x40B268FA,0x40BD9FFF,0x40C8D8F5,0x40D413DD,
-0x40DF50B8,0x40EA8F86,0x40F5D046,0x410112FA,
-0x410C57A2,0x41179E3D,0x4122E6CD,0x412E3152,
-0x41397DCC,0x4144CC3B,0x41501CA0,0x415B6EFB,
-// 0x4166C34C,
+LNK_SECTION_DATA_L1
+const UINT exp2w_tab_long[32] = {
+ 0x40000000, 0x400B1818, 0x4016321B, 0x40214E0C, 0x402C6BE9, 0x40378BB4,
+ 0x4042AD6D, 0x404DD113, 0x4058F6A8, 0x40641E2B, 0x406F479E, 0x407A7300,
+ 0x4085A051, 0x4090CF92, 0x409C00C4, 0x40A733E6, 0x40B268FA, 0x40BD9FFF,
+ 0x40C8D8F5, 0x40D413DD, 0x40DF50B8, 0x40EA8F86, 0x40F5D046, 0x410112FA,
+ 0x410C57A2, 0x41179E3D, 0x4122E6CD, 0x412E3152, 0x41397DCC, 0x4144CC3B,
+ 0x41501CA0, 0x415B6EFB,
+ // 0x4166C34C,
};
/* This table is used for lookup 2^x with */
/* x in range [0...1/1024[ in steps of 1/32768 */
-LNK_SECTION_DATA_L1 static const UINT exp2x_tab_long[32]={
-0x40000000,0x400058B9,0x4000B173,0x40010A2D,
-0x400162E8,0x4001BBA3,0x4002145F,0x40026D1B,
-0x4002C5D8,0x40031E95,0x40037752,0x4003D011,
-0x400428CF,0x4004818E,0x4004DA4E,0x4005330E,
-0x40058BCE,0x4005E48F,0x40063D51,0x40069613,
-0x4006EED5,0x40074798,0x4007A05B,0x4007F91F,
-0x400851E4,0x4008AAA8,0x4009036E,0x40095C33,
-0x4009B4FA,0x400A0DC0,0x400A6688,0x400ABF4F,
-//0x400B1818
+LNK_SECTION_DATA_L1
+const UINT exp2x_tab_long[32] = {
+ 0x40000000, 0x400058B9, 0x4000B173, 0x40010A2D, 0x400162E8, 0x4001BBA3,
+ 0x4002145F, 0x40026D1B, 0x4002C5D8, 0x40031E95, 0x40037752, 0x4003D011,
+ 0x400428CF, 0x4004818E, 0x4004DA4E, 0x4005330E, 0x40058BCE, 0x4005E48F,
+ 0x40063D51, 0x40069613, 0x4006EED5, 0x40074798, 0x4007A05B, 0x4007F91F,
+ 0x400851E4, 0x4008AAA8, 0x4009036E, 0x40095C33, 0x4009B4FA, 0x400A0DC0,
+ 0x400A6688, 0x400ABF4F,
+ // 0x400B1818
};
-LNK_SECTION_CODE_L1 FIXP_DBL CalcInvLdData(FIXP_DBL x)
-{
- int set_zero = (x < FL2FXCONST_DBL(-31.0/64.0))? 0 : 1;
- int set_max = (x >= FL2FXCONST_DBL( 31.0/64.0)) | (x == FL2FXCONST_DBL(0.0));
-
- FIXP_SGL frac = (FIXP_SGL)(LONG)(x & 0x3FF);
- UINT index3 = (UINT)(LONG)(x >> 10) & 0x1F;
- UINT index2 = (UINT)(LONG)(x >> 15) & 0x1F;
- UINT index1 = (UINT)(LONG)(x >> 20) & 0x1F;
- int exp = (x > FL2FXCONST_DBL(0.0f)) ? (31 - (int)(x>>25)) : (int)(-(x>>25));
-
- UINT lookup1 = exp2_tab_long[index1]*set_zero;
- UINT lookup2 = exp2w_tab_long[index2];
- UINT lookup3 = exp2x_tab_long[index3];
- UINT lookup3f = lookup3 + (UINT)(LONG)fMultDiv2((FIXP_DBL)(0x0016302F),(FIXP_SGL)frac);
-
- UINT lookup12 = (UINT)(LONG)fMult((FIXP_DBL)lookup1, (FIXP_DBL) lookup2);
- UINT lookup = (UINT)(LONG)fMult((FIXP_DBL)lookup12, (FIXP_DBL) lookup3f);
-
- FIXP_DBL retVal = (lookup<<3) >> exp;
-
- if (set_max)
- retVal=FL2FXCONST_DBL(1.0f);
-
- return retVal;
-}
-
-
-
-
-
/*****************************************************************************
functionname: InitLdInt and CalcLdInt
- description: Create and access table with integer LdData (0 to 193)
+ description: Create and access table with integer LdData (0 to
+LD_INT_TAB_LEN)
*****************************************************************************/
+#ifndef LD_INT_TAB_LEN
+#define LD_INT_TAB_LEN \
+ 193 /* Default tab length. Lower value should be set in fix.h */
+#endif
+#if (LD_INT_TAB_LEN <= 120)
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_DBL ldIntCoeff[] = {
+ (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000,
+ (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2,
+ (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000,
+ (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f,
+ (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0,
+ (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee,
+ (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2,
+ (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050,
+ (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009,
+ (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949,
+ (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000,
+ (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162,
+ (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b,
+ (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e,
+ (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f,
+ (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312,
+ (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785,
+ (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd,
+ (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0,
+ (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca,
+ (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b,
+ (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb,
+ (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee,
+ (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8,
+ (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79,
