diff options
author | Xin Li <delphij@google.com> | 2018-08-06 16:50:14 -0700 |
---|---|---|
committer | Xin Li <delphij@google.com> | 2018-08-06 16:50:14 -0700 |
commit | 0757f38b01d703b355eb5e5acc1f344a949e74e1 (patch) | |
tree | 41c65cebd836ff3f949f1134512985e4a1288593 /libAACenc/src/psy_main.cpp | |
parent | a3e0aa5f25908d92535e045bbde73c9a3d19adc7 (diff) | |
parent | 6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835 (diff) | |
download | fdk-aac-0757f38b01d703b355eb5e5acc1f344a949e74e1.tar.gz fdk-aac-0757f38b01d703b355eb5e5acc1f344a949e74e1.tar.bz2 fdk-aac-0757f38b01d703b355eb5e5acc1f344a949e74e1.zip |
Merge Android Pie into master
Bug: 112104996
Change-Id: I110b508de124016501bc62120163c58633857438
Diffstat (limited to 'libAACenc/src/psy_main.cpp')
-rw-r--r-- | libAACenc/src/psy_main.cpp | 2145 |
1 files changed, 1053 insertions, 1092 deletions
diff --git a/libAACenc/src/psy_main.cpp b/libAACenc/src/psy_main.cpp index 446c894..f6345e4 100644 --- a/libAACenc/src/psy_main.cpp +++ b/libAACenc/src/psy_main.cpp @@ -1,74 +1,85 @@ - -/* ----------------------------------------------------------------------------------------------------------- +/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android -© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. 2. COPYRIGHT LICENSE -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." 3. NO PATENT LICENSE -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION @@ -79,14 +90,15 @@ Am Wolfsmantel 33 www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ +----------------------------------------------------------------------------- */ + +/**************************** AAC encoder library ****************************** -/******************************** MPEG Audio Encoder ************************** + Author(s): M.Werner - Initial author: M.Werner - contents/description: Psychoaccoustic major function block + Description: Psychoaccoustic major function block -******************************************************************************/ +*******************************************************************************/ #include "psy_const.h" @@ -107,15 +119,13 @@ amm-info@iis.fraunhofer.de #include "aacEnc_ram.h" #include "intensity.h" - - /* blending to reduce gibbs artifacts */ #define FADE_OUT_LEN 6 -static const FIXP_DBL fadeOutFactor[FADE_OUT_LEN] = {1840644096, 1533870080, 1227096064, 920322048, 613548032, 306774016}; +static const FIXP_DBL fadeOutFactor[FADE_OUT_LEN] = { + 1840644096, 1533870080, 1227096064, 920322048, 613548032, 306774016}; /* forward definitions */ - /***************************************************************************** functionname: FDKaacEnc_PsyNew @@ -124,56 +134,52 @@ static const FIXP_DBL fadeOutFactor[FADE_OUT_LEN] = {1840644096, 1533870080, 122 input: pointer to a psych handle *****************************************************************************/ -AAC_ENCODER_ERROR FDKaacEnc_PsyNew(PSY_INTERNAL **phpsy, - const INT nElements, - const INT nChannels - ,UCHAR *dynamic_RAM - ) -{ - AAC_ENCODER_ERROR ErrorStatus; - PSY_INTERNAL *hPsy; - INT i; - - hPsy = GetRam_aacEnc_PsyInternal(); - *phpsy = hPsy; - if (hPsy == NULL) { +AAC_ENCODER_ERROR FDKaacEnc_PsyNew(PSY_INTERNAL **phpsy, const INT nElements, + const INT nChannels, UCHAR *dynamic_RAM) { + AAC_ENCODER_ERROR ErrorStatus; + PSY_INTERNAL *hPsy; + INT i; + + hPsy = GetRam_aacEnc_PsyInternal(); + *phpsy = hPsy; + if (hPsy == NULL) { + ErrorStatus = AAC_ENC_NO_MEMORY; + goto bail; + } + + for (i = 0; i < nElements; i++) { + /* PSY_ELEMENT */ + hPsy->psyElement[i] = GetRam_aacEnc_PsyElement(i); + if (hPsy->psyElement[i] == NULL) { ErrorStatus = AAC_ENC_NO_MEMORY; goto bail; } + } - for (i=0; i<nElements; i++) { - /* PSY_ELEMENT */ - hPsy->psyElement[i] = GetRam_aacEnc_PsyElement(i); - if (hPsy->psyElement[i] == NULL) { - ErrorStatus = AAC_ENC_NO_MEMORY; - goto bail; - } + for (i = 0; i < nChannels; i++) { + /* PSY_STATIC */ + hPsy->pStaticChannels[i] = GetRam_aacEnc_PsyStatic(i); + if (hPsy->pStaticChannels[i] == NULL) { + ErrorStatus = AAC_ENC_NO_MEMORY; + goto bail; } - - for (i=0; i<nChannels; i++) { - /* PSY_STATIC */ - hPsy->pStaticChannels[i] = GetRam_aacEnc_PsyStatic(i); - if (hPsy->pStaticChannels[i]==NULL) { - ErrorStatus = AAC_ENC_NO_MEMORY; - goto bail; - } - /* AUDIO INPUT BUFFER */ - hPsy->pStaticChannels[i]->psyInputBuffer = GetRam_aacEnc_PsyInputBuffer(i); - if (hPsy->pStaticChannels[i]->psyInputBuffer==NULL) { - ErrorStatus = AAC_ENC_NO_MEMORY; - goto bail; - } + /* AUDIO INPUT BUFFER */ + hPsy->pStaticChannels[i]->psyInputBuffer = GetRam_aacEnc_PsyInputBuffer(i); + if (hPsy->pStaticChannels[i]->psyInputBuffer == NULL) { + ErrorStatus = AAC_ENC_NO_MEMORY; + goto bail; } + } - /* reusable psych memory */ - hPsy->psyDynamic = GetRam_aacEnc_PsyDynamic(0, dynamic_RAM); + /* reusable psych memory */ + hPsy->psyDynamic = GetRam_aacEnc_PsyDynamic(0, dynamic_RAM); - return AAC_ENC_OK; + return AAC_ENC_OK; bail: - FDKaacEnc_PsyClose(phpsy, NULL); + FDKaacEnc_PsyClose(phpsy, NULL); - return ErrorStatus; + return ErrorStatus; } /***************************************************************************** @@ -184,18 +190,14 @@ bail: input: pointer to a psych handle *****************************************************************************/ -AAC_ENCODER_ERROR FDKaacEnc_PsyOutNew(PSY_OUT **phpsyOut, - const INT nElements, - const INT nChannels, - const INT nSubFrames - ,UCHAR *dynamic_RAM - ) -{ +AAC_ENCODER_ERROR FDKaacEnc_PsyOutNew(PSY_OUT **phpsyOut, const INT nElements, + const INT nChannels, const INT nSubFrames, + UCHAR *dynamic_RAM) { AAC_ENCODER_ERROR ErrorStatus; int n, i; int elInc = 0, chInc = 0; - for (n=0; n<nSubFrames; n++) { + for (n = 0; n < nSubFrames; n++) { phpsyOut[n] = GetRam_aacEnc_PsyOut(n); if (phpsyOut[n] == NULL) { @@ -203,11 +205,15 @@ AAC_ENCODER_ERROR FDKaacEnc_PsyOutNew(PSY_OUT **phpsyOut, goto bail; } - for (i=0; i<nChannels; i++) { + for (i = 0; i < nChannels; i++) { phpsyOut[n]->pPsyOutChannels[i] = GetRam_aacEnc_PsyOutChannel(chInc++); + if (NULL == phpsyOut[n]->pPsyOutChannels[i]) { + ErrorStatus = AAC_ENC_NO_MEMORY; + goto bail; + } } - for (i=0; i<nElements; i++) { + for (i = 0; i < nElements; i++) { phpsyOut[n]->psyOutElement[i] = GetRam_aacEnc_PsyOutElements(elInc++); if (phpsyOut[n]->psyOutElement[i] == NULL) { ErrorStatus = AAC_ENC_NO_MEMORY; @@ -223,63 +229,59 @@ bail: return ErrorStatus; } - -AAC_ENCODER_ERROR FDKaacEnc_psyInitStates(PSY_INTERNAL *hPsy, - PSY_STATIC* psyStatic, - AUDIO_OBJECT_TYPE audioObjectType) -{ +AAC_ENCODER_ERROR FDKaacEnc_psyInitStates(PSY_INTERNAL *hPsy, + PSY_STATIC *psyStatic, + AUDIO_OBJECT_TYPE audioObjectType) { /* init input buffer */ - FDKmemclear(psyStatic->psyInputBuffer, MAX_INPUT_BUFFER_SIZE*sizeof(INT_PCM)); + FDKmemclear(psyStatic->psyInputBuffer, + MAX_INPUT_BUFFER_SIZE * sizeof(INT_PCM)); FDKaacEnc_InitBlockSwitching(&psyStatic->blockSwitchingControl, - isLowDelay(audioObjectType) - ); + isLowDelay(audioObjectType)); return AAC_ENC_OK; } - -AAC_ENCODER_ERROR FDKaacEnc_psyInit(PSY_INTERNAL *hPsy, - PSY_OUT **phpsyOut, - const INT nSubFrames, - const INT nMaxChannels, +AAC_ENCODER_ERROR FDKaacEnc_psyInit(PSY_INTERNAL *hPsy, PSY_OUT **phpsyOut, + const INT nSubFrames, + const INT nMaxChannels, const AUDIO_OBJECT_TYPE audioObjectType, - CHANNEL_MAPPING *cm) -{ + CHANNEL_MAPPING *cm) { AAC_ENCODER_ERROR ErrorStatus = AAC_ENC_OK; int i, ch, n, chInc = 0, resetChannels = 3; - if ( (nMaxChannels>2) && (cm->nChannels==2) ) { + if ((nMaxChannels > 2) && (cm->nChannels == 2)) { chInc = 1; FDKaacEnc_psyInitStates(hPsy, hPsy->pStaticChannels[0], audioObjectType); } - if ( (nMaxChannels==2) ) { + if ((nMaxChannels == 2)) { resetChannels = 0; } - for (i=0; i<cm->nElements; i++) { - for (ch=0; ch<cm->elInfo[i].nChannelsInEl; ch++) { - if (cm->elInfo[i].elType!