summaryrefslogtreecommitdiffstats
path: root/libAACenc/src/sf_estim.cpp
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
committerThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
commit2228e360595641dd906bf1773307f43d304f5b2e (patch)
tree57f3d390ebb0782cc0de0fb984c8ea7e45b4f386 /libAACenc/src/sf_estim.cpp
downloadfdk-aac-2228e360595641dd906bf1773307f43d304f5b2e.tar.gz
fdk-aac-2228e360595641dd906bf1773307f43d304f5b2e.tar.bz2
fdk-aac-2228e360595641dd906bf1773307f43d304f5b2e.zip
Snapshot 2bda038c163298531d47394bc2c09e1409c5d0db
Change-Id: If584e579464f28b97d50e51fc76ba654a5536c54
Diffstat (limited to 'libAACenc/src/sf_estim.cpp')
-rw-r--r--libAACenc/src/sf_estim.cpp1301
1 files changed, 1301 insertions, 0 deletions
diff --git a/libAACenc/src/sf_estim.cpp b/libAACenc/src/sf_estim.cpp
new file mode 100644
index 0000000..c5512cb
--- /dev/null
+++ b/libAACenc/src/sf_estim.cpp
@@ -0,0 +1,1301 @@
+
+/* -----------------------------------------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
+ All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
+the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
+This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
+audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
+independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
+of the MPEG specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
+may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
+individually for the purpose of encoding or decoding bit streams in products that are compliant with
+the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
+these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
+software may already be covered under those patent licenses when it is used for those licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
+are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
+applications information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification, are permitted without
+payment of copyright license fees provided that you satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
+your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation and/or other materials
+provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
+You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived from this library without
+prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
+software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
+and the date of any change. For modified versions of the FDK AAC Codec, the term
+"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
+"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
+ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
+respect to this software.
+
+You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
+by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
+"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
+of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
+including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
+or business interruption, however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of this software, even if
+advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------------------------------------- */
+
+/******************************** MPEG Audio Encoder **************************
+
+ Initial author: M. Werner
+ contents/description: Scale factor estimation
+
+******************************************************************************/
+
+#include "sf_estim.h"
+#include "aacEnc_rom.h"
+#include "quantize.h"
+#include "bit_cnt.h"
+
+
+
+
+#define AS_PE_FAC_SHIFT 7
+#define DIST_FAC_SHIFT 3
+#define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT)
+static const INT MAX_SCF_DELTA = 60;
+
+
+static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(3.0f/AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */
+static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(1.3219281f/AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */
+static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */
+
+
+/*
+ Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel
+
+ Description: Calculates the formfactor
+
+ sf: scale factor of the mdct spectrum
+ sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) * (2^FORM_FAC_SHIFT))
+*/
+static void
+FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(FIXP_DBL *RESTRICT sfbFormFactorLdData,
+ PSY_OUT_CHANNEL *RESTRICT psyOutChan)
+{
+ INT j, sfb, sfbGrp;
+ FIXP_DBL formFactor;
+
+ int tmp0 = psyOutChan->sfbCnt;
+ int tmp1 = psyOutChan->maxSfbPerGroup;
+ int step = psyOutChan->sfbPerGroup;
+ for(sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) {
+ for (sfb = 0; sfb < tmp1; sfb++) {
+ formFactor = FL2FXCONST_DBL(0.0f);
+ /* calc sum of sqrt(spec) */
+ for(j=psyOutChan->sfbOffsets[sfbGrp+sfb]; j<psyOutChan->sfbOffsets[sfbGrp+sfb+1]; j++ ) {
+ formFactor += sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j]))>>FORM_FAC_SHIFT;
+ }
+ sfbFormFactorLdData[sfbGrp+sfb] = CalcLdData(formFactor);
+ }
+ /* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */
+ for ( ; sfb < psyOutChan->sfbPerGroup; sfb++) {
+ sfbFormFactorLdData[sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
+ }
+ }
+}
+
+/*
+ Function: FDKaacEnc_CalcFormFactor
+
+ Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each channel
+*/
+
+void
+FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
+ PSY_OUT_CHANNEL *psyOutChannel[(2)],
+ const INT nChannels)
+{
+ INT j;
+ for (j=0; j<nChannels; j++) {
+ FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);
+ }
+}
+
+/*
+ Function: FDKaacEnc_calcSfbRelevantLines
+
+ Description: Calculates sfbNRelevantLines
+
+ sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0)
+*/
+static void
+FDKaacEnc_calcSfbRelevantLines( const FIXP_DBL *const sfbFormFactorLdData,