+ (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f,
+ (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2,
+ (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b,
+ (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60,
+ (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355,
+ (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050,
+ (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d,
+ (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40,
+ (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118,
+ (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009,
+ (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190,
+ (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61,
+ (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f,
+ (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949,
+ (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e};
+
+#elif (LD_INT_TAB_LEN <= 193)
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_DBL ldIntCoeff[] = {
+ (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000,
+ (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2,
+ (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000,
+ (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f,
+ (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0,
+ (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee,
+ (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2,
+ (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050,
+ (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009,
+ (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949,
+ (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000,
+ (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162,
+ (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b,
+ (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e,
+ (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f,
+ (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312,
+ (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785,
+ (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd,
+ (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0,
+ (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca,
+ (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b,
+ (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb,
+ (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee,
+ (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8,
+ (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79,
+ (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f,
+ (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2,
+ (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b,
+ (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60,
+ (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355,
+ (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050,
+ (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d,
+ (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40,
+ (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118,
+ (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009,
+ (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190,
+ (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61,
+ (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f,
+ (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949,
+ (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e,
+ (FIXP_DBL)0x0dd053f7, (FIXP_DBL)0x0dd6753e, (FIXP_DBL)0x0ddc899b,
+ (FIXP_DBL)0x0de29143, (FIXP_DBL)0x0de88c6b, (FIXP_DBL)0x0dee7b47,
+ (FIXP_DBL)0x0df45e09, (FIXP_DBL)0x0dfa34e1, (FIXP_DBL)0x0e000000,
+ (FIXP_DBL)0x0e05bf94, (FIXP_DBL)0x0e0b73cb, (FIXP_DBL)0x0e111cd2,
+ (FIXP_DBL)0x0e16bad3, (FIXP_DBL)0x0e1c4dfb, (FIXP_DBL)0x0e21d671,
+ (FIXP_DBL)0x0e275460, (FIXP_DBL)0x0e2cc7ee, (FIXP_DBL)0x0e323143,
+ (FIXP_DBL)0x0e379085, (FIXP_DBL)0x0e3ce5d8, (FIXP_DBL)0x0e423162,
+ (FIXP_DBL)0x0e477346, (FIXP_DBL)0x0e4caba8, (FIXP_DBL)0x0e51daa8,
+ (FIXP_DBL)0x0e570069, (FIXP_DBL)0x0e5c1d0b, (FIXP_DBL)0x0e6130af,
+ (FIXP_DBL)0x0e663b74, (FIXP_DBL)0x0e6b3d79, (FIXP_DBL)0x0e7036db,
+ (FIXP_DBL)0x0e7527b9, (FIXP_DBL)0x0e7a1030, (FIXP_DBL)0x0e7ef05b,
+ (FIXP_DBL)0x0e83c857, (FIXP_DBL)0x0e88983f, (FIXP_DBL)0x0e8d602e,
+ (FIXP_DBL)0x0e92203d, (FIXP_DBL)0x0e96d888, (FIXP_DBL)0x0e9b8926,
+ (FIXP_DBL)0x0ea03232, (FIXP_DBL)0x0ea4d3c2, (FIXP_DBL)0x0ea96df0,
+ (FIXP_DBL)0x0eae00d2, (FIXP_DBL)0x0eb28c7f, (FIXP_DBL)0x0eb7110e,
+ (FIXP_DBL)0x0ebb8e96, (FIXP_DBL)0x0ec0052b, (FIXP_DBL)0x0ec474e4,
+ (FIXP_DBL)0x0ec8ddd4, (FIXP_DBL)0x0ecd4012, (FIXP_DBL)0x0ed19bb0,
+ (FIXP_DBL)0x0ed5f0c4, (FIXP_DBL)0x0eda3f60, (FIXP_DBL)0x0ede8797,
+ (FIXP_DBL)0x0ee2c97d, (FIXP_DBL)0x0ee70525, (FIXP_DBL)0x0eeb3a9f,
+ (FIXP_DBL)0x0eef69ff, (FIXP_DBL)0x0ef39355, (FIXP_DBL)0x0ef7b6b4,