=ID_LFE) { - hPsy->psyElement[i]->psyStatic[ch] = hPsy->pStaticChannels[chInc]; - if (chInc>=resetChannels) { - FDKaacEnc_psyInitStates(hPsy, hPsy->psyElement[i]->psyStatic[ch], audioObjectType); + for (i = 0; i < cm->nElements; i++) { + for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) { + hPsy->psyElement[i]->psyStatic[ch] = hPsy->pStaticChannels[chInc]; + if (cm->elInfo[i].elType != ID_LFE) { + if (chInc >= resetChannels) { + FDKaacEnc_psyInitStates(hPsy, hPsy->psyElement[i]->psyStatic[ch], + audioObjectType); } + mdct_init(&(hPsy->psyElement[i]->psyStatic[ch]->mdctPers), NULL, 0); hPsy->psyElement[i]->psyStatic[ch]->isLFE = 0; - } - else { - hPsy->psyElement[i]->psyStatic[ch] = hPsy->pStaticChannels[nMaxChannels-1]; + } else { hPsy->psyElement[i]->psyStatic[ch]->isLFE = 1; } chInc++; } } - for (n=0; n<nSubFrames; n++) { + for (n = 0; n < nSubFrames; n++) { chInc = 0; - for (i=0; i<cm->nElements; i++) { - for (ch=0; ch<cm->elInfo[i].nChannelsInEl; ch++) { - phpsyOut[n]->psyOutElement[i]->psyOutChannel[ch] = phpsyOut[n]->pPsyOutChannels[chInc++]; + for (i = 0; i < cm->nElements; i++) { + for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) { + phpsyOut[n]->psyOutElement[i]->psyOutChannel[ch] = + phpsyOut[n]->pPsyOutChannels[chInc++]; } } } @@ -287,7 +289,6 @@ AAC_ENCODER_ERROR FDKaacEnc_psyInit(PSY_INTERNAL *hPsy, return ErrorStatus; } - /***************************************************************************** functionname: FDKaacEnc_psyMainInit @@ -296,139 +297,104 @@ AAC_ENCODER_ERROR FDKaacEnc_psyInit(PSY_INTERNAL *hPsy, *****************************************************************************/ -AAC_ENCODER_ERROR FDKaacEnc_psyMainInit(PSY_INTERNAL *hPsy, - AUDIO_OBJECT_TYPE audioObjectType, - CHANNEL_MAPPING *cm, - INT sampleRate, - INT granuleLength, - INT bitRate, - INT tnsMask, - INT bandwidth, - INT usePns, - INT useIS, - UINT syntaxFlags, - ULONG initFlags) -{ +AAC_ENCODER_ERROR FDKaacEnc_psyMainInit( + PSY_INTERNAL *hPsy, AUDIO_OBJECT_TYPE audioObjectType, CHANNEL_MAPPING *cm, + INT sampleRate, INT granuleLength, INT bitRate, INT tnsMask, INT bandwidth, + INT usePns, INT useIS, INT useMS, UINT syntaxFlags, ULONG initFlags) { AAC_ENCODER_ERROR ErrorStatus; int i, ch; int channelsEff = cm->nChannelsEff; int tnsChannels = 0; FB_TYPE filterBank; - - switch(FDKaacEnc_GetMonoStereoMode(cm->encMode)) { + switch (FDKaacEnc_GetMonoStereoMode(cm->encMode)) { /* ... and map to tnsChannels */ - case EL_MODE_MONO: tnsChannels = 1; break; - case EL_MODE_STEREO: tnsChannels = 2; break; - default: tnsChannels = 0; + case EL_MODE_MONO: + tnsChannels = 1; + break; + case EL_MODE_STEREO: + tnsChannels = 2; + break; + default: + tnsChannels = 0; } - switch (audioObjectType) - { - default: filterBank = FB_LC; break; - case AOT_ER_AAC_LD: filterBank = FB_LD; break; - case AOT_ER_AAC_ELD: filterBank = FB_ELD; break; + switch (audioObjectType) { + default: + filterBank = FB_LC; + break; + case AOT_ER_AAC_LD: + filterBank = FB_LD; + break; + case AOT_ER_AAC_ELD: + filterBank = FB_ELD; + break; } hPsy->granuleLength = granuleLength; - ErrorStatus = FDKaacEnc_InitPsyConfiguration(bitRate/channelsEff, sampleRate, bandwidth, LONG_WINDOW, hPsy->granuleLength, useIS, &(hPsy->psyConf[0]), filterBank); - if (ErrorStatus != AAC_ENC_OK) - return ErrorStatus; + ErrorStatus = FDKaacEnc_InitPsyConfiguration( + bitRate / channelsEff, sampleRate, bandwidth, LONG_WINDOW, + hPsy->granuleLength, useIS, useMS, &(hPsy->psyConf[0]), filterBank); + if (ErrorStatus != AAC_ENC_OK) return ErrorStatus; ErrorStatus = FDKaacEnc_InitTnsConfiguration( - (bitRate*tnsChannels)/channelsEff, - sampleRate, - tnsChannels, - LONG_WINDOW, - hPsy->granuleLength, - isLowDelay(audioObjectType), - (syntaxFlags&AC_SBR_PRESENT)?1:0, - &(hPsy->psyConf[0].tnsConf), - &hPsy->psyConf[0], - (INT)(tnsMask&2), - (INT)(tnsMask&8) ); - - if (ErrorStatus != AAC_ENC_OK) - return ErrorStatus; + (bitRate * tnsChannels) / channelsEff, sampleRate, tnsChannels, + LONG_WINDOW, hPsy->granuleLength, isLowDelay(audioObjectType), + (syntaxFlags & AC_SBR_PRESENT) ? 1 : 0, &(hPsy->psyConf[0].tnsConf), + &hPsy->psyConf[0], (INT)(tnsMask & 2), (INT)(tnsMask & 8)); + + if (ErrorStatus != AAC_ENC_OK) return ErrorStatus; if (granuleLength > 512) { - ErrorStatus = FDKaacEnc_InitPsyConfiguration(bitRate/channelsEff, sampleRate, bandwidth, SHORT_WINDOW, hPsy->granuleLength, useIS, &hPsy->psyConf[1], filterBank); - if (ErrorStatus != AAC_ENC_OK) - return ErrorStatus; + ErrorStatus = FDKaacEnc_InitPsyConfiguration( + bitRate / channelsEff, sampleRate, bandwidth, SHORT_WINDOW, + hPsy->granuleLength, useIS, useMS, &hPsy->psyConf[1], filterBank); + + if (ErrorStatus != AAC_ENC_OK) return ErrorStatus; ErrorStatus = FDKaacEnc_InitTnsConfiguration( - (bitRate*tnsChannels)/channelsEff, - sampleRate, - tnsChannels, - SHORT_WINDOW, - hPsy->granuleLength, - isLowDelay(audioObjectType), - (syntaxFlags&AC_SBR_PRESENT)?1:0, - &hPsy->psyConf[1].tnsConf, - &hPsy->psyConf[1], - (INT)(tnsMask&1), - (INT)(tnsMask&4) ); - - if (ErrorStatus != AAC_ENC_OK) - return ErrorStatus; + (bitRate * tnsChannels) / channelsEff, sampleRate, tnsChannels, + SHORT_WINDOW, hPsy->granuleLength, isLowDelay(audioObjectType), + (syntaxFlags & AC_SBR_PRESENT) ? 1 : 0, &hPsy->psyConf[1].tnsConf, + &hPsy->psyConf[1], (INT)(tnsMask & 1), (INT)(tnsMask & 4)); + if (ErrorStatus != AAC_ENC_OK) return ErrorStatus; } - - for (i=0; i<cm->nElements; i++) { - for (ch=0; ch<cm->elInfo[i].nChannelsInEl; ch++) { + for (i = 0; i < cm->nElements; i++) { + for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) { if (initFlags) { /* reset states */ - FDKaacEnc_psyInitStates(hPsy, hPsy->psyElement[i]->psyStatic[ch], audioObjectType); + FDKaacEnc_psyInitStates(hPsy, hPsy->psyElement[i]->psyStatic[ch], + audioObjectType); } - FDKaacEnc_InitPreEchoControl(hPsy->psyElement[i]->psyStatic[ch]->sfbThresholdnm1, - &hPsy->psyElement[i]->psyStatic[ch]->calcPreEcho, - hPsy->psyConf[0].sfbCnt, - hPsy->psyConf[0].sfbPcmQuantThreshold, - &hPsy->psyElement[i]->psyStatic[ch]->mdctScalenm1); + FDKaacEnc_InitPreEchoControl( + hPsy->psyElement[i]->psyStatic[ch]->sfbThresholdnm1, + &hPsy->psyElement[i]->psyStatic[ch]->calcPreEcho, + hPsy->psyConf[0].sfbCnt, hPsy->psyConf[0].sfbPcmQuantThreshold, + &hPsy->psyElement[i]->psyStatic[ch]->mdctScalenm1); } } - ErrorStatus = FDKaacEnc_InitPnsConfiguration(&hPsy->psyConf[0].pnsConf, - bitRate/channelsEff, - sampleRate, - usePns, - hPsy->psyConf[0].sfbCnt, - hPsy->psyConf[0].sfbOffset, - cm->elInfo[0].nChannelsInEl, - (hPsy->psyConf[0].filterbank == FB_LC)); - if (ErrorStatus != AAC_ENC_OK) - return ErrorStatus; - - ErrorStatus = FDKaacEnc_InitPnsConfiguration(&hPsy->psyConf[1].pnsConf, - bitRate/channelsEff, - sampleRate, - usePns, - hPsy->psyConf[1].sfbCnt, - hPsy->psyConf[1].sfbOffset, - cm->elInfo[1].nChannelsInEl, - (hPsy->psyConf[1].filterbank == FB_LC)); - return ErrorStatus; -} + ErrorStatus = FDKaacEnc_InitPnsConfiguration( + &hPsy->psyConf[0].pnsConf, bitRate / channelsEff, sampleRate, usePns, + hPsy->psyConf[0].sfbCnt, hPsy->psyConf[0].sfbOffset, + cm->elInfo[0].nChannelsInEl, (hPsy->psyConf[0].filterbank == FB_LC)); + if (ErrorStatus != AAC_ENC_OK) return ErrorStatus; + if (granuleLength > 512) { + ErrorStatus = FDKaacEnc_InitPnsConfiguration( + &hPsy->psyConf[1].pnsConf, bitRate / channelsEff, sampleRate, usePns, + hPsy->psyConf[1].sfbCnt, hPsy->psyConf[1].sfbOffset, + cm->elInfo[1].nChannelsInEl, (hPsy->psyConf[1].filterbank == FB_LC)); + if (ErrorStatus != AAC_ENC_OK) return ErrorStatus; + } -static -void FDKaacEnc_deinterleaveInputBuffer(INT_PCM *pOutputSamples, - INT_PCM *pInputSamples, - INT nSamples, - INT nChannels) -{ - INT k; - /* deinterlave input samples and write to output buffer */ - for (k=0; k<nSamples; k++) { - pOutputSamples[k] = pInputSamples[k*nChannels]; - } + return ErrorStatus; } - - /***************************************************************************** functionname: FDKaacEnc_psyMain @@ -438,950 +404,945 @@ void FDKaacEnc_deinterleaveInputBuffer(INT_PCM *pOutputSamples, This function assumes that enough input data is in the modulo buffer. *****************************************************************************/ +AAC_ENCODER_ERROR FDKaacEnc_psyMain(INT channels, PSY_ELEMENT *psyElement, + PSY_DYNAMIC *psyDynamic, + PSY_CONFIGURATION *psyConf, + PSY_OUT_ELEMENT *RESTRICT psyOutElement, + INT_PCM *pInput, const UINT inputBufSize, + INT *chIdx, INT totalChannels) { + const INT commonWindow = 1; + INT maxSfbPerGroup[(2)]; + INT mdctSpectrum_e; + INT ch; /* counts through channels */ + INT w; /* counts through windows */ + INT sfb; /* counts through scalefactor bands */ + INT line; /* counts through lines */ + + PSY_CONFIGURATION *RESTRICT hPsyConfLong = &psyConf[0]; + PSY_CONFIGURATION *RESTRICT hPsyConfShort = &psyConf[1]; + PSY_OUT_CHANNEL **RESTRICT psyOutChannel = psyOutElement->psyOutChannel; + FIXP_SGL sfbTonality[(2)][MAX_SFB_LONG]; + + PSY_STATIC **RESTRICT psyStatic = psyElement->psyStatic; + + PSY_DATA *RESTRICT psyData[(2)]; + TNS_DATA *RESTRICT tnsData[(2)]; + PNS_DATA *RESTRICT pnsData[(2)]; + + INT zeroSpec = TRUE; /* means all spectral lines are zero */ + + INT blockSwitchingOffset; + + PSY_CONFIGURATION *RESTRICT hThisPsyConf[(2)]; + INT windowLength[(2)]; + INT nWindows[(2)]; + INT wOffset; + + INT maxSfb[(2)]; + INT *pSfbMaxScaleSpec[(2)]; + FIXP_DBL *pSfbEnergy[(2)]; + FIXP_DBL *pSfbSpreadEnergy[(2)]; + FIXP_DBL *pSfbEnergyLdData[(2)]; + FIXP_DBL *pSfbEnergyMS[(2)]; + FIXP_DBL *pSfbThreshold[(2)]; + + INT isShortWindow[(2)]; + + /* number of incoming time samples to be processed */ + const INT nTimeSamples = psyConf->granuleLength; + + switch (hPsyConfLong->filterbank) { + case FB_LC: + blockSwitchingOffset = + nTimeSamples + (9 * nTimeSamples / (2 * TRANS_FAC)); + break; + case FB_LD: + case FB_ELD: + blockSwitchingOffset = nTimeSamples; + break; + default: + return AAC_ENC_UNSUPPORTED_FILTERBANK; + } -AAC_ENCODER_ERROR FDKaacEnc_psyMain(INT channels, - PSY_ELEMENT *psyElement, - PSY_DYNAMIC *psyDynamic, - PSY_CONFIGURATION *psyConf, - PSY_OUT_ELEMENT *RESTRICT psyOutElement, - INT_PCM *pInput, - INT *chIdx, - INT totalChannels - ) -{ - const INT commonWindow = 1; - INT maxSfbPerGroup[(2)]; - INT mdctSpectrum_e; - INT ch; /* counts through channels */ - INT w; /* counts through windows */ - INT sfb; /* counts through scalefactor bands */ - INT line; /* counts through lines */ - - PSY_CONFIGURATION *RESTRICT hPsyConfLong = &psyConf[0]; - PSY_CONFIGURATION *RESTRICT hPsyConfShort = &psyConf[1]; - PSY_OUT_CHANNEL **RESTRICT psyOutChannel = psyOutElement->psyOutChannel; - FIXP_SGL sfbTonality[(2)][MAX_SFB_LONG]; - - PSY_STATIC **RESTRICT psyStatic = psyElement->psyStatic; - - PSY_DATA *RESTRICT psyData[(2)]; - TNS_DATA *RESTRICT tnsData[(2)]; - PNS_DATA *RESTRICT pnsData[(2)]; - - INT zeroSpec = TRUE; /* means all spectral lines are zero */ - - INT blockSwitchingOffset; - - PSY_CONFIGURATION *RESTRICT hThisPsyConf[(2)]; - INT windowLength[(2)]; - INT nWindows[(2)]; - INT wOffset; - - INT maxSfb[(2)]; - INT *pSfbMaxScaleSpec[(2)]; - FIXP_DBL *pSfbEnergy[(2)]; - FIXP_DBL *pSfbSpreadEnergy[(2)]; - FIXP_DBL *pSfbEnergyLdData[(2)]; - FIXP_DBL *pSfbEnergyMS[(2)]; - FIXP_DBL *pSfbThreshold[(2)]; - - INT isShortWindow[(2)]; - - - if (hPsyConfLong->filterbank == FB_LC) { - blockSwitchingOffset = psyConf->granuleLength + (9*psyConf->granuleLength/(2*TRANS_FAC)); - } else { - blockSwitchingOffset = psyConf->granuleLength; - } + for (ch = 0; ch < channels; ch++) { + psyData[ch] = &psyDynamic->psyData[ch]; + tnsData[ch] = &psyDynamic->tnsData[ch]; + pnsData[ch] = &psyDynamic->pnsData[ch]; - for(ch = 0; ch < channels; ch++) - { - psyData[ch] = &psyDynamic->psyData[ch]; - tnsData[ch] = &psyDynamic->tnsData[ch]; - pnsData[ch] = &psyDynamic->pnsData[ch]; + psyData[ch]->mdctSpectrum = psyOutChannel[ch]->mdctSpectrum; + } - psyData[ch]->mdctSpectrum = psyOutChannel[ch]->mdctSpectrum; - } + /* block switching */ + if (hPsyConfLong->filterbank != FB_ELD) { + int err; - /* block switching */ - if (hPsyConfLong->filterbank != FB_ELD) - { - int err; + for (ch = 0; ch < channels; ch++) { + C_ALLOC_SCRATCH_START(pTimeSignal, INT_PCM, (1024)) - for(ch = 0; ch < channels; ch++) - { - C_ALLOC_SCRATCH_START(pTimeSignal, INT_PCM, (1024)) + /* copy input data and use for block switching */ + FDKmemcpy(pTimeSignal, pInput + chIdx[ch] * inputBufSize, + nTimeSamples * sizeof(INT_PCM)); - /* deinterleave input data and use for block switching */ - FDKaacEnc_deinterleaveInputBuffer( pTimeSignal, - &pInput[chIdx[ch]], - psyConf->granuleLength, - totalChannels); + FDKaacEnc_BlockSwitching(&psyStatic[ch]->blockSwitchingControl, + nTimeSamples, psyStatic[ch]->isLFE, pTimeSignal); + /* fill up internal input buffer, to 2xframelength samples */ + FDKmemcpy(psyStatic[ch]->psyInputBuffer + blockSwitchingOffset, + pTimeSignal, + (2 * nTimeSamples - blockSwitchingOffset) * sizeof(INT_PCM)); - FDKaacEnc_BlockSwitching (&psyStatic[ch]->blockSwitchingControl, - psyConf->granuleLength, - psyStatic[ch]->isLFE, - pTimeSignal - ); + C_ALLOC_SCRATCH_END(pTimeSignal, INT_PCM, (1024)) + } + /* synch left and right block type */ + err = FDKaacEnc_SyncBlockSwitching( + &psyStatic[0]->blockSwitchingControl, + (channels > 1) ? &psyStatic[1]->blockSwitchingControl : NULL, channels, + commonWindow); - /* fill up internal input buffer, to 2xframelength samples */ - FDKmemcpy(psyStatic[ch]->psyInputBuffer+blockSwitchingOffset, - pTimeSignal, - (2*psyConf->granuleLength-blockSwitchingOffset)*sizeof(INT_PCM)); + if (err) { + return AAC_ENC_UNSUPPORTED_AOT; /* mixed up LC and LD */ + } - C_ALLOC_SCRATCH_END(pTimeSignal, INT_PCM, (1024)) - } + } else { + for (ch = 0; ch < channels; ch++) { + /* copy input data and use for block switching */ + FDKmemcpy(psyStatic[ch]->psyInputBuffer + blockSwitchingOffset, + pInput + chIdx[ch] * inputBufSize, + nTimeSamples * sizeof(INT_PCM)); + } + } - /* synch left and right block type */ - err = FDKaacEnc_SyncBlockSwitching(&psyStatic[0]->blockSwitchingControl, - &psyStatic[1]->blockSwitchingControl, - channels, - commonWindow); + for (ch = 0; ch < channels; ch++) + isShortWindow[ch] = + (psyStatic[ch]->blockSwitchingControl.lastWindowSequence == + SHORT_WINDOW); + + /* set parameters according to window length */ + for (ch = 0; ch < channels; ch++) { + if (isShortWindow[ch]) { + hThisPsyConf[ch] = hPsyConfShort; + windowLength[ch] = psyConf->granuleLength / TRANS_FAC; + nWindows[ch] = TRANS_FAC; + maxSfb[ch] = MAX_SFB_SHORT; + + pSfbMaxScaleSpec[ch] = psyData[ch]->sfbMaxScaleSpec.Short[0]; + pSfbEnergy[ch] = psyData[ch]->sfbEnergy.Short[0]; + pSfbSpreadEnergy[ch] = psyData[ch]->sfbSpreadEnergy.Short[0]; + pSfbEnergyLdData[ch] = psyData[ch]->sfbEnergyLdData.Short[0]; + pSfbEnergyMS[ch] = psyData[ch]->sfbEnergyMS.Short[0]; + pSfbThreshold[ch] = psyData[ch]->sfbThreshold.Short[0]; - if (err) { - return AAC_ENC_UNSUPPORTED_AOT; /* mixed up LC and LD */ - } + } else { + hThisPsyConf[ch] = hPsyConfLong; + windowLength[ch] = psyConf->granuleLength; + nWindows[ch] = 1; + maxSfb[ch] = MAX_GROUPED_SFB; + + pSfbMaxScaleSpec[ch] = psyData[ch]->sfbMaxScaleSpec.Long; + pSfbEnergy[ch] = psyData[ch]->sfbEnergy.Long; + pSfbSpreadEnergy[ch] = psyData[ch]->sfbSpreadEnergy.Long; + pSfbEnergyLdData[ch] = psyData[ch]->sfbEnergyLdData.Long; + pSfbEnergyMS[ch] = psyData[ch]->sfbEnergyMS.Long; + pSfbThreshold[ch] = psyData[ch]->sfbThreshold.Long; + } + } + /* Transform and get mdctScaling for all channels and windows. */ + for (ch = 0; ch < channels; ch++) { + /* update number of active bands */ + if (psyStatic[ch]->isLFE) { + psyData[ch]->sfbActive = hThisPsyConf[ch]->sfbActiveLFE; + psyData[ch]->lowpassLine = hThisPsyConf[ch]->lowpassLineLFE; + } else { + psyData[ch]->sfbActive = hThisPsyConf[ch]->sfbActive; + psyData[ch]->lowpassLine = hThisPsyConf[ch]->lowpassLine; } - else { - for(ch = 0; ch < channels; ch++) - { - /* deinterleave input data and use for block switching */ - FDKaacEnc_deinterleaveInputBuffer( psyStatic[ch]->psyInputBuffer + blockSwitchingOffset, - &pInput[chIdx[ch]], - psyConf->granuleLength, - totalChannels); + + if (hThisPsyConf[ch]->filterbank == FB_ELD) { + if (FDKaacEnc_Transform_Real_Eld( + psyStatic[ch]->psyInputBuffer, psyData[ch]->mdctSpectrum, + psyStatic[ch]->blockSwitchingControl.lastWindowSequence, + psyStatic[ch]->blockSwitchingControl.windowShape, + &psyStatic[ch]->blockSwitchingControl.lastWindowShape, + nTimeSamples, &mdctSpectrum_e, hThisPsyConf[ch]->filterbank, + psyStatic[ch]->overlapAddBuffer) != 0) { + return AAC_ENC_UNSUPPORTED_FILTERBANK; + } + } else { + if (FDKaacEnc_Transform_Real( + psyStatic[ch]->psyInputBuffer, psyData[ch]->mdctSpectrum, + psyStatic[ch]->blockSwitchingControl.lastWindowSequence, + psyStatic[ch]->blockSwitchingControl.windowShape, + &psyStatic[ch]->blockSwitchingControl.lastWindowShape, + &psyStatic[ch]->mdctPers, nTimeSamples, &mdctSpectrum_e, + hThisPsyConf[ch]->filterbank) != 0) { + return AAC_ENC_UNSUPPORTED_FILTERBANK; } } - for(ch = 0; ch < channels; ch++) - isShortWindow[ch]=(psyStatic[ch]->blockSwitchingControl.lastWindowSequence == SHORT_WINDOW); - - /* set parameters according to window length */ - for(ch = 0; ch < channels; ch++) - { - if(isShortWindow[ch]) { - hThisPsyConf[ch] = hPsyConfShort; - windowLength[ch] = psyConf->granuleLength/TRANS_FAC; - nWindows[ch] = TRANS_FAC; - maxSfb[ch] = MAX_SFB_SHORT; - - pSfbMaxScaleSpec[ch] = psyData[ch]->sfbMaxScaleSpec.Short[0]; - pSfbEnergy[ch] = psyData[ch]->sfbEnergy.Short[0]; - pSfbSpreadEnergy[ch] = psyData[ch]->sfbSpreadEnergy.Short[0]; - pSfbEnergyLdData[ch] = psyData[ch]->sfbEnergyLdData.Short[0]; - pSfbEnergyMS[ch] = psyData[ch]->sfbEnergyMS.Short[0]; - pSfbThreshold[ch] = psyData[ch]->sfbThreshold.Short[0]; - - } else - { - hThisPsyConf[ch] = hPsyConfLong; - windowLength[ch] = psyConf->granuleLength; - nWindows[ch] = 