+ const FIXP_DBL *const sfbEnergyLdData,
+ const FIXP_DBL *const sfbThresholdLdData,
+ const INT *const sfbOffsets,
+ const INT sfbCnt,
+ const INT sfbPerGroup,
+ const INT maxSfbPerGroup,
+ FIXP_DBL *sfbNRelevantLines)
+{
+ INT sfbOffs, sfb;
+ FIXP_DBL sfbWidthLdData;
+ FIXP_DBL asPeFacLdData = FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */
+ FIXP_DBL accu;
+
+ /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) * 64); */
+
+ FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL));
+
+ for (sfbOffs=0; sfbOffs<sfbCnt; sfbOffs+=sfbPerGroup) {
+ for(sfb=0; sfb<maxSfbPerGroup; sfb++) {
+ /* calc sum of sqrt(spec) */
+ if((FIXP_DBL)sfbEnergyLdData[sfbOffs+sfb] > (FIXP_DBL)sfbThresholdLdData[sfbOffs+sfb]) {
+ INT sfbWidth = sfbOffsets[sfbOffs+sfb+1] - sfbOffsets[sfbOffs+sfb];
+
+ /* avgFormFactorLdData = sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */
+ /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] / avgFormFactorLdData; */
+ sfbWidthLdData = (FIXP_DBL)(sfbWidth << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
+ sfbWidthLdData = CalcLdData(sfbWidthLdData);
+
+ accu = sfbEnergyLdData[sfbOffs+sfb] - sfbWidthLdData - asPeFacLdData;
+ accu = sfbFormFactorLdData[sfbOffs+sfb] - (accu >> 2);
+
+ sfbNRelevantLines[sfbOffs+sfb] = CalcInvLdData(accu) >> 1;
+ }
+ }
+ }
+}
+
+/*
+ Function: FDKaacEnc_countSingleScfBits
+
+ Description:
+
+ scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft, INT scfRight)
+{
+ FIXP_DBL scfBitsFract;
+
+ scfBitsFract = (FIXP_DBL) ( FDKaacEnc_bitCountScalefactorDelta(scfLeft-scf)
+ + FDKaacEnc_bitCountScalefactorDelta(scf-scfRight) );
+
+ scfBitsFract = scfBitsFract << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT));
+
+ return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
+}
+
+/*
+ Function: FDKaacEnc_calcSingleSpecPe
+
+ specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart, FIXP_DBL nLines)
+{
+ FIXP_DBL specPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL ldRatio;
+ FIXP_DBL scfFract;
+
+ scfFract = (FIXP_DBL)(scf << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
+
+ ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f),scfFract);
+
+ if (ldRatio >= PE_C1) {
+ specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,ldRatio));
+ }
+ else {
+ specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,(PE_C2 + fMult(PE_C3,ldRatio))));
+ }
+
+ return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
+}
+
+/*
+ Function: FDKaacEnc_countScfBitsDiff
+
+ scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld,
+ INT *scfNew,
+ INT sfbCnt,
+ INT startSfb,
+ INT stopSfb)
+{
+ FIXP_DBL scfBitsFract;
+ INT scfBitsDiff = 0;
+ INT sfb = 0, sfbLast;
+ INT sfbPrev, sfbNext;
+
+ /* search for first relevant sfb */
+ sfbLast = startSfb;
+ while ((sfbLast<stopSfb) && (scfOld[sfbLast]==FDK_INT_MIN))
+ sfbLast++;
+ /* search for previous relevant sfb and count diff */
+ sfbPrev = startSfb - 1;
+ while ((sfbPrev>=0) && (scfOld[sfbPrev]==FDK_INT_MIN))
+ sfbPrev--;
+ if (sfbPrev>=0)
+ scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev]-scfNew[sfbLast]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev]-scfOld[sfbLast]);
+ /* now loop through all sfbs and count diffs of relevant sfbs */
+ for (sfb=sfbLast+1; sfb<stopSfb; sfb++) {
+ if (scfOld[sfb]!=FDK_INT_MIN) {
+ scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast]-scfNew[sfb]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast]-scfOld[sfb]);
+ sfbLast = sfb;
+ }
+ }
+ /* search for next relevant sfb and count diff */
+ sfbNext = stopSfb;
+ while ((sfbNext<sfbCnt) && (scfOld[sfbNext]==FDK_INT_MIN))
+ sfbNext++;
+ if (sfbNext<sfbCnt)
+ scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast]-scfNew[sfbNext]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast]-scfOld[sfbNext]);
+
+ scfBitsFract = (FIXP_DBL) (scfBitsDiff << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT)));
+
+ return scfBitsFract;
+}
+
+/*
+ Function: FDKaacEnc_calcSpecPeDiff
+
+ specPeDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_calcSpecPeDiff(PSY_OUT_CHANNEL *psyOutChan,
+ QC_OUT_CHANNEL *qcOutChannel,
+ INT *scfOld,
+ INT *scfNew,
+ FIXP_DBL *sfbConstPePart,
+ FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines,
+ INT startSfb,
+ INT stopSfb)
+{
+ FIXP_DBL specPeDiff = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL scfFract = FL2FXCONST_DBL(0.0f);
+ INT sfb;
+
+ /* loop through all sfbs and count pe difference */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfOld[sfb]!=FDK_INT_MIN) {
+ FIXP_DBL ldRatioOld, ldRatioNew, pOld, pNew;
+
+ /* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f / sfbFormFactor[sfb]) * LOG2_1; */
+ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */
+ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
+ if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN)
+ sfbConstPePart[sfb] = ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f);
+
+ scfFract = (FIXP_DBL) (scfOld[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
+ ldRatioOld = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract);
+
+ scfFract = (FIXP_DBL) (scfNew[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
+ ldRatioNew = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract);
+
+ if (ldRatioOld >= PE_C1)
+ pOld = ldRatioOld;
+ else
+ pOld = PE_C2 + fMult(PE_C3,ldRatioOld);
+
+ if (ldRatioNew >= PE_C1)
+ pNew = ldRatioNew;
+ else
+ pNew = PE_C2 + fMult(PE_C3,ldRatioNew);
+
+ specPeDiff += fMult(FL2FXCONST_DBL(0.7f),fMult(sfbNRelevantLines[sfb],(pNew - pOld)));
+ }
+ }
+
+ return specPeDiff;
+}
+
+/*
+ Function: FDKaacEnc_improveScf
+
+ Description: Calculate the distortion by quantization and inverse quantization of the spectrum with
+ various scalefactors. The scalefactor which provides the best results will be used.