+ (FIXP_DBL)0x0efbd42b, (FIXP_DBL)0x0effebcd, (FIXP_DBL)0x0f03fda9,
+ (FIXP_DBL)0x0f0809cf, (FIXP_DBL)0x0f0c1050, (FIXP_DBL)0x0f10113b,
+ (FIXP_DBL)0x0f140ca0, (FIXP_DBL)0x0f18028d, (FIXP_DBL)0x0f1bf312,
+ (FIXP_DBL)0x0f1fde3d, (FIXP_DBL)0x0f23c41d, (FIXP_DBL)0x0f27a4c0,
+ (FIXP_DBL)0x0f2b8034};
- LNK_SECTION_CONSTDATA_L1
- static const FIXP_DBL ldIntCoeff[] = {
- (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000, (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2, (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0,
- (FIXP_DBL)0x06000000, (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f, (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0, (FIXP_DBL)0x07d053f7,
- (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee, (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2, (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050,
- (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009, (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949, (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b,
- (FIXP_DBL)0x0a000000, (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162, (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b, (FIXP_DBL)0x0a92203d,
- (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e, (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f, (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312,
- (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785, (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd, (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61,
- (FIXP_DBL)0x0b9d5da0, (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca, (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b, (FIXP_DBL)0x0bf45e09,
- (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb, (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee, (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8,
- (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79, (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f, (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926,
- (FIXP_DBL)0x0ca4d3c2, (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b, (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60, (FIXP_DBL)0x0ce2c97d,
- (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355, (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050, (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d,
- (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40, (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118, (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff,
- (FIXP_DBL)0x0d66a009, (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190, (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61, (FIXP_DBL)0x0d96bdad,
- (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f, (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949, (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e,
- (FIXP_DBL)0x0dd053f7, (FIXP_DBL)0x0dd6753e, (FIXP_DBL)0x0ddc899b, (FIXP_DBL)0x0de29143, (FIXP_DBL)0x0de88c6b, (FIXP_DBL)0x0dee7b47, (FIXP_DBL)0x0df45e09, (FIXP_DBL)0x0dfa34e1,
- (FIXP_DBL)0x0e000000, (FIXP_DBL)0x0e05bf94, (FIXP_DBL)0x0e0b73cb, (FIXP_DBL)0x0e111cd2, (FIXP_DBL)0x0e16bad3, (FIXP_DBL)0x0e1c4dfb, (FIXP_DBL)0x0e21d671, (FIXP_DBL)0x0e275460,
- (FIXP_DBL)0x0e2cc7ee, (FIXP_DBL)0x0e323143, (FIXP_DBL)0x0e379085, (FIXP_DBL)0x0e3ce5d8, (FIXP_DBL)0x0e423162, (FIXP_DBL)0x0e477346, (FIXP_DBL)0x0e4caba8, (FIXP_DBL)0x0e51daa8,
- (FIXP_DBL)0x0e570069, (FIXP_DBL)0x0e5c1d0b, (FIXP_DBL)0x0e6130af, (FIXP_DBL)0x0e663b74, (FIXP_DBL)0x0e6b3d79, (FIXP_DBL)0x0e7036db, (FIXP_DBL)0x0e7527b9, (FIXP_DBL)0x0e7a1030,
- (FIXP_DBL)0x0e7ef05b, (FIXP_DBL)0x0e83c857, (FIXP_DBL)0x0e88983f, (FIXP_DBL)0x0e8d602e, (FIXP_DBL)0x0e92203d, (FIXP_DBL)0x0e96d888, (FIXP_DBL)0x0e9b8926, (FIXP_DBL)0x0ea03232,
- (FIXP_DBL)0x0ea4d3c2, (FIXP_DBL)0x0ea96df0, (FIXP_DBL)0x0eae00d2, (FIXP_DBL)0x0eb28c7f, (FIXP_DBL)0x0eb7110e, (FIXP_DBL)0x0ebb8e96, (FIXP_DBL)0x0ec0052b, (FIXP_DBL)0x0ec474e4,
- (FIXP_DBL)0x0ec8ddd4, (FIXP_DBL)0x0ecd4012, (FIXP_DBL)0x0ed19bb0, (FIXP_DBL)0x0ed5f0c4, (FIXP_DBL)0x0eda3f60, (FIXP_DBL)0x0ede8797, (FIXP_DBL)0x0ee2c97d, (FIXP_DBL)0x0ee70525,
- (FIXP_DBL)0x0eeb3a9f, (FIXP_DBL)0x0eef69ff, (FIXP_DBL)0x0ef39355, (FIXP_DBL)0x0ef7b6b4, (FIXP_DBL)0x0efbd42b, (FIXP_DBL)0x0effebcd, (FIXP_DBL)0x0f03fda9, (FIXP_DBL)0x0f0809cf,
- (FIXP_DBL)0x0f0c1050, (FIXP_DBL)0x0f10113b, (FIXP_DBL)0x0f140ca0, (FIXP_DBL)0x0f18028d, (FIXP_DBL)0x0f1bf312, (FIXP_DBL)0x0f1fde3d, (FIXP_DBL)0x0f23c41d, (FIXP_DBL)0x0f27a4c0,
- (FIXP_DBL)0x0f2b8034
- };
-
-
- LNK_SECTION_INITCODE
- void InitLdInt()
- {
- /* nothing to do! Use preinitialized logarithm table */
- }
+#else
+#error "ldInt table size too small"
+#endif