1; - maxSfb[ch] = MAX_GROUPED_SFB; - - pSfbMaxScaleSpec[ch] = psyData[ch]->sfbMaxScaleSpec.Long; - pSfbEnergy[ch] = psyData[ch]->sfbEnergy.Long; - pSfbSpreadEnergy[ch] = psyData[ch]->sfbSpreadEnergy.Long; - pSfbEnergyLdData[ch] = psyData[ch]->sfbEnergyLdData.Long; - pSfbEnergyMS[ch] = psyData[ch]->sfbEnergyMS.Long; - pSfbThreshold[ch] = psyData[ch]->sfbThreshold.Long; + for (w = 0; w < nWindows[ch]; w++) { + wOffset = w * windowLength[ch]; + + /* Low pass / highest sfb */ + FDKmemclear( + &psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine + wOffset], + (windowLength[ch] - psyData[ch]->lowpassLine) * sizeof(FIXP_DBL)); + + if ((hPsyConfLong->filterbank != FB_LC) && + (psyData[ch]->lowpassLine >= FADE_OUT_LEN)) { + /* Do blending to reduce gibbs artifacts */ + for (int i = 0; i < FADE_OUT_LEN; i++) { + psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine + wOffset - + FADE_OUT_LEN + i] = + fMult(psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine + + wOffset - FADE_OUT_LEN + i], + fadeOutFactor[i]); } - } + } - /* Transform and get mdctScaling for all channels and windows. */ - for(ch = 0; ch < channels; ch++) - { - /* update number of active bands */ - if (psyStatic[ch]->isLFE) { - psyData[ch]->sfbActive = hThisPsyConf[ch]->sfbActiveLFE; - psyData[ch]->lowpassLine = hThisPsyConf[ch]->lowpassLineLFE; - } else - { - psyData[ch]->sfbActive = hThisPsyConf[ch]->sfbActive; - psyData[ch]->lowpassLine = hThisPsyConf[ch]->lowpassLine; + /* Check for zero spectrum. These loops will usually terminate very, very + * early. */ + for (line = 0; (line < psyData[ch]->lowpassLine) && (zeroSpec == TRUE); + line++) { + if (psyData[ch]->mdctSpectrum[line + wOffset] != (FIXP_DBL)0) { + zeroSpec = FALSE; + break; } + } - for(w = 0; w < nWindows[ch]; w++) { - - wOffset = w*windowLength[ch]; - - FDKaacEnc_Transform_Real( psyStatic[ch]->psyInputBuffer + wOffset, - psyData[ch]->mdctSpectrum+wOffset, - psyStatic[ch]->blockSwitchingControl.lastWindowSequence, - psyStatic[ch]->blockSwitchingControl.windowShape, - &psyStatic[ch]->blockSwitchingControl.lastWindowShape, - psyConf->granuleLength, - &mdctSpectrum_e, - hThisPsyConf[ch]->filterbank - ,psyStatic[ch]->overlapAddBuffer - ); - - /* Low pass / highest sfb */ - FDKmemclear(&psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine+wOffset], - (windowLength[ch]-psyData[ch]->lowpassLine)*sizeof(FIXP_DBL)); - - if ( (hPsyConfLong->filterbank != FB_LC) && (psyData[ch]->lowpassLine >= FADE_OUT_LEN) ) { - /* Do blending to reduce gibbs artifacts */ - for (int i=0; i<FADE_OUT_LEN; i++) { - psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine+wOffset - FADE_OUT_LEN + i] = fMult(psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine+wOffset - FADE_OUT_LEN + i], fadeOutFactor[i]); - } - } - - - /* Check for zero spectrum. These loops will usually terminate very, very early. */ - for(line=0; (line<psyData[ch]->lowpassLine) && (zeroSpec==TRUE); line++) { - if (psyData[ch]->mdctSpectrum[line+wOffset] != (FIXP_DBL)0) { - zeroSpec = FALSE; - break; - } - } - - } /* w loop */ - - psyData[ch]->mdctScale = mdctSpectrum_e; - - /* rotate internal time samples */ - FDKmemmove(psyStatic[ch]->psyInputBuffer, - psyStatic[ch]->psyInputBuffer+psyConf->granuleLength, - psyConf->granuleLength*sizeof(INT_PCM)); - - - /* ... and get remaining samples from input buffer */ - FDKaacEnc_deinterleaveInputBuffer( psyStatic[ch]->psyInputBuffer+psyConf->granuleLength, - &pInput[ (2*psyConf->granuleLength-blockSwitchingOffset)*totalChannels + chIdx[ch] ], - blockSwitchingOffset-psyConf->granuleLength, - totalChannels); - - } /* ch */ - - /* Do some rescaling to get maximum possible accuracy for energies */ - if ( zeroSpec == FALSE) { - - /* Calc possible spectrum leftshift for each sfb (1 means: 1 bit left shift is possible without overflow) */ - INT minSpecShift = MAX_SHIFT_DBL; - INT nrgShift = MAX_SHIFT_DBL; - INT finalShift = MAX_SHIFT_DBL; - FIXP_DBL currNrg = 0; - FIXP_DBL maxNrg = 0; - - for(ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) { - wOffset = w*windowLength[ch]; - FDKaacEnc_CalcSfbMaxScaleSpec(psyData[ch]->mdctSpectrum+wOffset, - hThisPsyConf[ch]->sfbOffset, - pSfbMaxScaleSpec[ch]+w*maxSfb[ch], - psyData[ch]->sfbActive); - - for (sfb = 0; sfb<psyData[ch]->sfbActive; sfb++) - minSpecShift = fixMin(minSpecShift, (pSfbMaxScaleSpec[ch]+w*maxSfb[ch])[sfb]); - } - - } + } /* w loop */ + + psyData[ch]->mdctScale = mdctSpectrum_e; + + /* rotate internal time samples */ + FDKmemmove(psyStatic[ch]->psyInputBuffer, + psyStatic[ch]->psyInputBuffer + nTimeSamples, + nTimeSamples * sizeof(INT_PCM)); + + /* ... and get remaining samples from input buffer */ + FDKmemcpy(psyStatic[ch]->psyInputBuffer + nTimeSamples, + pInput + (2 * nTimeSamples - blockSwitchingOffset) + + chIdx[ch] * inputBufSize, + (blockSwitchingOffset - nTimeSamples) * sizeof(INT_PCM)); + + } /* ch */ + + /* Do some rescaling to get maximum possible accuracy for energies */ + if (zeroSpec == FALSE) { + /* Calc possible spectrum leftshift for each sfb (1 means: 1 bit left shift + * is possible without overflow) */ + INT minSpecShift = MAX_SHIFT_DBL; + INT nrgShift = MAX_SHIFT_DBL; + INT finalShift = MAX_SHIFT_DBL; + FIXP_DBL currNrg = 0; + FIXP_DBL maxNrg = 0; + + for (ch = 0; ch < channels; ch++) { + for (w = 0; w < nWindows[ch]; w++) { + wOffset = w * windowLength[ch]; + FDKaacEnc_CalcSfbMaxScaleSpec( + psyData[ch]->mdctSpectrum + wOffset, hThisPsyConf[ch]->sfbOffset, + pSfbMaxScaleSpec[ch] + w * maxSfb[ch], psyData[ch]->sfbActive); + + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) + minSpecShift = fixMin(minSpecShift, + (pSfbMaxScaleSpec[ch] + w * maxSfb[ch])[sfb]); + } + } - /* Calc possible energy leftshift for each sfb (1 means: 1 bit left shift is possible without overflow) */ - for(ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) { - wOffset = w*windowLength[ch]; - currNrg = FDKaacEnc_CheckBandEnergyOptim(psyData[ch]->mdctSpectrum+wOffset, - pSfbMaxScaleSpec[ch]+w*maxSfb[ch], - hThisPsyConf[ch]->sfbOffset, - psyData[ch]->sfbActive, - pSfbEnergy[ch]+w*maxSfb[ch], - pSfbEnergyLdData[ch]+w*maxSfb[ch], - minSpecShift-4); - - maxNrg = fixMax(maxNrg, currNrg); - } - } + /* Calc possible energy leftshift for each sfb (1 means: 1 bit left shift is + * possible without overflow) */ + for (ch = 0; ch < channels; ch++) { + for (w = 0; w < nWindows[ch]; w++) { + wOffset = w * windowLength[ch]; + currNrg = FDKaacEnc_CheckBandEnergyOptim( + psyData[ch]->mdctSpectrum + wOffset, + pSfbMaxScaleSpec[ch] + w * maxSfb[ch], hThisPsyConf[ch]->sfbOffset, + psyData[ch]->sfbActive, pSfbEnergy[ch] + w * maxSfb[ch], + pSfbEnergyLdData[ch] + w * maxSfb[ch], minSpecShift - 4); + + maxNrg = fixMax(maxNrg, currNrg); + } + } - if ( maxNrg != (FIXP_DBL)0 ) { - nrgShift = (CountLeadingBits(maxNrg)>>1) + (minSpecShift-4); - } + if (maxNrg != (FIXP_DBL)0) { + nrgShift = (CountLeadingBits(maxNrg) >> 1) + (minSpecShift - 4); + } - /* 2check: Hasn't this decision to be made for both channels? */ - /* For short windows 1 additional bit headroom is necessary to prevent overflows when summing up energies in FDKaacEnc_groupShortData() */ - if(isShortWindow[0]) nrgShift--; - - /* both spectrum and energies mustn't overflow */ - finalShift = fixMin(minSpecShift, nrgShift); - - /* do not shift more than 3 bits more to the left than signal without blockfloating point - * would be to avoid overflow of scaled PCM quantization thresholds */ - if (finalShift > psyData[0]->mdctScale + 3 ) - finalShift = psyData[0]->mdctScale + 3; - - FDK_ASSERT(finalShift >= 0); /* right shift is not allowed */ - - /* correct sfbEnergy and sfbEnergyLdData with new finalShift */ - FIXP_DBL ldShift = finalShift * FL2FXCONST_DBL(2.0/64); - for(ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) { - for(sfb=0; sfb<psyData[ch]->sfbActive; sfb++) { - INT scale = fixMax(0, (pSfbMaxScaleSpec[ch]+w*maxSfb[ch])[sfb]-4); - scale = fixMin((scale-finalShift)<<1, DFRACT_BITS-1); - if (scale >= 0) (pSfbEnergy[ch]+w*maxSfb[ch])[sfb] >>= (scale); - else (pSfbEnergy[ch]+w*maxSfb[ch])[sfb] <<= (-scale); - (pSfbThreshold[ch]+w*maxSfb[ch])[sfb] = fMult((pSfbEnergy[ch]+w*maxSfb[ch])[sfb], C_RATIO); - (pSfbEnergyLdData[ch]+w*maxSfb[ch])[sfb] += ldShift; - } - } + /* 2check: Hasn't this decision to be made for both channels? */ + /* For short windows 1 additional bit headroom is necessary to prevent + * overflows when summing up energies in FDKaacEnc_groupShortData() */ + if (isShortWindow[0]) nrgShift--; + + /* both spectrum and energies mustn't overflow */ + finalShift = fixMin(minSpecShift, nrgShift); + + /* do not shift more than 3 bits more to the left than signal without + * blockfloating point would be to avoid overflow of scaled PCM quantization + * thresholds */ + if (finalShift > psyData[0]->mdctScale + 3) + finalShift = psyData[0]->mdctScale + 3; + + FDK_ASSERT(finalShift >= 0); /* right shift is not allowed */ + + /* correct sfbEnergy and sfbEnergyLdData with new finalShift */ + FIXP_DBL ldShift = finalShift * FL2FXCONST_DBL(2.0 / 64); + for (ch = 0; ch < channels; ch++) { + INT maxSfb_ch = maxSfb[ch]; + INT w_maxSfb_ch = 0; + for (w = 0; w < nWindows[ch]; w++) { + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { + INT scale = fixMax(0, (pSfbMaxScaleSpec[ch] + w_maxSfb_ch)[sfb] - 4); + scale = fixMin((scale - finalShift) << 1, DFRACT_BITS - 1); + if (scale >= 0) + (pSfbEnergy[ch] + w_maxSfb_ch)[sfb] >>= (scale); + else + (pSfbEnergy[ch] + w_maxSfb_ch)[sfb] <<= (-scale); + (pSfbThreshold[ch] + w_maxSfb_ch)[sfb] = + fMult((pSfbEnergy[ch] + w_maxSfb_ch)[sfb], C_RATIO); + (pSfbEnergyLdData[ch] + w_maxSfb_ch)[sfb] += ldShift; } + w_maxSfb_ch += maxSfb_ch; + } + } - if ( finalShift != 0 ) { - for (ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) { - wOffset = w*windowLength[ch]; - for(line=0; line<psyData[ch]->lowpassLine; line++) { - psyData[ch]->mdctSpectrum[line+wOffset] <<= finalShift; - } - /* update sfbMaxScaleSpec */ - for (sfb = 0; sfb<psyData[ch]->sfbActive; sfb++) - (pSfbMaxScaleSpec[ch]+w*maxSfb[ch])[sfb] -= finalShift; - } - /* update mdctScale */ - psyData[ch]->mdctScale -= finalShift; - } - } + if (finalShift != 0) { + for (ch = 0; ch < channels; ch++) { + INT wLen = windowLength[ch]; + INT lowpassLine = psyData[ch]->lowpassLine; + wOffset = 0; + FIXP_DBL *mdctSpectrum = &psyData[ch]->mdctSpectrum[0]; + for (w = 0; w < nWindows[ch]; w++) { + FIXP_DBL *spectrum = &mdctSpectrum[wOffset]; + for (line = 0; line < lowpassLine; line++) { + spectrum[line] <<= finalShift; + } + wOffset += wLen; - } else { - /* all spectral lines are zero */ - for (ch = 0; ch < channels; ch++) { - psyData[ch]->mdctScale = 0; /* otherwise mdctScale would be for example 7 and PCM quantization thresholds would be shifted - * 14 bits to the right causing some of them to become 0 (which causes problems later) */ - /* clear sfbMaxScaleSpec */ - for(w = 0; w < nWindows[ch]; w++) { - for (sfb = 0; sfb<psyData[ch]->sfbActive; sfb++) { - (pSfbMaxScaleSpec[ch]+w*maxSfb[ch])[sfb] = 0; - (pSfbEnergy[ch]+w*maxSfb[ch])[sfb] = (FIXP_DBL)0; - (pSfbEnergyLdData[ch]+w*maxSfb[ch])[sfb] = FL2FXCONST_DBL(-1.0f); - (pSfbThreshold[ch]+w*maxSfb[ch])[sfb] = (FIXP_DBL)0; - } - } + /* update sfbMaxScaleSpec */ + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) + (pSfbMaxScaleSpec[ch] + w * maxSfb[ch])[sfb] -= finalShift; } + /* update mdctScale */ + psyData[ch]->mdctScale -= finalShift; + } } - /* Advance psychoacoustics: Tonality and TNS */ - if (psyStatic[0]->isLFE) { - tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] = 0; - tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT] = 0; - } - else - { - - for(ch = 0; ch < channels; ch++) { - if (!isShortWindow[ch]) { - /* tonality */ - FDKaacEnc_CalculateFullTonality( psyData[ch]->mdctSpectrum, - pSfbMaxScaleSpec[ch], - pSfbEnergyLdData[ch], - sfbTonality[ch], - psyData[ch]->sfbActive, - hThisPsyConf[ch]->sfbOffset, - hThisPsyConf[ch]->pnsConf.usePns); - } + } else { + /* all spectral lines are zero */ + for (ch = 0; ch < channels; ch++) { + psyData[ch]->mdctScale = + 0; /* otherwise mdctScale would be for example 7 and PCM quantization + * thresholds would be shifted 14 bits to the right causing some of + * them to become 0 (which causes problems later) */ + /* clear sfbMaxScaleSpec */ + for (w = 0; w < nWindows[ch]; w++) { + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { + (pSfbMaxScaleSpec[ch] + w * maxSfb[ch])[sfb] = 0; + (pSfbEnergy[ch] + w * maxSfb[ch])[sfb] = (FIXP_DBL)0; + (pSfbEnergyLdData[ch] + w * maxSfb[ch])[sfb] = FL2FXCONST_DBL(-1.0f); + (pSfbThreshold[ch] + w * maxSfb[ch])[sfb] = (FIXP_DBL)0; } + } + } + } - if (hPsyConfLong->tnsConf.tnsActive || hPsyConfShort->tnsConf.tnsActive) { - INT tnsActive[TRANS_FAC]; - INT nrgScaling[2] = {0,0}; - INT tnsSpecShift = 0; - - for(ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) { - - wOffset = w*windowLength[ch]; - /* TNS */ - FDKaacEnc_TnsDetect( - tnsData[ch], - &hThisPsyConf[ch]->tnsConf, - &psyOutChannel[ch]->tnsInfo, - hThisPsyConf[ch]->sfbCnt, - psyData[ch]->mdctSpectrum+wOffset, - w, - psyStatic[ch]->blockSwitchingControl.lastWindowSequence - ); - } - } - - if (channels == 2) { - FDKaacEnc_TnsSync( - tnsData[1], - tnsData[0], - &psyOutChannel[1]->tnsInfo, - &psyOutChannel[0]->tnsInfo, + /* Advance psychoacoustics: Tonality and TNS */ + if ((channels >= 1) && (psyStatic[0]->isLFE)) { + tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] = 0; + tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT] = 0; + } else { + for (ch = 0; ch < channels; ch++) { + if (!isShortWindow[ch]) { + /* tonality */ + FDKaacEnc_CalculateFullTonality( + psyData[ch]->mdctSpectrum, pSfbMaxScaleSpec[ch], + pSfbEnergyLdData[ch], sfbTonality[ch], psyData[ch]->sfbActive, + hThisPsyConf[ch]->sfbOffset, hThisPsyConf[ch]->pnsConf.usePns); + } + } /* ch */ - psyStatic[1]->blockSwitchingControl.lastWindowSequence, - psyStatic[0]->blockSwitchingControl.lastWindowSequence, - &hThisPsyConf[1]->tnsConf); - } + if (hPsyConfLong->tnsConf.tnsActive || hPsyConfShort->tnsConf.tnsActive) { + INT tnsActive[TRANS_FAC] = {0}; + INT nrgScaling[2] = {0, 0}; + INT tnsSpecShift = 0; + + for (ch = 0; ch < channels; ch++) { + for (w = 0; w < nWindows[ch]; w++) { + wOffset = w * windowLength[ch]; + /* TNS */ + FDKaacEnc_TnsDetect( + tnsData[ch], &hThisPsyConf[ch]->tnsConf, + &psyOutChannel[ch]->tnsInfo, hThisPsyConf[ch]->sfbCnt, + psyData[ch]->mdctSpectrum + wOffset, w, + psyStatic[ch]->blockSwitchingControl.lastWindowSequence); + } + } - FDK_ASSERT(1==commonWindow); /* all checks for TNS do only work for common windows (which is always set)*/ - for(w = 0; w < nWindows[0]; w++) - { - if (isShortWindow[0]) - tnsActive[w] = tnsData[0]->dataRaw.Short.subBlockInfo[w].tnsActive[HIFILT] || - tnsData[0]->dataRaw.Short.subBlockInfo[w].tnsActive[LOFILT] || - tnsData[channels-1]->dataRaw.Short.subBlockInfo[w].tnsActive[HIFILT] || - tnsData[channels-1]->dataRaw.Short.subBlockInfo[w].tnsActive[LOFILT]; - else - tnsActive[w] = tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] || - tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT] || - tnsData[channels-1]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] || - tnsData[channels-1]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT]; - } + if (channels == 2) { + FDKaacEnc_TnsSync( + tnsData[1], tnsData[0], &psyOutChannel[1]->tnsInfo, + &psyOutChannel[0]->tnsInfo, - for(ch = 0; ch < channels; ch++) { - if (tnsActive[0] && !isShortWindow[ch]) { - /* Scale down spectrum if tns is active in one of the two channels with same lastWindowSequence */ - /* first part of threshold calculation; it's not necessary to update sfbMaxScaleSpec */ - INT shift = 1; - for(sfb=0; sfb<hThisPsyConf[ch]->lowpassLine; sfb++) { - psyData[ch]->mdctSpectrum[sfb] = psyData[ch]->mdctSpectrum[sfb] >> shift; - } + psyStatic[1]->blockSwitchingControl.lastWindowSequence, + psyStatic[0]->blockSwitchingControl.lastWindowSequence, + &hThisPsyConf[1]->tnsConf); + } - /* update thresholds */ - for (sfb=0; sfb<psyData[ch]->sfbActive; sfb++) { - pSfbThreshold[ch][sfb] >>= (2*shift); - } + if (channels >= 1) { + FDK_ASSERT(1 == commonWindow); /* all checks for TNS do only work for + common windows (which is always set)*/ + for (w = 0; w < nWindows[0]; w++) { + if (isShortWindow[0]) + tnsActive[w] = + tnsData[0]->dataRaw.Short.subBlockInfo[w].tnsActive[HIFILT] || + tnsData[0]->dataRaw.Short.subBlockInfo[w].tnsActive[LOFILT] || + tnsData[channels - 1] + ->dataRaw.Short.subBlockInfo[w] + .tnsActive[HIFILT] || + tnsData[channels - 1] + ->dataRaw.Short.subBlockInfo[w] + .tnsActive[LOFILT]; + else + tnsActive[w] = + tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] || + tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT] || + tnsData[channels - 1] + ->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] || + tnsData[channels - 1] + ->dataRaw.Long.subBlockInfo.tnsActive[LOFILT]; + } + } - psyData[ch]->mdctScale += shift; /* update mdctScale */ + for (ch = 0; ch < channels; ch++) { + if (tnsActive[0] && !isShortWindow[ch]) { + /* Scale down spectrum if tns is active in one of the two channels + * with same lastWindowSequence */ + /* first part of threshold calculation; it's not necessary to update + * sfbMaxScaleSpec */ + INT shift = 1; + for (sfb = 0; sfb < hThisPsyConf[ch]->lowpassLine; sfb++) { + psyData[ch]->mdctSpectrum[sfb] = + psyData[ch]->mdctSpectrum[sfb] >> shift; + } - /* calc