+*/
+static INT FDKaacEnc_improveScf(FIXP_DBL *spec,
+ SHORT *quantSpec,
+ SHORT *quantSpecTmp,
+ INT sfbWidth,
+ FIXP_DBL threshLdData,
+ INT scf,
+ INT minScf,
+ FIXP_DBL *distLdData,
+ INT *minScfCalculated
+ )
+{
+ FIXP_DBL sfbDistLdData;
+ INT scfBest = scf;
+ INT k;
+ FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */
+
+ /* calc real distortion */
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
+ quantSpec,
+ sfbWidth,
+ scf);
+ *minScfCalculated = scf;
+ /* nmr > 1.25 -> try to improve nmr */
+ if (sfbDistLdData > (threshLdData-distFactorLdData)) {
+ INT scfEstimated = scf;
+ FIXP_DBL sfbDistBestLdData = sfbDistLdData;
+ INT cnt;
+ /* improve by bigger scf ? */
+ cnt = 0;
+
+ while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 3)) {
+ scf++;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
+ quantSpecTmp,
+ sfbWidth,
+ scf);
+
+ if (sfbDistLdData < sfbDistBestLdData) {
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k=0; k<sfbWidth; k++)
+ quantSpec[k] = quantSpecTmp[k];
+ }
+ }
+ /* improve by smaller scf ? */
+ cnt = 0;
+ scf = scfEstimated;
+ sfbDistLdData = sfbDistBestLdData;
+ while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 1) && (scf > minScf)) {
+ scf--;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
+ quantSpecTmp,
+ sfbWidth,
+ scf);
+
+ if (sfbDistLdData < sfbDistBestLdData) {
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k=0; k<sfbWidth; k++)
+ quantSpec[k] = quantSpecTmp[k];
+ }
+ *minScfCalculated = scf;
+ }
+ *distLdData = sfbDistBestLdData;
+ }
+ else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */
+ FIXP_DBL sfbDistBestLdData = sfbDistLdData;
+ FIXP_DBL sfbDistAllowedLdData = fixMin(sfbDistLdData-distFactorLdData,threshLdData);
+ int cnt;
+ for (cnt=0; cnt<3; cnt++) {
+ scf++;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
+ quantSpecTmp,
+ sfbWidth,
+ scf);
+
+ if (sfbDistLdData < sfbDistAllowedLdData) {
+ *minScfCalculated = scfBest+1;
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k=0; k<sfbWidth; k++)
+ quantSpec[k] = quantSpecTmp[k];
+ }
+ }
+ *distLdData = sfbDistBestLdData;
+ }
+
+ /* return best scalefactor */
+ return scfBest;
+}
+
+/*
+ Function: FDKaacEnc_assimilateSingleScf
+
+*/
+static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
+ QC_OUT_CHANNEL *qcOutChannel,
+ SHORT *quantSpec,
+ SHORT *quantSpecTmp,
+ INT *scf,
+ INT *minScf,
+ FIXP_DBL *sfbDist,
+ FIXP_DBL *sfbConstPePart,
+ FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines,
+ INT *minScfCalculated,
+ INT restartOnSuccess)
+{
+ INT sfbLast, sfbAct, sfbNext;
+ INT scfAct, *scfLast, *scfNext, scfMin, scfMax;
+ INT sfbWidth, sfbOffs;
+ FIXP_DBL enLdData;
+ FIXP_DBL sfbPeOld, sfbPeNew;
+ FIXP_DBL sfbDistNew;
+ INT i, k;
+ INT success = 0;
+ FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL deltaPeNew, deltaPeTmp;
+ INT prevScfLast[MAX_GROUPED_SFB], prevScfNext[MAX_GROUPED_SFB];
+ FIXP_DBL deltaPeLast[MAX_GROUPED_SFB];
+ INT updateMinScfCalculated;
+
+ for (i=0; i<psyOutChan->sfbCnt; i++) {
+ prevScfLast[i] = FDK_INT_MAX;
+ prevScfNext[i] = FDK_INT_MAX;
+ deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX;
+ }
+
+ sfbLast = -1;
+ sfbAct = -1;
+ sfbNext = -1;
+ scfLast = 0;
+ scfNext = 0;
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MAX;
+ do {
+ /* search for new relevant sfb */
+ sfbNext++;
+ while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN))
+ sfbNext++;
+ if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext<psyOutChan->sfbCnt)) {
+ /* relevant scfs to the left and to the right */
+ scfAct = scf[sfbAct];
+ scfLast = scf + sfbLast;
+ scfNext = scf + sfbNext;
+ scfMin = fixMin(*scfLast, *scfNext);
+ scfMax = fixMax(*scfLast, *scfNext);
+ }
+ else if ((sfbLast==-1) && (sfbAct>=0) && (sfbNext<psyOutChan->sfbCnt)) {
+ /* first relevant scf */
+ scfAct = scf[sfbAct];
+ scfLast = &scfAct;
+ scfNext = scf + sfbNext;
+ scfMin = *scfNext;
+ scfMax = *scfNext;
+ }
+ else if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext==psyOutChan->sfbCnt)) {
+ /* last relevant scf */
+ scfAct = scf[sfbAct];
+ scfLast = scf + sfbLast;
+ scfNext = &scfAct;
+ scfMin = *scfLast;
+ scfMax = *scfLast;
+ }
+ if (sfbAct>=0)