+LNK_SECTION_INITCODE
+void InitLdInt() { /* nothing to do! Use preinitialized logarithm table */
+}
+
+#if (LD_INT_TAB_LEN != 0)
LNK_SECTION_CODE_L1
-FIXP_DBL CalcLdInt(INT i)
-{
+FIXP_DBL CalcLdInt(INT i) {
/* calculates ld(op)/LD_DATA_SCALING */
- /* op is assumed to be an integer value between 1 and 193 */
+ /* op is assumed to be an integer value between 1 and LD_INT_TAB_LEN */
- FDK_ASSERT((193>0) && ((FIXP_DBL)ldIntCoeff[0]==(FIXP_DBL)0x80000001)); /* tab has to be initialized */
+ FDK_ASSERT((LD_INT_TAB_LEN > 0) &&
+ ((FIXP_DBL)ldIntCoeff[0] ==
+ (FIXP_DBL)0x80000001)); /* tab has to be initialized */
- if ((i>0)&&(i<193))
+ if ((i > 0) && (i < LD_INT_TAB_LEN))
return ldIntCoeff[i];
- else
- {
+ else {
return (0);
}
}
+#endif /* (LD_INT_TAB_LEN!=0) */
-
+#if !defined(FUNCTION_schur_div)
/*****************************************************************************
- functionname: invSqrtNorm2
- description: delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT
+ functionname: schur_div
+ description: delivers op1/op2 with op3-bit accuracy
*****************************************************************************/
-#define SQRT_BITS 7
-#define SQRT_VALUES 128
-#define SQRT_BITS_MASK 0x7f
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_DBL invSqrtTab[SQRT_VALUES] = {
- 0x5a827999, 0x5a287e03, 0x59cf8cbb, 0x5977a0ab, 0x5920b4de, 0x58cac480, 0x5875cade, 0x5821c364,
- 0x57cea99c, 0x577c792f, 0x572b2ddf, 0x56dac38d, 0x568b3631, 0x563c81df, 0x55eea2c3, 0x55a19521,
- 0x55555555, 0x5509dfd0, 0x54bf311a, 0x547545d0, 0x542c1aa3, 0x53e3ac5a, 0x539bf7cc, 0x5354f9e6,
- 0x530eafa4, 0x52c91617, 0x52842a5e, 0x523fe9ab, 0x51fc513f, 0x51b95e6b, 0x51770e8e, 0x51355f19,
- 0x50f44d88, 0x50b3d768, 0x5073fa4f, 0x5034b3e6, 0x4ff601df, 0x4fb7e1f9, 0x4f7a5201, 0x4f3d4fce,
- 0x4f00d943, 0x4ec4ec4e, 0x4e8986e9, 0x4e4ea718, 0x4e144ae8, 0x4dda7072, 0x4da115d9, 0x4d683948,
- 0x4d2fd8f4, 0x4cf7f31b, 0x4cc08604, 0x4c898fff, 0x4c530f64, 0x4c1d0293, 0x4be767f5, 0x4bb23df9,
- 0x4b7d8317, 0x4b4935ce, 0x4b1554a6, 0x4ae1de2a, 0x4aaed0f0, 0x4a7c2b92, 0x4a49ecb3, 0x4a1812fa,
- 0x49e69d16, 0x49b589bb, 0x4984d7a4, 0x49548591, 0x49249249, 0x48f4fc96, 0x48c5c34a, 0x4896e53c,
- 0x48686147, 0x483a364c, 0x480c6331, 0x47dee6e0, 0x47b1c049, 0x4784ee5f, 0x4758701c, 0x472c447c,
- 0x47006a80, 0x46d4e130, 0x46a9a793, 0x467ebcb9, 0x46541fb3, 0x4629cf98, 0x45ffcb80, 0x45d61289,
- 0x45aca3d5, 0x45837e88, 0x455aa1ca, 0x45320cc8, 0x4509beb0, 0x44e1b6b4, 0x44b9f40b, 0x449275ec,
- 0x446b3b95, 0x44444444, 0x441d8f3b, 0x43f71bbe, 0x43d0e917, 0x43aaf68e, 0x43854373, 0x435fcf14,
- 0x433a98c5, 0x43159fdb, 0x42f0e3ae, 0x42cc6397, 0x42a81ef5, 0x42841527, 0x4260458d, 0x423caf8c,
- 0x4219528b, 0x41f62df1, 0x41d3412a, 0x41b08ba1, 0x418e0cc7, 0x416bc40d, 0x4149b0e4, 0x4127d2c3,
- 0x41062920, 0x40e4b374, 0x40c3713a, 0x40a261ef, 0x40818511, 0x4060da21, 0x404060a1, 0x40201814
-};
-
-LNK_SECTION_INITCODE
-void InitInvSqrtTab()
-{
- /* nothing to do !
- use preinitialized square root table
- */
+FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) {
+ INT L_num = (LONG)num >> 1;
+ INT L_denum = (LONG)denum >> 1;
+ INT div = 0;
+ INT k = count;
+
+ FDK_ASSERT(num >= (FIXP_DBL)0);
+ FDK_ASSERT(denum > (FIXP_DBL)0);
+ FDK_ASSERT(num <= denum);
+
+ if (L_num != 0)
+ while (--k) {
+ div <<= 1;
+ L_num <<= 1;
+ if (L_num >= L_denum) {
+ L_num -= L_denum;
+ div++;
+ }
+ }
+ return (FIXP_DBL)(div << (DFRACT_BITS - count));
}
+#endif /* !defined(FUNCTION_schur_div) */
+#ifndef FUNCTION_fMultNorm
+FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e) {
+ INT product = 0;
+ INT norm_f1, norm_f2;
-#if !defined(FUNCTION_invSqrtNorm2)
-/*****************************************************************************
- delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT,
- i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift)
- uses Newton-iteration for approximation
- Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2)
- with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0
-*****************************************************************************/
-FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift)
-{
-
- FIXP_DBL val = op ;
- FIXP_DBL reg1, reg2, regtmp ;
-
- if (val == FL2FXCONST_DBL(0.0)) {
- *shift = 1 ;
- return((LONG)1); /* minimum positive value */
+ if ((f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0)) {
+ *result_e = 0;
+ return (FIXP_DBL)0;
+ }
+ norm_f1 = CountLeadingBits(f1);
+ f1 = f1 << norm_f1;
+ norm_f2 = CountLeadingBits(f2);
+ f2 = f2 << norm_f2;
+
+ if ((f1 == (FIXP_DBL)MINVAL_DBL) && (f2 == (FIXP_DBL)MINVAL_DBL)) {
+ product = -((FIXP_DBL)MINVAL_DBL >> 1);
+ *result_e = -(norm_f1 + norm_f2 - 1);
+ } else {
+ product = fMult(f1, f2);
+ *result_e = -(norm_f1 + norm_f2);