sfbEnergies after tnsEncode again ! */ + /* update thresholds */ + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { + pSfbThreshold[ch][sfb] >>= (2 * shift); + } - } - } + psyData[ch]->mdctScale += shift; /* update mdctScale */ - for(ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) - { - wOffset = w*windowLength[ch]; - FDKaacEnc_TnsEncode( - &psyOutChannel[ch]->tnsInfo, - tnsData[ch], - hThisPsyConf[ch]->sfbCnt, - &hThisPsyConf[ch]->tnsConf, - hThisPsyConf[ch]->sfbOffset[psyData[ch]->sfbActive],/*hThisPsyConf[ch]->lowpassLine*/ /* filter stops before that line ! */ - psyData[ch]->mdctSpectrum+wOffset, - w, - psyStatic[ch]->blockSwitchingControl.lastWindowSequence); - - if(tnsActive[w]) { - /* Calc sfb-bandwise mdct-energies for left and right channel again, */ - /* if tns active in current channel or in one channel with same lastWindowSequence left and right */ - FDKaacEnc_CalcSfbMaxScaleSpec(psyData[ch]->mdctSpectrum+wOffset, - hThisPsyConf[ch]->sfbOffset, - pSfbMaxScaleSpec[ch]+w*maxSfb[ch], - psyData[ch]->sfbActive); - } - } - } + /* calc sfbEnergies after tnsEncode again ! */ + } + } - for(ch = 0; ch < channels; ch++) { - for(w = 0; w < nWindows[ch]; w++) { - - if (tnsActive[w]) { - - if (isShortWindow[ch]) { - FDKaacEnc_CalcBandEnergyOptimShort(psyData[ch]->mdctSpectrum+w*windowLength[ch], - pSfbMaxScaleSpec[ch]+w*maxSfb[ch], - hThisPsyConf[ch]->sfbOffset, - psyData[ch]->sfbActive, - pSfbEnergy[ch]+w*maxSfb[ch]); - } - else { - nrgScaling[ch] = /* with tns, energy calculation can overflow; -> scaling */ - FDKaacEnc_CalcBandEnergyOptimLong(psyData[ch]->mdctSpectrum, - pSfbMaxScaleSpec[ch], - hThisPsyConf[ch]->sfbOffset, - psyData[ch]->sfbActive, - pSfbEnergy[ch], - pSfbEnergyLdData[ch]); - tnsSpecShift = fixMax(tnsSpecShift, nrgScaling[ch]); /* nrgScaling is set only if nrg would have an overflow */ - } - } /* if tnsActive */ - } - } /* end channel loop */ - - /* adapt scaling to prevent nrg overflow, only for long blocks */ - for(ch = 0; ch < channels; ch++) { - if ( (tnsSpecShift!=0) && !isShortWindow[ch] ) { - /* scale down spectrum, nrg's and thresholds, if there was an overflow in sfbNrg calculation after tns */ - for(line=0; line<hThisPsyConf[ch]->lowpassLine; line++) { - psyData[ch]->mdctSpectrum[line] >>= tnsSpecShift; - } - INT scale = (tnsSpecShift-nrgScaling[ch])<<1; - for(sfb=0; sfb<psyData[ch]->sfbActive; sfb++) { - pSfbEnergyLdData[ch][sfb] -= scale*FL2FXCONST_DBL(1.0/LD_DATA_SCALING); - pSfbEnergy[ch][sfb] >>= scale; - pSfbThreshold[ch][sfb] >>= (tnsSpecShift<<1); - } - psyData[ch]->mdctScale += tnsSpecShift; /* update mdctScale; not necessary to update sfbMaxScaleSpec */ - - } - } /* end channel loop */ - - } /* TNS active */ - } /* !isLFE */ - - - - - - - /* Advance thresholds */ - for(ch = 0; ch < channels; ch++) { - INT headroom; - - FIXP_DBL clipEnergy; - INT energyShift = psyData[ch]->mdctScale*2 ; - INT clipNrgShift = energyShift - THR_SHIFTBITS ; - - if(isShortWindow[ch]) - headroom = 6; - else - headroom = 0; - - if (clipNrgShift >= 0) - clipEnergy = hThisPsyConf[ch]->clipEnergy >> clipNrgShift ; - else if (clipNrgShift>=-headroom) - clipEnergy = hThisPsyConf[ch]->clipEnergy << -clipNrgShift ; - else - clipEnergy = (FIXP_DBL)MAXVAL_DBL ; - - for(w = 0; w < nWindows[ch]; w++) - { - INT i; - /* limit threshold to avoid clipping */ - for (i=0; i<psyData[ch]->sfbActive; i++) { - *(pSfbThreshold[ch]+w*maxSfb[ch]+i) = fixMin(*(pSfbThreshold[ch]+w*maxSfb[ch]+i), clipEnergy); - } + for (ch = 0; ch < channels; ch++) { + for (w = 0; w < nWindows[ch]; w++) { + wOffset = w * windowLength[ch]; + FDKaacEnc_TnsEncode( + &psyOutChannel[ch]->tnsInfo, tnsData[ch], + hThisPsyConf[ch]->sfbCnt, &hThisPsyConf[ch]->tnsConf, + hThisPsyConf[ch]->sfbOffset[psyData[ch]->sfbActive], + /*hThisPsyConf[ch]->lowpassLine*/ /* filter stops + before that + line ! */ + psyData[ch]->mdctSpectrum + + wOffset, + w, psyStatic[ch]->blockSwitchingControl.lastWindowSequence); + + if (tnsActive[w]) { + /* Calc sfb-bandwise mdct-energies for left and right channel again, + */ + /* if tns active in current channel or in one channel with same + * lastWindowSequence left and right */ + FDKaacEnc_CalcSfbMaxScaleSpec(psyData[ch]->mdctSpectrum + wOffset, + hThisPsyConf[ch]->sfbOffset, + pSfbMaxScaleSpec[ch] + w * maxSfb[ch], + psyData[ch]->sfbActive); + } + } + } - /* spreading */ - FDKaacEnc_SpreadingMax(psyData[ch]->sfbActive, - hThisPsyConf[ch]->sfbMaskLowFactor, - hThisPsyConf[ch]->sfbMaskHighFactor, - pSfbThreshold[ch]+w*maxSfb[ch]); - - - /* PCM quantization threshold */ - energyShift += PCM_QUANT_THR_SCALE; - if (energyShift>=0) { - energyShift = fixMin(DFRACT_BITS-1,energyShift); - for (i=0; i<psyData[ch]->sfbActive;i++) { - *(pSfbThreshold[ch]+w*maxSfb[ch]+i) = fixMax(*(pSfbThreshold[ch]+w*maxSfb[ch]+i) >> THR_SHIFTBITS, - (hThisPsyConf[ch]->sfbPcmQuantThreshold[i] >> energyShift)); - } + for (ch = 0; ch < channels; ch++) { + for (w = 0; w < nWindows[ch]; w++) { + if (tnsActive[w]) { + if (isShortWindow[ch]) { + FDKaacEnc_CalcBandEnergyOptimShort( + psyData[ch]->mdctSpectrum + w * windowLength[ch], + pSfbMaxScaleSpec[ch] + w * maxSfb[ch], + hThisPsyConf[ch]->sfbOffset, psyData[ch]->sfbActive, + pSfbEnergy[ch] + w * maxSfb[ch]); } else { - energyShift = fixMin(DFRACT_BITS-1,-energyShift); - for (i=0; i<psyData[ch]->sfbActive;i++) { - *(pSfbThreshold[ch]+w*maxSfb[ch]+i) = fixMax(*(pSfbThreshold[ch]+w*maxSfb[ch]+i) >> THR_SHIFTBITS, - (hThisPsyConf[ch]->sfbPcmQuantThreshold[i] << energyShift)); - } + nrgScaling[ch] = /* with tns, energy calculation can overflow; -> + scaling */ + FDKaacEnc_CalcBandEnergyOptimLong( + psyData[ch]->mdctSpectrum, pSfbMaxScaleSpec[ch], + hThisPsyConf[ch]->sfbOffset, psyData[ch]->sfbActive, + pSfbEnergy[ch], pSfbEnergyLdData[ch]); + tnsSpecShift = + fixMax(tnsSpecShift, nrgScaling[ch]); /* nrgScaling is set + only if nrg would + have an overflow */ } + } /* if tnsActive */ + } + } /* end channel loop */ + + /* adapt scaling to prevent nrg overflow, only for long blocks */ + for (ch = 0; ch < channels; ch++) { + if ((tnsSpecShift != 0) && !isShortWindow[ch]) { + /* scale down spectrum, nrg's and thresholds, if there was an overflow + * in sfbNrg calculation after tns */ + for (line = 0; line < hThisPsyConf[ch]->lowpassLine; line++) { + psyData[ch]->mdctSpectrum[line] >>= tnsSpecShift; + } + INT scale = (tnsSpecShift - nrgScaling[ch]) << 1; + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { + pSfbEnergyLdData[ch][sfb] -= + scale * FL2FXCONST_DBL(1.0 / LD_DATA_SCALING); + pSfbEnergy[ch][sfb] >>= scale; + pSfbThreshold[ch][sfb] >>= (tnsSpecShift << 1); + } + psyData[ch]->mdctScale += tnsSpecShift; /* update mdctScale; not + necessary to update + sfbMaxScaleSpec */ + } + } /* end channel loop */ - if (!psyStatic[ch]->isLFE) - { - /* preecho control */ - if(psyStatic[ch]->blockSwitchingControl.lastWindowSequence == STOP_WINDOW) { - /* prevent FDKaacEnc_PreEchoControl from comparing stop - thresholds with short thresholds */ - for (i=0; i<psyData[ch]->sfbActive;i++) { - psyStatic[ch]->sfbThresholdnm1[i] = (FIXP_DBL)MAXVAL_DBL; - } - - psyStatic[ch]->mdctScalenm1 = 0; - psyStatic[ch]->calcPreEcho = 0; - } - - FDKaacEnc_PreEchoControl( psyStatic[ch]->sfbThresholdnm1, - psyStatic[ch]->calcPreEcho, - psyData[ch]->sfbActive, - hThisPsyConf[ch]->maxAllowedIncreaseFactor, - hThisPsyConf[ch]->minRemainingThresholdFactor, - pSfbThreshold[ch]+w*maxSfb[ch], - psyData[ch]->mdctScale, - &psyStatic[ch]->mdctScalenm1); - - psyStatic[ch]->calcPreEcho = 1; - - if(psyStatic[ch]->blockSwitchingControl.lastWindowSequence == START_WINDOW) - { - /* prevent FDKaacEnc_PreEchoControl in next frame to compare start - thresholds with short thresholds */ - for (i=0; i<psyData[ch]->sfbActive;i++) { - psyStatic[ch]->sfbThresholdnm1[i] = (FIXP_DBL)MAXVAL_DBL; - } - - psyStatic[ch]->mdctScalenm1 = 0; - psyStatic[ch]->calcPreEcho = 0; - } + } /* TNS active */ + else { + /* In case of disable TNS, reset its dynamic data. Some of its elements is + * required in PNS detection below. */ + FDKmemclear(psyDynamic->tnsData, sizeof(psyDynamic->tnsData)); + } + } /* !isLFE */ - } + /* Advance thresholds */ + for (ch = 0; ch < channels; ch++) { + INT headroom; - /* spread energy to avoid hole detection */ - FDKmemcpy(pSfbSpreadEnergy[ch]+w*maxSfb[ch], pSfbEnergy[ch]+w*maxSfb[ch], psyData[ch]->sfbActive*sizeof(FIXP_DBL)); + FIXP_DBL clipEnergy; + INT energyShift = psyData[ch]->mdctScale * 2; + INT clipNrgShift = energyShift - THR_SHIFTBITS; + if (isShortWindow[ch]) + headroom = 6; + else + headroom = 