+ scfMin = fixMax(scfMin, minScf[sfbAct]);
+
+ if ((sfbAct >= 0) &&
+ (sfbLast>=0 || sfbNext<psyOutChan->sfbCnt) &&
+ (scfAct > scfMin) &&
+ (scfAct <= scfMin+MAX_SCF_DELTA) &&
+ (scfAct >= scfMax-MAX_SCF_DELTA) &&
+ (*scfLast != prevScfLast[sfbAct] ||
+ *scfNext != prevScfNext[sfbAct] ||
+ deltaPe < deltaPeLast[sfbAct])) {
+ /* bigger than neighbouring scf found, try to use smaller scf */
+ success = 0;
+
+ sfbWidth = psyOutChan->sfbOffsets[sfbAct+1] - psyOutChan->sfbOffsets[sfbAct];
+ sfbOffs = psyOutChan->sfbOffsets[sfbAct];
+
+ /* estimate required bits for actual scf */
+ enLdData = qcOutChannel->sfbEnergyLdData[sfbAct];
+
+ /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) * LOG2_1; */
+ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */
+ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
+ if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) {
+ sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f);
+ }
+
+ sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct])
+ +FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
+
+ deltaPeNew = deltaPe;
+ updateMinScfCalculated = 1;
+
+ do {
+ /* estimate required bits for smaller scf */
+ scfAct--;
+ /* check only if the same check was not done before */
+ if (scfAct < minScfCalculated[sfbAct] && scfAct>=scfMax-MAX_SCF_DELTA){
+ /* estimate required bits for new scf */
+ sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct])
+ +FDKaacEnc_countSingleScfBits(scfAct,*scfLast, *scfNext);
+
+ /* use new scf if no increase in pe and
+ quantization error is smaller */
+ deltaPeTmp = deltaPe + sfbPeNew - sfbPeOld;
+ /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
+ if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) {
+ /* distortion of new scf */
+ sfbDistNew = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs,
+ quantSpecTmp+sfbOffs,
+ sfbWidth,
+ scfAct);
+
+ if (sfbDistNew < sfbDist[sfbAct]) {
+ /* success, replace scf by new one */
+ scf[sfbAct] = scfAct;
+ sfbDist[sfbAct] = sfbDistNew;
+
+ for (k=0; k<sfbWidth; k++)
+ quantSpec[sfbOffs+k] = quantSpecTmp[sfbOffs+k];
+
+ deltaPeNew = deltaPeTmp;
+ success = 1;
+ }
+ /* mark as already checked */
+ if (updateMinScfCalculated)
+ minScfCalculated[sfbAct] = scfAct;
+ }
+ else {
+ /* from this scf value on not all new values have been checked */
+ updateMinScfCalculated = 0;
+ }
+ }
+ } while (scfAct > scfMin);
+
+ deltaPe = deltaPeNew;
+
+ /* save parameters to avoid multiple computations of the same sfb */
+ prevScfLast[sfbAct] = *scfLast;
+ prevScfNext[sfbAct] = *scfNext;
+ deltaPeLast[sfbAct] = deltaPe;
+ }
+
+ if (success && restartOnSuccess) {
+ /* start again at first sfb */
+ sfbLast = -1;
+ sfbAct = -1;
+ sfbNext = -1;
+ scfLast = 0;
+ scfNext = 0;
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MAX;
+ success = 0;
+ }
+ else {
+ /* shift sfbs for next band */
+ sfbLast = sfbAct;
+ sfbAct = sfbNext;
+ }
+ } while (sfbNext < psyOutChan->sfbCnt);
+}
+
+/*
+ Function: FDKaacEnc_assimilateMultipleScf
+
+*/
+static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
+ QC_OUT_CHANNEL *qcOutChannel,
+ SHORT *quantSpec,
+ SHORT *quantSpecTmp,
+ INT *scf,
+ INT *minScf,
+ FIXP_DBL *sfbDist,
+ FIXP_DBL *sfbConstPePart,
+ FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines)
+{
+ INT sfb, startSfb, stopSfb;
+ INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct;
+ INT possibleRegionFound;
+ INT sfbWidth, sfbOffs, i, k;
+ FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], distOldSum, distNewSum;
+ INT deltaScfBits;
+ FIXP_DBL deltaSpecPe;
+ FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL deltaPeNew;
+ INT sfbCnt = psyOutChan->sfbCnt;
+
+ /* calc min and max scalfactors */
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MIN;
+ for (sfb=0; sfb<sfbCnt; sfb++) {
+ if (scf[sfb]!=FDK_INT_MIN) {
+ scfMin = fixMin(scfMin, scf[sfb]);
+ scfMax = fixMax(scfMax, scf[sfb]);
+ }
+ }
+
+ if (scfMax != FDK_INT_MIN && scfMax <= scfMin+MAX_SCF_DELTA) {
+
+ scfAct = scfMax;
+
+ do {
+ /* try smaller scf */
+ scfAct--;
+ for (i=0; i<MAX_GROUPED_SFB; i++)
+ scfTmp[i] = scf[i];
+ stopSfb = 0;
+ do {
+ /* search for region where all scfs are bigger than scfAct */
+ sfb = stopSfb;