}
+ return (FIXP_DBL)product;
+}
+#endif
- /* normalize input, calculate shift value */
- FDK_ASSERT(val > FL2FXCONST_DBL(0.0));
- *shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */
- val <<=*shift ; /* normalized input V */
- *shift+=2 ; /* bias for exponent */
-
- /* Newton iteration of 1/sqrt(V) */
- reg1 = invSqrtTab[ (INT)(val>>(DFRACT_BITS-1-(SQRT_BITS+1))) & SQRT_BITS_MASK ];
- reg2 = FL2FXCONST_DBL(0.0625f); /* 0.5 >> 3 */
+#ifndef FUNCTION_fDivNorm
+FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) {
+ FIXP_DBL div;
+ INT norm_num, norm_den;
- regtmp= fPow2Div2(reg1); /* a = Q^2 */
- regtmp= reg2 - fMultDiv2(regtmp, val); /* b = 0.5 - 2 * V * Q^2 */
- reg1 += (fMultDiv2(regtmp, reg1)<<4); /* Q = Q + Q*b */
+ FDK_ASSERT(L_num >= (FIXP_DBL)0);
+ FDK_ASSERT(L_denum > (FIXP_DBL)0);
- /* calculate the output exponent = input exp/2 */
- if (*shift & 0x00000001) { /* odd shift values ? */
- reg2 = FL2FXCONST_DBL(0.707106781186547524400844362104849f); /* 1/sqrt(2); */
- reg1 = fMultDiv2(reg1, reg2) << 2;
+ if (L_num == (FIXP_DBL)0) {
+ *result_e = 0;
+ return ((FIXP_DBL)0);
}
- *shift = *shift>>1;
+ norm_num = CountLeadingBits(L_num);
+ L_num = L_num << norm_num;
+ L_num = L_num >> 1;
+ *result_e = -norm_num + 1;
- return(reg1);
-}
-#endif /* !defined(FUNCTION_invSqrtNorm2) */
+ norm_den = CountLeadingBits(L_denum);
+ L_denum = L_denum << norm_den;
+ *result_e -= -norm_den;
-/*****************************************************************************
-
- functionname: sqrtFixp
- description: delivers sqrt(op)
+ div = schur_div(L_num, L_denum, FRACT_BITS);
-*****************************************************************************/
-FIXP_DBL sqrtFixp(FIXP_DBL op)
-{
- INT tmp_exp = 0;
- FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
-
- FDK_ASSERT(tmp_exp > 0) ;
- return( (FIXP_DBL) ( fMultDiv2( (op<<(tmp_exp-1)), tmp_inv ) << 2 ));
+ return div;
}
+#endif /* !FUNCTION_fDivNorm */
+#ifndef FUNCTION_fDivNorm
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom) {
+ INT e;
+ FIXP_DBL res;
-#if !defined(FUNCTION_schur_div)
-/*****************************************************************************
-
- functionname: schur_div
- description: delivers op1/op2 with op3-bit accuracy
+ FDK_ASSERT(denom >= num);
-*****************************************************************************/
+ res = fDivNorm(num, denom, &e);
+ /* Avoid overflow since we must output a value with exponent 0
+ there is no other choice than saturating to almost 1.0f */
+ if (res == (FIXP_DBL)(1 << (DFRACT_BITS - 2)) && e == 1) {
+ res = (FIXP_DBL)MAXVAL_DBL;
+ } else {
+ res = scaleValue(res, e);
+ }
-FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
-{
- INT L_num = (LONG)num>>1;
- INT L_denum = (LONG)denum>>1;
- INT div = 0;
- INT k = count;
-
- FDK_ASSERT (num>=(FIXP_DBL)0);
- FDK_ASSERT (denum>(FIXP_DBL)0);
- FDK_ASSERT (num <= denum);
-
- if (L_num != 0)
- while (--k)
- {
- div <<= 1;
- L_num <<= 1;
- if (L_num >= L_denum)
- {
- L_num -= L_denum;
- div++;
- }
- }
- return (FIXP_DBL)(div << (DFRACT_BITS - count));
+ return res;
}
+#endif /* !FUNCTION_fDivNorm */
+#ifndef FUNCTION_fDivNormSigned
+FIXP_DBL fDivNormSigned(FIXP_DBL num, FIXP_DBL denom) {
+ INT e;
+ FIXP_DBL res;
+ int sign;
-#endif /* !defined(FUNCTION_schur_div) */
-
+ if (denom == (FIXP_DBL)0) {
+ return (FIXP_DBL)MAXVAL_DBL;
+ }
-#ifndef FUNCTION_fMultNorm
-FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e)
-{
- INT product = 0;
- INT norm_f1, norm_f2;
+ sign = ((num >= (FIXP_DBL)0) != (denom >= (FIXP_DBL)0));
+ res = fDivNormSigned(num, denom, &e);
- if ( (f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0) ) {
- *result_e = 0;
- return (FIXP_DBL)0;
+ /* Saturate since we must output a value with exponent 0 */
+ if ((e > 0) && (fAbs(res) >= FL2FXCONST_DBL(0.5))) {
+ if (sign) {
+ res = (FIXP_DBL)MINVAL_DBL;
+ } else {
+ res = (FIXP_DBL)MAXVAL_DBL;
}
- norm_f1 = CountLeadingBits(f1);
- f1 = f1 << norm_f1;
- norm_f2 = CountLeadingBits(f2);
- f2 = f2 << norm_f2;
-
- product = fMult(f1, f2);
- *result_e = - (norm_f1 + norm_f2);
+ } else {
+ res = scaleValue(res, e);
+ }
- return (FIXP_DBL)product;
+ return res;
}
-#endif
+FIXP_DBL fDivNormSigned(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) {
+ FIXP_DBL div;
+ INT norm_num, norm_den;
+ int sign;
-#ifndef FUNCTION_fDivNorm
-FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e)
-{
- FIXP_DBL div;
- INT norm_num, norm_den;
-
- FDK_ASSERT (L_num >= (FIXP_DBL)0);
- FDK_ASSERT (L_denum > (FIXP_DBL)0);
-
- if(L_num == (FIXP_DBL)0)
- {
- *result_e = 0;
- return ((FIXP_DBL)0);
- }
-
- norm_num = CountLeadingBits(L_num);
- L_num = L_num << norm_num;
- L_num = L_num >> 1;
- *result_e = - norm_num + 1;