+ while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN || scf[sfb] <= scfAct))
+ sfb++;
+ startSfb = sfb;
+ sfb++;
+ while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN || scf[sfb] > scfAct))
+ sfb++;
+ stopSfb = sfb;
+
+ /* check if in all sfb of a valid region scfAct >= minScf[sfb] */
+ possibleRegionFound = 0;
+ if (startSfb < sfbCnt) {
+ possibleRegionFound = 1;
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN)
+ if (scfAct < minScf[sfb]) {
+ possibleRegionFound = 0;
+ break;
+ }
+ }
+ }
+
+ if (possibleRegionFound) { /* region found */
+
+ /* replace scfs in region by scfAct */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN)
+ scfTmp[sfb] = scfAct;
+ }
+
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines,
+ startSfb, stopSfb);
+
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
+
+ /* new bit demand small enough ? */
+ /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
+ if (deltaPeNew < FL2FXCONST_DBL(0.0006103515625f)) {
+
+ /* quantize and calc sum of new distortion */
+ distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
+
+ sfbWidth = psyOutChan->sfbOffsets[sfb+1] - psyOutChan->sfbOffsets[sfb];
+ sfbOffs = psyOutChan->sfbOffsets[sfb];
+
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs,
+ quantSpecTmp+sfbOffs,
+ sfbWidth,
+ scfAct);
+
+ if (sfbDistNew[sfb] >qcOutChannel->sfbThresholdLdData[sfb]) {
+ /* no improvement, skip further dist. calculations */
+ distNewSum = distOldSum << 1;
+ break;
+ }
+ distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
+ }
+ }
+ /* distortion smaller ? -> use new scalefactors */
+ if (distNewSum < distOldSum) {
+ deltaPe = deltaPeNew;
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ sfbWidth = psyOutChan->sfbOffsets[sfb+1] -
+ psyOutChan->sfbOffsets[sfb];
+ sfbOffs = psyOutChan->sfbOffsets[sfb];
+ scf[sfb] = scfAct;
+ sfbDist[sfb] = sfbDistNew[sfb];
+
+ for (k=0; k<sfbWidth; k++)
+ quantSpec[sfbOffs+k] = quantSpecTmp[sfbOffs+k];
+ }
+ }
+ }
+
+ }
+ }
+
+ } while (stopSfb <= sfbCnt);
+
+ } while (scfAct > scfMin);
+ }
+}
+
+/*
+ Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2
+
+*/
+static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutChan,
+ QC_OUT_CHANNEL *qcOutChannel,
+ SHORT *quantSpec,
+ SHORT *quantSpecTmp,
+ INT *scf,
+ INT *minScf,
+ FIXP_DBL *sfbDist,
+ FIXP_DBL *sfbConstPePart,
+ FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines)
+{
+ INT sfb, startSfb, stopSfb;
+ INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew;
+ INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi;
+ INT scfMin, scfMax;
+ INT *sfbOffs = psyOutChan->sfbOffsets;
+ FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], sfbDistMax[MAX_GROUPED_SFB];
+ FIXP_DBL distOldSum, distNewSum;
+ INT deltaScfBits;
+ FIXP_DBL deltaSpecPe;
+ FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f);
+ INT sfbCnt = psyOutChan->sfbCnt;
+ INT bSuccess, bCheckScf;
+ INT i,k;
+
+ /* calc min and max scalfactors */
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MIN;
+ for (sfb=0; sfb<sfbCnt; sfb++) {
+ if (scf[sfb]!=FDK_INT_MIN) {
+ scfMin = fixMin(scfMin, scf[sfb]);
+ scfMax = fixMax(scfMax, scf[sfb]);
+ }
+ }
+
+ stopSfb = 0;
+ scfAct = FDK_INT_MIN;
+ do {
+ /* search for region with same scf values scfAct */
+ scfPrev = scfAct;
+
+ sfb = stopSfb;
+ while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN))
+ sfb++;
+ startSfb = sfb;
+ scfAct = scf[startSfb];
+ sfb++;
+ while (sfb<sfbCnt && ((scf[sfb]==FDK_INT_MIN) || (scf[sfb]==scf[startSfb])))
+ sfb++;
+ stopSfb = sfb;
+
+ if (stopSfb < sfbCnt)
+ scfNext = scf[stopSfb];
+ else
+ scfNext = scfAct;
+
+ if (scfPrev == FDK_INT_MIN)
+ scfPrev = scfAct;
+
+ scfPrevNextMax = fixMax(scfPrev, scfNext);
+ scfPrevNextMin = fixMin(scfPrev, scfNext);
+
+ /* try to reduce bits by checking scf values in the range
+ scf[startSfb]...scfHi */
+ scfHi = fixMax(scfPrevNextMax, scfAct);
+ /* try to find a better solution by reducing the scf difference to
+ the nearest possible lower scf */
+ if (scfPrevNextMax >= scfAct)
+ scfLo = fixMin(scfAct, scfPrevNextMin);
+ else
+ scfLo = scfPrevNextMax;
+
+ if (startSfb < sfbCnt && scfHi-scfLo <= MAX_SCF_DELTA) { /* region found */
+ /* 1. try to save bits by coarser quantization */
+ if (scfHi > scf[startSfb]) {
+ /* calculate the allowed distortion */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ /* sfbDistMax[sfb] = (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f); */
+ /* sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f)); */
+ /* -0.15571537944 = ld64(1.e-3f)*/
+ sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f/3.0f),qcOutChannel->sfbThresholdLdData[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb]);
+ sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergyLdData[sfb]-FL2FXCONST_DBL(0.15571537944));
+ sfbDistMax[sfb] = fixMin(sfbDistMax[sfb],qcOutChannel->sfbThresholdLdData[sfb]);
+ }
+ }
+
+ /* loop over all possible scf values for this region */
+ bCheckScf = 1;
+ for (scfNew=scf[startSfb]+1; scfNew<=scfHi; scfNew++) {
+ for (k=0; k<MAX_GROUPED_SFB; k++)
+ scfTmp[k] = scf[k];
+
+ /* replace scfs in region by scfNew */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN)
+ scfTmp[sfb] = scfNew;
+ }
+
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines,
+ startSfb, stopSfb);
+
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
+
+ /* new bit demand small enough ? */
+ if (deltaPeNew < FL2FXCONST_DBL(0.0f)) {
+ bSuccess = 1;
+
+ /* quantize and calc sum of new distortion */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
+ quantSpecTmp+sfbOffs[sfb],
+ sfbOffs[sfb+1]-sfbOffs[sfb],
+ scfNew);
+
+ if (sfbDistNew[sfb] > sfbDistMax[sfb]) {
+ /* no improvement, skip further dist. calculations */
+ bSuccess = 0;
+ if (sfbDistNew[sfb] == qcOutChannel->sfbEnergyLdData[sfb]) {
+ /* if whole sfb is already quantized to 0, further
+ checks with even coarser quant. are useless*/
+ bCheckScf = 0;
+ }
+ break;
+ }
+ }
+ }
+ if (bCheckScf==0) /* further calculations useless ? */
+ break;
+ /* distortion small enough ? -> use new scalefactors */
+ if (bSuccess) {
+ deltaPe = deltaPeNew;
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scf[sfb] = scfNew;
+ sfbDist[sfb] = sfbDistNew[sfb];
+
+ for (k=0; k<sfbOffs[sfb+1]-sfbOffs[sfb]; k++)
+ quantSpec[sfbOffs[sfb]+k] = quantSpecTmp[sfbOffs[sfb]+k];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* 2. only if coarser quantization was not successful, try to find
+ a better solution by finer quantization and reducing bits for
+ scalefactor coding */
+ if (scfAct==scf[startSfb] &&
+ scfLo < scfAct &&
+ scfMax-scfMin <= MAX_SCF_DELTA) {
+
+ int bminScfViolation = 0;
+
+ for (k=0; k<MAX_GROUPED_SFB; k++)
+ scfTmp[k] = scf[k];
+
+ scfNew = scfLo;
+
+ /* replace scfs in region by scfNew and
+ check if in all sfb scfNew >= minScf[sfb] */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ scfTmp[sfb] = scfNew;
+ if (scfNew < minScf[sfb])
+ bminScfViolation = 1;
+ }
+ }
+
+ if (!bminScfViolation) {
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines,
+ startSfb, stopSfb);
+
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
+ }
+
+ /* new bit demand small enough ? */
+ if (!bminScfViolation && deltaPeNew < FL2FXCONST_DBL(0.0f)) {
+
+ /* quantize and calc sum of new distortion */
+ distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
+
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
+ quantSpecTmp+sfbOffs[sfb],
+ sfbOffs[sfb+1]-sfbOffs[sfb],
+ scfNew);
+
+ if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
+ /* no improvement, skip further dist. calculations */
+ distNewSum = distOldSum << 1;
+ break;
+ }
+ distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
+ }
+ }
+ /* distortion smaller ? -> use new scalefactors */
+ if (distNewSum < fMult(FL2FXCONST_DBL(0.8f),distOldSum)) {
+ deltaPe = deltaPeNew;
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scf[sfb] = scfNew;
+ sfbDist[sfb] = sfbDistNew[sfb];
+
+ for (k=0; k<sfbOffs[sfb+1]-sfbOffs[sfb]; k++)
+ quantSpec[sfbOffs[sfb]+k] = quantSpecTmp[sfbOffs[sfb]+k];
+ }
+ }
+ }
+ }
+ }
+
+ /* 3. try to find a better solution (save bits) by only reducing the
+ scalefactor without new quantization */
+ if (scfMax-scfMin <= MAX_SCF_DELTA-3) { /* 3 bec. scf is reduced 3 times,
+ see for loop below */
+
+ for (k=0; k<sfbCnt; k++)
+ scfTmp[k] = scf[k];
+
+ for (i=0; i<3; i++) {