-
- norm_den = CountLeadingBits(L_denum);
- L_denum = L_denum << norm_den;
- *result_e -= - norm_den;
+ sign = ((L_num >= (FIXP_DBL)0) != (L_denum >= (FIXP_DBL)0));
- div = schur_div(L_num, L_denum, FRACT_BITS);
-
- return div;
-}
-#endif /* !FUNCTION_fDivNorm */
+ if (L_num == (FIXP_DBL)0) {
+ *result_e = 0;
+ return ((FIXP_DBL)0);
+ }
+ if (L_denum == (FIXP_DBL)0) {
+ *result_e = 14;
+ return ((FIXP_DBL)MAXVAL_DBL);
+ }
-#ifndef FUNCTION_fDivNorm
-FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom)
-{
- INT e;
- FIXP_DBL res;
+ norm_num = CountLeadingBits(L_num);
+ L_num = L_num << norm_num;
+ L_num = L_num >> 2;
+ L_num = fAbs(L_num);
+ *result_e = -norm_num + 1;
- FDK_ASSERT (denom >= num);
+ norm_den = CountLeadingBits(L_denum);
+ L_denum = L_denum << norm_den;
+ L_denum = L_denum >> 1;
+ L_denum = fAbs(L_denum);
+ *result_e -= -norm_den;
- res = fDivNorm(num, denom, &e);
+ div = schur_div(L_num, L_denum, FRACT_BITS);
- /* Avoid overflow since we must output a value with exponent 0
- there is no other choice than saturating to almost 1.0f */
- if(res == (FIXP_DBL)(1<<(DFRACT_BITS-2)) && e == 1)
- {
- res = (FIXP_DBL)MAXVAL_DBL;
- }
- else
- {
- res = scaleValue(res, e);
- }
+ if (sign) {
+ div = -div;
+ }
- return res;
+ return div;
}
-#endif /* !FUNCTION_fDivNorm */
+#endif /* FUNCTION_fDivNormSigned */
#ifndef FUNCTION_fDivNormHighPrec
-FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e)
-{
- FIXP_DBL div;
- INT norm_num, norm_den;
+FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e) {
+ FIXP_DBL div;
+ INT norm_num, norm_den;
- FDK_ASSERT (num >= (FIXP_DBL)0);
- FDK_ASSERT (denom > (FIXP_DBL)0);
+ FDK_ASSERT(num >= (FIXP_DBL)0);
+ FDK_ASSERT(denom > (FIXP_DBL)0);
- if(num == (FIXP_DBL)0)
- {
- *result_e = 0;
- return ((FIXP_DBL)0);
- }
+ if (num == (FIXP_DBL)0) {
+ *result_e = 0;
+ return ((FIXP_DBL)0);
+ }
- norm_num = CountLeadingBits(num);
- num = num << norm_num;
- num = num >> 1;
- *result_e = - norm_num + 1;
+ norm_num = CountLeadingBits(num);
+ num = num << norm_num;
+ num = num >> 1;
+ *result_e = -norm_num + 1;
- norm_den = CountLeadingBits(denom);
- denom = denom << norm_den;
- *result_e -= - norm_den;
+ norm_den = CountLeadingBits(denom);
+ denom = denom << norm_den;
+ *result_e -= -norm_den;
- div = schur_div(num, denom, 31);
- return div;
+ div = schur_div(num, denom, 31);
+ return div;
}
#endif /* !FUNCTION_fDivNormHighPrec */
-
-
-FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e)
-{
- return fLog2(base_m, base_e, result_e);
-}
-
-FIXP_DBL f2Pow(
- const FIXP_DBL exp_m, const INT exp_e,
- INT *result_e
- )
-{
+#ifndef FUNCTION_fPow
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e) {
FIXP_DBL frac_part, result_m;
INT int_part;
- if (exp_e > 0)
- {
- INT exp_bits = DFRACT_BITS-1 - exp_e;
- int_part = exp_m >> exp_bits;
- frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits);
- frac_part = frac_part << exp_e;
- }
- else
- {
- int_part = 0;
- frac_part = exp_m >> -exp_e;
+ if (exp_e > 0) {
+ INT exp_bits = DFRACT_BITS - 1 - exp_e;
+ int_part = exp_m >> exp_bits;
+ frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits);
+ frac_part = frac_part << exp_e;
+ } else {
+ int_part = 0;
+ frac_part = exp_m >> -exp_e;
}
/* Best accuracy is around 0, so try to get there with the fractional part. */
- if( frac_part > FL2FXCONST_DBL(0.5f) )
- {
- int_part = int_part + 1;
- frac_part = frac_part + FL2FXCONST_DBL(-1.0f);
+ if (frac_part > FL2FXCONST_DBL(0.5f)) {
+ int_part = int_part + 1;
+ frac_part = frac_part + FL2FXCONST_DBL(-1.0f);
}
- if( frac_part < FL2FXCONST_DBL(-0.5f) )
- {
- int_part = int_part - 1;
- frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part);
+ if (frac_part < FL2FXCONST_DBL(-0.5f)) {
+ int_part = int_part - 1;
+ frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part);
}
+ /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation below. */
+ *result_e = int_part + 1;
+
/* Evaluate taylor polynomial which approximates 2^x */
{
FIXP_DBL p;
/* result_m ~= 2^frac_part */
p = frac_part;
- /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to fMultDiv2(). */
- result_m = FL2FXCONST_DBL(1.0f/2.0f);
+ /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to
+ * fMultDiv2(). */
+ result_m = FL2FXCONST_DBL(1.0f / 2.0f);
for (INT i = 0; i < POW2_PRECISION; i++) {
/* next taylor series term: a_i * x^i, x=0 */
result_m = fMultAddDiv2(result_m, pow2Coeff[i], p);
- p = fMult(p, frac_part);
+ p = fMult(p, frac_part);
}
}
-
- /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation above. */
- *result_e = int_part + 1;
-
return result_m;
}
-FIXP_DBL f2Pow(
- const FIXP_DBL exp_m, const INT exp_e
- )
-{
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e) {
FIXP_DBL result_m;