+ scfNew = scfTmp[startSfb]-1;
+ /* replace scfs in region by scfNew */
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN)
+ scfTmp[sfb] = scfNew;
+ }
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits;
+ /* new bit demand small enough ? */
+ if (deltaPeNew <= FL2FXCONST_DBL(0.0f)) {
+
+ bSuccess = 1;
+ distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ FIXP_DBL sfbEnQ;
+ /* calc the energy and distortion of the quantized spectrum for
+ a smaller scf */
+ FDKaacEnc_calcSfbQuantEnergyAndDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
+ quantSpec+sfbOffs[sfb],
+ sfbOffs[sfb+1]-sfbOffs[sfb], scfNew,
+ &sfbEnQ, &sfbDistNew[sfb]);
+
+ distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
+ distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
+
+ /* 0.00259488556167 = ld64(1.122f) */
+ /* -0.00778722686652 = ld64(0.7079f) */
+ if ((sfbDistNew[sfb] > (sfbDist[sfb]+FL2FXCONST_DBL(0.00259488556167f))) || (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] - FL2FXCONST_DBL(0.00778722686652f)))){
+ bSuccess = 0;
+ break;
+ }
+ }
+ }
+ /* distortion smaller ? -> use new scalefactors */
+ if (distNewSum < distOldSum && bSuccess) {
+ deltaPe = deltaPeNew;
+ for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scf[sfb] = scfNew;
+ sfbDist[sfb] = sfbDistNew[sfb];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ } while (stopSfb <= sfbCnt);
+
+}
+
+static void
+FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(QC_OUT_CHANNEL *qcOutChannel,
+ PSY_OUT_CHANNEL *psyOutChannel,
+ INT *RESTRICT scf,
+ INT *RESTRICT globalGain,
+ FIXP_DBL *RESTRICT sfbFormFactorLdData
+ ,const INT invQuant,
+ SHORT *RESTRICT quantSpec
+ )
+{
+ INT i, j, sfb, sfbOffs;
+ INT scfInt;
+ INT maxSf;
+ INT minSf;
+ FIXP_DBL threshLdData;
+ FIXP_DBL energyLdData;
+ FIXP_DBL energyPartLdData;
+ FIXP_DBL thresholdPartLdData;
+ FIXP_DBL scfFract;
+ FIXP_DBL maxSpec;
+ FIXP_DBL absSpec;
+ INT minScfCalculated[MAX_GROUPED_SFB];
+ FIXP_DBL sfbDistLdData[MAX_GROUPED_SFB];
+ C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024));
+ INT minSfMaxQuant[MAX_GROUPED_SFB];
+
+ FIXP_DBL threshConstLdData=FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */
+ FIXP_DBL convConst=FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */
+ FIXP_DBL c1Const=FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */
+
+
+
+ if (invQuant>0) {
+ FDKmemclear(quantSpec, (1024)*sizeof(SHORT));
+ }
+
+ /* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */
+ for(i=0; i<psyOutChannel->sfbCnt; i++) {
+ scf[i] = FDK_INT_MIN;
+ }
+
+ for (i=0; i<MAX_GROUPED_SFB; i++) {
+ minSfMaxQuant[i] = FDK_INT_MIN;
+ }
+
+ for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for(sfb=0; sfb<psyOutChannel->maxSfbPerGroup; sfb++) {
+
+ threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs+sfb];
+ energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs+sfb];
+
+ sfbDistLdData[sfbOffs+sfb] = energyLdData;
+
+
+ if (energyLdData > threshLdData) {
+ FIXP_DBL tmp;
+
+ /* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */
+ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
+ energyPartLdData = sfbFormFactorLdData[sfbOffs+sfb] + FL2FXCONST_DBL(0.09375f);
+
+ /* influence of allowed distortion */
+ /* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */
+ thresholdPartLdData = threshConstLdData + threshLdData;
+
+ /* scf calc */
+ /* scfFloat = 8.8585f * (thresholdPart - energyPart); */
+ scfFract = thresholdPartLdData - energyPartLdData;
+ /* conversion from log2 to log10 */
+ scfFract = fMult(convConst,scfFract);
+ /* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */
+ scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f),scfFract >> 3);
+
+ /* integer scalefactor */
+ /* scfInt = (int)floor(scfFloat); */
+ scfInt = (INT)(scfFract>>((DFRACT_BITS-1)-3-LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */
+
+ /* maximum of spectrum */
+ maxSpec = FL2FXCONST_DBL(0.0f);
+
+ for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ){
+ absSpec = fixp_abs(qcOutChannel->mdctSpectrum[j]);
+ maxSpec = (absSpec > maxSpec) ? absSpec : maxSpec;
+ }
+
+ /* lower scf limit to avoid quantized values bigger than MAX_QUANT */
+ /* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */
+ /* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */
+ /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 + log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */
+
+ //minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec)) >> ((DFRACT_BITS-1)-8))) + 1;
+ tmp = CalcLdData(maxSpec);
+ if (c1Const>FL2FXCONST_DBL(-1.f)-tmp) {
+ minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + tmp) >> ((DFRACT_BITS-1)-8))) + 1;
+ }
+ else {
+ minSfMaxQuant[sfbOffs+sfb] = ((INT) (FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS-1)-8))) + 1;
+ }
+
+ scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs+sfb]);
+
+
+ /* find better scalefactor with analysis by synthesis */
+ if (invQuant>0) {
+ scfInt = FDKaacEnc_improveScf(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ quantSpecTmp+psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ threshLdData, scfInt, minSfMaxQuant[sfbOffs+sfb],
+ &sfbDistLdData[sfbOffs+sfb], &minScfCalculated[sfbOffs+sfb]
+ );
+ }
+ scf[sfbOffs+sfb] = scfInt;
+ }
+ }
+ }
+
+
+ if (invQuant>1) {
+ /* try to decrease scf differences */
+ FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB];
+ FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB];
+
+ for (i=0; i<psyOutChannel->sfbCnt; i++)
+ sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN;
+
+ FDKaacEnc_calcSfbRelevantLines( sfbFormFactorLdData,
+ qcOutChannel->sfbEnergyLdData,
+ qcOutChannel->sfbThresholdLdData,
+ psyOutChannel->sfbOffsets,
+ psyOutChannel->sfbCnt,
+ psyOutChannel->sfbPerGroup,
+ psyOutChannel->maxSfbPerGroup,
+ sfbNRelevantLines);
+
+
+ FDKaacEnc_assimilateSingleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf,
+ minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, minScfCalculated, 1);
+
+
+ FDKaacEnc_assimilateMultipleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf,
+ minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines);
+
+
+ FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf,
+ minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines);
+
+ }
+
+
+ /* get min scalefac */
+ minSf = FDK_INT_MAX;
+ for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if (scf[sfbOffs+sfb]!=FDK_INT_MIN)
+ minSf = fixMin(minSf,scf[sfbOffs+sfb]);
+ }
+ }
+
+ /* limit scf delta */
+ for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if ((scf[sfbOffs+sfb] != FDK_INT_MIN) && (minSf+MAX_SCF_DELTA) < scf[sfbOffs+sfb]) {
+ scf[sfbOffs+sfb] = minSf + MAX_SCF_DELTA;
+ if (invQuant > 0) { /* changed bands need to be quantized again */
+ sfbDistLdData[sfbOffs+sfb] =
+ FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb],
+ scf[sfbOffs+sfb]
+ );
+ }
+ }
+ }
+ }
+
+
+ /* get max scalefac for global gain */
+ maxSf = FDK_INT_MIN;
+ for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ maxSf = fixMax(maxSf,scf[sfbOffs+sfb]);
+ }
+ }
+
+ /* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */
+ if( maxSf > FDK_INT_MIN ) {
+ *globalGain = maxSf;
+ for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if( scf[sfbOffs+sfb] == FDK_INT_MIN ) {
+ scf[sfbOffs+sfb] = 0;
+ /* set band explicitely to zero */
+ for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ) {
+ qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ else {
+ scf[sfbOffs+sfb] = maxSf - scf[sfbOffs+sfb];
+ }
+ }
+ }
+ }
+ else{
+ *globalGain = 0;
+ /* set spectrum explicitely to zero */
+ for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ scf[sfbOffs+sfb] = 0;
+ /* set band explicitely to zero */
+ for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ) {
+ qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ }
+ }
+
+ /* free quantSpecTmp from scratch */
+ C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024));
+
+
+}
+
+void
+FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],
+ QC_OUT_CHANNEL* qcOutChannel[],
+ const int invQuant,
+ const int nChannels)
+{
+ int ch;
+
+ for (ch = 0; ch < nChannels; ch++)
+ {
+ FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(qcOutChannel[ch],
+ psyOutChannel[ch],
+ qcOutChannel[ch]->scf,
+ &qcOutChannel[ch]->globalGain,
+ qcOutChannel[ch]->sfbFormFactorLdData
+ ,invQuant,
+ qcOutChannel[ch]->quantSpec
+ );
+ }
+
+}
+