INT result_e;
result_m = f2Pow(exp_m, exp_e, &result_e);
- result_e = fixMin(DFRACT_BITS-1,fixMax(-(DFRACT_BITS-1),result_e));
+ result_e = fixMin(DFRACT_BITS - 1, fixMax(-(DFRACT_BITS - 1), result_e));
return scaleValue(result_m, result_e);
}
-FIXP_DBL fPow(
- FIXP_DBL base_m, INT base_e,
- FIXP_DBL exp_m, INT exp_e,
- INT *result_e
- )
-{
- INT ans_lg2_e, baselg2_e;
- FIXP_DBL base_lg2, ans_lg2, result;
+FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e,
+ INT *result_e) {
+ INT ans_lg2_e, baselg2_e;
+ FIXP_DBL base_lg2, ans_lg2, result;
- /* Calc log2 of base */
- base_lg2 = fLog2(base_m, base_e, &baselg2_e);
+ /* Calc log2 of base */
+ base_lg2 = fLog2(base_m, base_e, &baselg2_e);
- /* Prepare exp */
- {
- INT leadingBits;
+ /* Prepare exp */
+ {
+ INT leadingBits;
- leadingBits = CountLeadingBits(fAbs(exp_m));
- exp_m = exp_m << leadingBits;
- exp_e -= leadingBits;
- }
+ leadingBits = CountLeadingBits(fAbs(exp_m));
+ exp_m = exp_m << leadingBits;
+ exp_e -= leadingBits;
+ }
- /* Calc base pow exp */
- ans_lg2 = fMult(base_lg2, exp_m);
- ans_lg2_e = exp_e + baselg2_e;
+ /* Calc base pow exp */
+ ans_lg2 = fMult(base_lg2, exp_m);
+ ans_lg2_e = exp_e + baselg2_e;
- /* Calc antilog */
- result = f2Pow(ans_lg2, ans_lg2_e, result_e);
+ /* Calc antilog */
+ result = f2Pow(ans_lg2, ans_lg2_e, result_e);
- return result;
+ return result;
}
-FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m,
- INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e,
- INT *result_e
- )
-{
- INT ans_lg2_e;
- FIXP_DBL ans_lg2, result;
+FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e,
+ INT *result_e) {
+ INT ans_lg2_e;
+ FIXP_DBL ans_lg2, result;
- /* Prepare exp */
- {
- INT leadingBits;
+ /* Prepare exp */
+ {
+ INT leadingBits;
- leadingBits = CountLeadingBits(fAbs(exp_m));
- exp_m = exp_m << leadingBits;
- exp_e -= leadingBits;
- }
+ leadingBits = CountLeadingBits(fAbs(exp_m));
+ exp_m = exp_m << leadingBits;
+ exp_e -= leadingBits;
+ }
- /* Calc base pow exp */
- ans_lg2 = fMult(baseLd_m, exp_m);
- ans_lg2_e = exp_e + baseLd_e;
+ /* Calc base pow exp */
+ ans_lg2 = fMult(baseLd_m, exp_m);
+ ans_lg2_e = exp_e + baseLd_e;
- /* Calc antilog */
- result = f2Pow(ans_lg2, ans_lg2_e, result_e);
+ /* Calc antilog */
+ result = f2Pow(ans_lg2, ans_lg2_e, result_e);
- return result;
+ return result;
}
-FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m, INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e
- )
-{
+FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e) {
FIXP_DBL result_m;
int result_e;
@@ -768,12 +705,7 @@ FIXP_DBL fLdPow(
return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS);
}
-FIXP_DBL fPowInt(
- FIXP_DBL base_m, INT base_e,
- INT exp,
- INT *pResult_e
- )
-{
+FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT exp, INT *pResult_e) {
FIXP_DBL result;
if (exp != 0) {
@@ -782,7 +714,7 @@ FIXP_DBL fPowInt(
if (base_m != (FIXP_DBL)0) {
{
INT leadingBits;
- leadingBits = CountLeadingBits( base_m );
+ leadingBits = CountLeadingBits(base_m);
base_m <<= leadingBits;
base_e -= leadingBits;
}
@@ -798,10 +730,10 @@ FIXP_DBL fPowInt(
if (exp < 0) {
/* 1.0 / ans */
- result = fDivNorm( FL2FXCONST_DBL(0.5f), result, &result_e );
+ result = fDivNorm(FL2FXCONST_DBL(0.5f), result, &result_e);
result_e++;
} else {
- int ansScale = CountLeadingBits( result );
+ int ansScale = CountLeadingBits(result);
result <<= ansScale;
result_e -= ansScale;
}
@@ -812,84 +744,157 @@ FIXP_DBL fPowInt(
result = (FIXP_DBL)0;
}
*pResult_e = result_e;
- }
- else {
- result = FL2FXCONST_DBL(0.5f);
+ } else {
+ result = FL2FXCONST_DBL(0.5f);
*pResult_e = 1;
}
return result;
}
+#endif /* FUNCTION_fPow */
-FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e)
-{
- FIXP_DBL result_m;
-
- /* Short cut for zero and negative numbers. */
- if ( x_m <= FL2FXCONST_DBL(0.0f) ) {
- *result_e = DFRACT_BITS-1;
- return FL2FXCONST_DBL(-1.0f);
- }
+#ifndef FUNCTION_fLog2
+FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e) {
+ return fLog2(base_m, base_e, result_e);
+}
+#endif /* FUNCTION_fLog2 */
- /* Calculate log2() */
- {
- FIXP_DBL px2_m, x2_m;
+INT fixp_floorToInt(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT floorInt = (INT)(f_inp >> ((DFRACT_BITS - 1) - sf));
+ return floorInt;
+}
- /* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation
- of the function log(1-x) centered at 0 is most accurate. */
- {
- INT b_norm;
+FIXP_DBL fixp_floor(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT floorInt = fixp_floorToInt(f_inp, sf);
+ FIXP_DBL f_floor = (FIXP_DBL)(floorInt << ((DFRACT_BITS - 1) - sf));
+ return f_floor;
+}
- b_norm = fNormz(x_m)-1;
- x2_m = x_m << b_norm;
- x_e = x_e - b_norm;
- }
+INT fixp_ceilToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot
+{
+ FDK_ASSERT(sf >= 0);
+ INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot
+ INT inpINT = (INT)f_inp;
- /* map x from log(x) domain to log(1-x) domain. */
- x2_m = - (x2_m + FL2FXCONST_DBL(-1.0) );
+ INT mask = (0x1 << sx) - 1;
+ INT ceilInt = (INT)(f_inp >> sx);
- /* Taylor polinomial approximation of ln(1-x) */
- result_m = FL2FXCONST_DBL(0.0);
- px2_m = x2_m;
- for (int i=0; i<LD_PRECISION; i++) {
- result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m);
- px2_m = fMult(px2_m, x2_m);
- }
- /* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from ln(x) result). */
- result_m = fMultAddDiv2(result_m, result_m, FL2FXCONST_DBL(2.0*0.4426950408889634073599246810019));
+ if (inpINT & mask) {
+ ceilInt++; // increment only, if there is at least one set mantissaBit
+ // right of dot [in inpINT]
+ }
- /* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */
- if (x_e != 0)
- {
- int enorm;
+ return ceilInt;
+}
- enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e);
- /* The -1 in the right shift of result_m compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/
- result_m = (result_m >> (enorm-1)) + ((FIXP_DBL)x_e << (DFRACT_BITS-1-enorm));
+FIXP_DBL fixp_ceil(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT sx = (DFRACT_BITS - 1) - sf;
+ INT ceilInt = fixp_ceilToInt(f_inp, sf);
+ ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000
+ ceilInt = ceilInt
+ << sx; // no fract warn bec. shift into saturation done on int side
- *result_e = enorm;
- } else {
- /* 1 compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/
- *result_e = 1;
- }
+ if ((f_inp > FL2FXCONST_DBL(0.0f)) && (ceilInt & mask)) {
+ --ceilInt;
}
+ FIXP_DBL f_ceil = (FIXP_DBL)ceilInt;
- return result_m;
+ return f_ceil;
}
-FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e)
+/*****************************************************************************
+ fixp_truncateToInt()
+ Just remove the fractional part which is located right of decimal point
+ Same as which is done when a float is casted to (INT) :
+ result_INTtype = (INT)b_floatTypeInput;
+
+ returns INT
+*****************************************************************************/
+INT fixp_truncateToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot
+ // (without sign) e.g. at width
+ // 32 this would be [sign]7.
+ // supposed sf equals 8.
{
- if ( x_m <= FL2FXCONST_DBL(0.0f) ) {
- x_m = FL2FXCONST_DBL(-1.0f);
+ FDK_ASSERT(sf >= 0);
+ INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot
+ // at width 32 this would be .24
+ // supposed sf equals 8.
+ INT fbaccu = (INT)f_inp;
+ INT mask = (0x1 << sx);
+
+ if ((fbaccu < 0) && (fbaccu & (mask - 1))) {
+ fbaccu = fbaccu + mask;
}
- else {
- INT result_e;
- x_m = fLog2(x_m, x_e, &result_e);
- x_m = scaleValue(x_m, result_e-LD_DATA_SHIFT);
- }
- return x_m;
+
+ fbaccu = fbaccu >> sx;
+ return fbaccu;
}
+/*****************************************************************************
+ fixp_truncate()
+ Just remove the fractional part which is located right of decimal point
+ returns FIXP_DBL
+*****************************************************************************/
+FIXP_DBL fixp_truncate(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT truncateInt = fixp_truncateToInt(f_inp, sf);
+ FIXP_DBL f_truncate = (FIXP_DBL)(truncateInt << ((DFRACT_BITS - 1) - sf));
+ return f_truncate;
+}
+/*****************************************************************************
+ fixp_roundToInt()
+ round [typical rounding]
+ See fct roundRef() [which is the reference]
+ returns INT
+*****************************************************************************/
+INT fixp_roundToInt(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT sx = DFRACT_BITS - 1 - sf;
+ INT inp = (INT)f_inp;
+ INT mask1 = (0x1 << (sx - 1));
+ INT mask2 = (0x1 << (sx)) - 1;
+ INT mask3 = 0x7FFFFFFF;
+ INT iam = inp & mask2;
+ INT rnd;
+
+ if ((inp < 0) && !(iam == mask1))
+ rnd = inp + mask1;
+ else if ((inp > 0) && !(inp == mask3))
+ rnd = inp + mask1;
+ else
+ rnd = inp;
+
+ rnd = rnd >> sx;
+
+ if (inp == mask3) rnd++;
+
+ return rnd;
+}
+
+/*****************************************************************************
+ fixp_round()
+ round [typical rounding]
+
+ See fct roundRef() [which is the reference]
+ returns FIXP_DBL
+*****************************************************************************/
+FIXP_DBL fixp_round(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT sx = DFRACT_BITS - 1 - sf;
+ INT r = fixp_roundToInt(f_inp, sf);
+ ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000
+ r = r << sx;
+
+ if ((f_inp > FL2FXCONST_DBL(0.0f)) && (r & mask)) {
+ --r;
+ }
+
+ FIXP_DBL f_round = (FIXP_DBL)r;
+ return f_round;
+}