0; - FDKaacEnc_SpreadingMax(psyData[ch]->sfbActive, - hThisPsyConf[ch]->sfbMaskLowFactorSprEn, - hThisPsyConf[ch]->sfbMaskHighFactorSprEn, - pSfbSpreadEnergy[ch]+w*maxSfb[ch]); - } - } + if (clipNrgShift >= 0) + clipEnergy = hThisPsyConf[ch]->clipEnergy >> clipNrgShift; + else if (clipNrgShift >= -headroom) + clipEnergy = hThisPsyConf[ch]->clipEnergy << -clipNrgShift; + else + clipEnergy = (FIXP_DBL)MAXVAL_DBL; + + for (w = 0; w < nWindows[ch]; w++) { + INT i; + /* limit threshold to avoid clipping */ + for (i = 0; i < psyData[ch]->sfbActive; i++) { + *(pSfbThreshold[ch] + w * maxSfb[ch] + i) = + fixMin(*(pSfbThreshold[ch] + w * maxSfb[ch] + i), clipEnergy); + } - /* Calc bandwise energies for mid and side channel. Do it only if 2 channels exist */ - if (channels==2) { - for(w = 0; w < nWindows[1]; w++) { - wOffset = w*windowLength[1]; - FDKaacEnc_CalcBandNrgMSOpt(psyData[0]->mdctSpectrum+wOffset, - psyData[1]->mdctSpectrum+wOffset, - pSfbMaxScaleSpec[0]+w*maxSfb[0], - pSfbMaxScaleSpec[1]+w*maxSfb[1], - hThisPsyConf[1]->sfbOffset, - psyData[0]->sfbActive, - pSfbEnergyMS[0]+w*maxSfb[0], - pSfbEnergyMS[1]+w*maxSfb[1], - (psyStatic[1]->blockSwitchingControl.lastWindowSequence != SHORT_WINDOW), - psyData[0]->sfbEnergyMSLdData, - psyData[1]->sfbEnergyMSLdData); + /* spreading */ + FDKaacEnc_SpreadingMax(psyData[ch]->sfbActive, + hThisPsyConf[ch]->sfbMaskLowFactor, + hThisPsyConf[ch]->sfbMaskHighFactor, + pSfbThreshold[ch] + w * maxSfb[ch]); + + /* PCM quantization threshold */ + energyShift += PCM_QUANT_THR_SCALE; + if (energyShift >= 0) { + energyShift = fixMin(DFRACT_BITS - 1, energyShift); + for (i = 0; i < psyData[ch]->sfbActive; i++) { + *(pSfbThreshold[ch] + w * maxSfb[ch] + i) = fixMax( + *(pSfbThreshold[ch] + w * maxSfb[ch] + i) >> THR_SHIFTBITS, + (hThisPsyConf[ch]->sfbPcmQuantThreshold[i] >> energyShift)); } - } - - /* group short data (maxSfb[ch] for short blocks is determined here) */ - for(ch=0;ch<channels;ch++) - { - INT noSfb, i; - if(isShortWindow[ch]) - { - int sfbGrp; - noSfb = psyStatic[ch]->blockSwitchingControl.noOfGroups * hPsyConfShort->sfbCnt; - /* At this point, energies and thresholds are copied/regrouped from the ".Short" to the ".Long" arrays */ - FDKaacEnc_groupShortData( psyData[ch]->mdctSpectrum, - &psyData[ch]->sfbThreshold, - &psyData[ch]->sfbEnergy, - &psyData[ch]->sfbEnergyMS, - &psyData[ch]->sfbSpreadEnergy, - hPsyConfShort->sfbCnt, - psyData[ch]->sfbActive, - hPsyConfShort->sfbOffset, - hPsyConfShort->sfbMinSnrLdData, - psyData[ch]->groupedSfbOffset, - &maxSfbPerGroup[ch], - psyOutChannel[ch]->sfbMinSnrLdData, - psyStatic[ch]->blockSwitchingControl.noOfGroups, - psyStatic[ch]->blockSwitchingControl.groupLen, - psyConf[1].granuleLength); - - - /* calculate ldData arrays (short values are in .Long-arrays after FDKaacEnc_groupShortData) */ - for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) { - LdDataVector(&psyData[ch]->sfbEnergy.Long[sfbGrp], &psyOutChannel[ch]->sfbEnergyLdData[sfbGrp], psyData[ch]->sfbActive); - } - - /* calc sfbThrld and set Values smaller 2^-31 to 2^-33*/ - for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) { - LdDataVector(&psyData[ch]->sfbThreshold.Long[sfbGrp], &psyOutChannel[ch]->sfbThresholdLdData[sfbGrp], psyData[ch]->sfbActive); - for (sfb=0;sfb<psyData[ch]->sfbActive;sfb++) { - psyOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb] = - fixMax(psyOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb], FL2FXCONST_DBL(-0.515625f)); - } - } + } else { + energyShift = fixMin(DFRACT_BITS - 1, -energyShift); + for (i = 0; i < psyData[ch]->sfbActive; i++) { + *(pSfbThreshold[ch] + w * maxSfb[ch] + i) = fixMax( + *(pSfbThreshold[ch] + w * maxSfb[ch] + i) >> THR_SHIFTBITS, + (hThisPsyConf[ch]->sfbPcmQuantThreshold[i] << energyShift)); + } + } - if ( channels==2 ) { - for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) { - LdDataVector(&psyData[ch]->sfbEnergyMS.Long[sfbGrp], &psyData[ch]->sfbEnergyMSLdData[sfbGrp], psyData[ch]->sfbActive); - } - } + if (!psyStatic[ch]->isLFE) { + /* preecho control */ + if (psyStatic[ch]->blockSwitchingControl.lastWindowSequence == + STOP_WINDOW) { + /* prevent FDKaacEnc_PreEchoControl from comparing stop + thresholds with short thresholds */ + for (i = 0; i < psyData[ch]->sfbActive; i++) { + psyStatic[ch]->sfbThresholdnm1[i] = (FIXP_DBL)MAXVAL_DBL; + } - FDKmemcpy(psyOutChannel[ch]->sfbOffsets, psyData[ch]->groupedSfbOffset, (MAX_GROUPED_SFB+1)*sizeof(INT)); + psyStatic[ch]->mdctScalenm1 = 0; + psyStatic[ch]->calcPreEcho = 0; + } - } else { - /* maxSfb[ch] for long blocks */ - for (sfb = psyData[ch]->sfbActive-1; sfb >= 0; sfb--) { - for (line = hPsyConfLong->sfbOffset[sfb+1]-1; line >= hPsyConfLong->sfbOffset[sfb]; line--) { - if (psyData[ch]->mdctSpectrum[line] != FL2FXCONST_SGL(0.0f)) break; - } - if (line > hPsyConfLong->sfbOffset[sfb]) break; - } - maxSfbPerGroup[ch] = sfb + 1; - /* ensure at least one section in ICS; workaround for existing decoder crc implementation */ - maxSfbPerGroup[ch] = fixMax(fixMin(5,psyData[ch]->sfbActive),maxSfbPerGroup[ch]); + FDKaacEnc_PreEchoControl( + psyStatic[ch]->sfbThresholdnm1, psyStatic[ch]->calcPreEcho, + psyData[ch]->sfbActive, hThisPsyConf[ch]->maxAllowedIncreaseFactor, + hThisPsyConf[ch]->minRemainingThresholdFactor, + pSfbThreshold[ch] + w * maxSfb[ch], psyData[ch]->mdctScale, + &psyStatic[ch]->mdctScalenm1); + + psyStatic[ch]->calcPreEcho = 1; + + if (psyStatic[ch]->blockSwitchingControl.lastWindowSequence == + START_WINDOW) { + /* prevent FDKaacEnc_PreEchoControl in next frame to compare start + thresholds with short thresholds */ + for (i = 0; i < psyData[ch]->sfbActive; i++) { + psyStatic[ch]->sfbThresholdnm1[i] = (FIXP_DBL)MAXVAL_DBL; + } - /* sfbNrgLdData is calculated in FDKaacEnc_advancePsychLong, copy in psyOut structure */ - FDKmemcpy(psyOutChannel[ch]->sfbEnergyLdData, psyData[ch]->sfbEnergyLdData.Long, psyData[ch]->sfbActive*sizeof(FIXP_DBL)); + psyStatic[ch]->mdctScalenm1 = 0; + psyStatic[ch]->calcPreEcho = 0; + } + } - FDKmemcpy(psyOutChannel[ch]->sfbOffsets, hPsyConfLong->sfbOffset, (MAX_GROUPED_SFB+1)*sizeof(INT)); + /* spread energy to avoid hole detection */ + FDKmemcpy(pSfbSpreadEnergy[ch] + w * maxSfb[ch], + pSfbEnergy[ch] + w * maxSfb[ch], + psyData[ch]->sfbActive * sizeof(FIXP_DBL)); - /* sfbMinSnrLdData modified in adjust threshold, copy necessary */ - FDKmemcpy(psyOutChannel[ch]->sfbMinSnrLdData, hPsyConfLong->sfbMinSnrLdData, psyData[ch]->sfbActive*sizeof(FIXP_DBL)); + FDKaacEnc_SpreadingMax(psyData[ch]->sfbActive, + hThisPsyConf[ch]->sfbMaskLowFactorSprEn, + hThisPsyConf[ch]->sfbMaskHighFactorSprEn, + pSfbSpreadEnergy[ch] + w * maxSfb[ch]); + } + } - /* sfbEnergyMSLdData ist already calculated in FDKaacEnc_CalcBandNrgMSOpt; only in long case */ + /* Calc bandwise energies for mid and side channel. Do it only if 2 channels + * exist */ + if (channels == 2) { + for (w = 0; w < nWindows[1]; w++) { + wOffset = w * windowLength[1]; + FDKaacEnc_CalcBandNrgMSOpt( + psyData[0]->mdctSpectrum + wOffset, + psyData[1]->mdctSpectrum + wOffset, + pSfbMaxScaleSpec[0] + w * maxSfb[0], + pSfbMaxScaleSpec[1] + w * maxSfb[1], hThisPsyConf[1]->sfbOffset, + psyData[0]->sfbActive, pSfbEnergyMS[0] + w * maxSfb[0], + pSfbEnergyMS[1] + w * maxSfb[1], + (psyStatic[1]->blockSwitchingControl.lastWindowSequence != + SHORT_WINDOW), + psyData[0]->sfbEnergyMSLdData, psyData[1]->sfbEnergyMSLdData); + } + } - /* calc sfbThrld and set Values smaller 2^-31 to 2^-33*/ - LdDataVector(psyData[ch]->sfbThreshold.Long, psyOutChannel[ch]->sfbThresholdLdData, psyData[ch]->sfbActive); - for (i=0;i<psyData[ch]->sfbActive;i++) { - psyOutChannel[ch]->sfbThresholdLdData[i] = - fixMax(psyOutChannel[ch]->sfbThresholdLdData[i], FL2FXCONST_DBL(-0.515625f)); - } + /* group short data (maxSfb[ch] for short blocks is determined here) */ + for (ch = 0; ch < channels; ch++) { + if (isShortWindow[ch]) { + int sfbGrp; + int noSfb = psyStatic[ch]->blockSwitchingControl.noOfGroups * + hPsyConfShort->sfbCnt; + /* At this point, energies and thresholds are copied/regrouped from the + * ".Short" to the ".Long" arrays */ + FDKaacEnc_groupShortData( + psyData[ch]->mdctSpectrum, &psyData[ch]->sfbThreshold, + &psyData[ch]->sfbEnergy, &psyData[ch]->sfbEnergyMS, + &psyData[ch]->sfbSpreadEnergy, hPsyConfShort->sfbCnt, + psyData[ch]->sfbActive, hPsyConfShort->sfbOffset, + hPsyConfShort->sfbMinSnrLdData, psyData[ch]->groupedSfbOffset, + &maxSfbPerGroup[ch], psyOutChannel[ch]->sfbMinSnrLdData, + psyStatic[ch]->blockSwitchingControl.noOfGroups, + psyStatic[ch]->blockSwitchingControl.groupLen, + psyConf[1].granuleLength); + + /* calculate ldData arrays (short values are in .Long-arrays after + * FDKaacEnc_groupShortData) */ + for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) { + LdDataVector(&psyData[ch]->sfbEnergy.Long[sfbGrp], + &psyOutChannel[ch]->sfbEnergyLdData[sfbGrp], + psyData[ch]->sfbActive); + } + /* calc sfbThrld and set Values smaller 2^-31 to 2^-33*/ + for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) { + LdDataVector(&psyData[ch]->sfbThreshold.Long[sfbGrp], + &psyOutChannel[ch]->sfbThresholdLdData[sfbGrp], + psyData[ch]->sfbActive); + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { + psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb] = + fixMax(psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb], + FL2FXCONST_DBL(-0.515625f)); + } + } + if (channels == 2) { + for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) { + LdDataVector(&psyData[ch]->sfbEnergyMS.Long[sfbGrp], + &psyData[ch]->sfbEnergyMSLdData[sfbGrp], + psyData[ch]->sfbActive); } + } + FDKmemcpy(psyOutChannel[ch]->sfbOffsets, psyData[ch]->groupedSfbOffset, + (MAX_GROUPED_SFB + 1) * sizeof(INT)); + } else { + int i; + /* maxSfb[ch] for long blocks */ + for (sfb = psyData[ch]->sfbActive - 1; sfb >= 0; sfb--) { + for (line = hPsyConfLong->sfbOffset[sfb + 1] - 1; + line >= hPsyConfLong->sfbOffset[sfb]; line--) { + if (psyData[ch]->mdctSpectrum[line] != FL2FXCONST_SGL(0.0f)) break; + } + if (line > hPsyConfLong->sfbOffset[sfb]) break; + } + maxSfbPerGroup[ch] = sfb + 1; + maxSfbPerGroup[ch] = + fixMax(fixMin(5, psyData[ch]->sfbActive), maxSfbPerGroup[ch]); + + /* sfbNrgLdData is calculated in FDKaacEnc_advancePsychLong, copy in + * psyOut structure */ + FDKmemcpy(psyOutChannel[ch]->sfbEnergyLdData, + psyData[ch]->sfbEnergyLdData.Long, + psyData[ch]->sfbActive * sizeof(FIXP_DBL)); + + FDKmemcpy(psyOutChannel[ch]->sfbOffsets, hPsyConfLong->sfbOffset, + (MAX_GROUPED_SFB + 1) * sizeof(INT)); + + /* sfbMinSnrLdData modified in adjust threshold, copy necessary */ + FDKmemcpy(psyOutChannel[ch]->sfbMinSnrLdData, + hPsyConfLong->sfbMinSnrLdData, + psyData[ch]->sfbActive * sizeof(FIXP_DBL)); + + /* sfbEnergyMSLdData ist already calculated in FDKaacEnc_CalcBandNrgMSOpt; + * only in long case */ + + /* calc sfbThrld and set Values smaller 2^-31 to 2^-33*/ + LdDataVector(psyData[ch]->sfbThreshold.Long, + psyOutChannel[ch]->sfbThresholdLdData, + psyData[ch]->sfbActive); + for (i = 0; i < psyData[ch]->sfbActive; i++) { + psyOutChannel[ch]->sfbThresholdLdData[i] = + fixMax(psyOutChannel[ch]->sfbThresholdLdData[i], + FL2FXCONST_DBL(-0.515625f)); + } } + } + /* + Intensity parameter intialization. + */ + for (ch = 0; ch < channels; ch++) { + FDKmemclear(psyOutChannel[ch]->isBook, MAX_GROUPED_SFB * sizeof(INT)); + FDKmemclear(psyOutChannel[ch]->isScale, MAX_GROUPED_SFB * sizeof(INT)); + } - /* - Intensity parameter intialization. - */ - for(ch=0;ch<channels;ch++) { - FDKmemclear(psyOutChannel[ch]->isBook, MAX_GROUPED_SFB*sizeof(INT)); - FDKmemclear(psyOutChannel[ch]->isScale, MAX_GROUPED_SFB*sizeof(INT)); - } + for (ch = 0; ch < channels; ch++) { + INT win = (isShortWindow[ch] ? 1 : 0); + if (!psyStatic[ch]->isLFE) { + /* PNS Decision */ + FDKaacEnc_PnsDetect( + &(psyConf[0].pnsConf), pnsData[ch], + psyStatic[ch]->blockSwitchingControl.lastWindowSequence, + psyData[ch]->sfbActive, + maxSfbPerGroup[ch], /* count of Sfb which are not zero. */ + psyOutChannel[ch]->sfbThresholdLdData, psyConf[win].sfbOffset, + psyData[ch]->mdctSpectrum, psyData[ch]->sfbMaxScaleSpec.Long, + sfbTonality[ch], psyOutChannel[ch]->tnsInfo.order[0][0], + tnsData[ch]->dataRaw.Long.subBlockInfo.predictionGain[HIFILT], + tnsData[ch]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT], + psyOutChannel[ch]->sfbEnergyLdData, psyOutChannel[ch]->noiseNrg); + } /* !isLFE */ + } /* ch */ - for(ch=0;ch<channels;ch++) { - INT win = (isShortWindow[ch]?1:0); - if (!psyStatic[ch]->isLFE) - { - /* PNS Decision */ - FDKaacEnc_PnsDetect( &(psyConf[0].pnsConf), - pnsData[ch], - psyStatic[ch]->blockSwitchingControl.lastWindowSequence, - psyData[ch]->sfbActive, - maxSfbPerGroup[ch], /* count of Sfb which are not zero. */ - psyOutChannel[ch]->sfbThresholdLdData, - psyConf[win].sfbOffset, - psyData[ch]->mdctSpectrum, - psyData[ch]->sfbMaxScaleSpec.Long, - sfbTonality[ch], - psyOutChannel[ch]->tnsInfo.order[0][0], - tnsData[ch]->dataRaw.Long.subBlockInfo.predictionGain[HIFILT], - tnsData[ch]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT], - psyOutChannel[ch]->sfbEnergyLdData, - psyOutChannel[ch]->noiseNrg ); - } /* !isLFE */ - } + /* + stereo Processing + */ + if (channels == 2) { + psyOutElement->toolsInfo.msDigest = MS_NONE; + psyOutElement->commonWindow = commonWindow; + if (psyOutElement->commonWindow) + maxSfbPerGroup[0] = maxSfbPerGroup[1] = + fixMax(maxSfbPerGroup[0], maxSfbPerGroup[1]); + if (psyStatic[0]->blockSwitchingControl.lastWindowSequence != + SHORT_WINDOW) { + /* PNS preprocessing depending on ms processing: PNS not in Short Window! + */ + FDKaacEnc_PreProcessPnsChannelPair( + psyData[0]->sfbActive, (&psyData[0]->sfbEnergy)->Long, + (&psyData[1]->sfbEnergy)->Long, psyOutChannel[0]->sfbEnergyLdData, + psyOutChannel[1]->sfbEnergyLdData, psyData[0]->sfbEnergyMS.Long, + &(psyConf[0].pnsConf), pnsData[0], pnsData[1]); + + FDKaacEnc_IntensityStereoProcessing( + psyData[0]->sfbEnergy.Long, psyData[1]->sfbEnergy.Long, + psyData[0]->mdctSpectrum, psyData[1]->mdctSpectrum, + psyData[0]->sfbThreshold.Long, psyData[1]->sfbThreshold.Long, + psyOutChannel[1]->sfbThresholdLdData, + psyData[0]->sfbSpreadEnergy.Long, psyData[1]->sfbSpreadEnergy.Long, + psyOutChannel[0]->sfbEnergyLdData, psyOutChannel[1]->sfbEnergyLdData, + &psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask, + psyConf[0].sfbCnt, psyConf[0].sfbCnt, maxSfbPerGroup[0], + psyConf[0].sfbOffset, + psyConf[0].allowIS && psyOutElement->commonWindow, + psyOutChannel[1]->isBook, psyOutChannel[1]->isScale, pnsData); + + FDKaacEnc_MsStereoProcessing( + psyData, psyOutChannel, psyOutChannel[1]->isBook, + &psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask, + psyConf[0].allowMS, psyData[0]->sfbActive, psyData[0]->sfbActive, + maxSfbPerGroup[0], psyOutChannel[0]->sfbOffsets); + + /* PNS postprocessing */ + FDKaacEnc_PostProcessPnsChannelPair( + psyData[0]->sfbActive, &(psyConf[0].pnsConf), pnsData[0], pnsData[1], + psyOutElement->toolsInfo.msMask, &psyOutElement->toolsInfo.msDigest); - /* - stereo Processing - */ - if(channels == 2) - { - psyOutElement->toolsInfo.msDigest = MS_NONE; - psyOutElement->commonWindow = commonWindow; - if (psyOutElement->commonWindow) - maxSfbPerGroup[0] = maxSfbPerGroup[1] = - fixMax(maxSfbPerGroup[0], maxSfbPerGroup[1]); - - if(psyStatic[0]->blockSwitchingControl.lastWindowSequence != SHORT_WINDOW) - { - /* PNS preprocessing depending on ms processing: PNS not in Short Window! */ - FDKaacEnc_PreProcessPnsChannelPair( - psyData[0]->sfbActive, - (&psyData[0]->sfbEnergy)->Long, - (&psyData[1]->sfbEnergy)->Long, - psyOutChannel[0]->sfbEnergyLdData, - psyOutChannel[1]->sfbEnergyLdData, - psyData[0]->sfbEnergyMS.Long, - &(psyConf[0].pnsConf), - pnsData[0], - pnsData[1]); - - FDKaacEnc_IntensityStereoProcessing( - psyData[0]->sfbEnergy.Long, - psyData[1]->sfbEnergy.Long, - psyData[0]->mdctSpectrum, - psyData[1]->mdctSpectrum, - psyData[0]->sfbThreshold.Long, - psyData[1]->sfbThreshold.Long, - psyOutChannel[1]->sfbThresholdLdData, - psyData[0]->sfbSpreadEnergy.Long, - psyData[1]->sfbSpreadEnergy.Long, - psyOutChannel[0]->sfbEnergyLdData, - psyOutChannel[1]->sfbEnergyLdData, - &psyOutElement->toolsInfo.msDigest, - psyOutElement->toolsInfo.msMask, - psyConf[0].sfbCnt, - psyConf[0].sfbCnt, - maxSfbPerGroup[0], - psyConf[0].sfbOffset, - psyConf[0].allowIS && commonWindow, - psyOutChannel[1]->isBook, - psyOutChannel[1]->isScale, - pnsData); - - FDKaacEnc_MsStereoProcessing( - psyData, - psyOutChannel, - psyOutChannel[1]->isBook, - &psyOutElement->toolsInfo.msDigest, - psyOutElement->toolsInfo.msMask, - psyData[0]->sfbActive, - psyData[0]->sfbActive, - maxSfbPerGroup[0], - psyOutChannel[0]->sfbOffsets); - - /* PNS postprocessing */ - FDKaacEnc_PostProcessPnsChannelPair(psyData[0]->sfbActive, - &(psyConf[0].pnsConf), - pnsData[0], - pnsData[1], - psyOutElement->toolsInfo.msMask, - &psyOutElement->toolsInfo.msDigest); - - } else { - FDKaacEnc_IntensityStereoProcessing( - psyData[0]->sfbEnergy.Long, - psyData[1]->sfbEnergy.Long, - psyData[0]->mdctSpectrum, - psyData[1]->mdctSpectrum, - psyData[0]->sfbThreshold.Long, - psyData[1]->sfbThreshold.Long, - psyOutChannel[1]->sfbThresholdLdData, - psyData[0]->sfbSpreadEnergy.Long, - psyData[1]->sfbSpreadEnergy.Long, - psyOutChannel[0]->sfbEnergyLdData, - psyOutChannel[1]->sfbEnergyLdData, - &psyOutElement->toolsInfo.msDigest, - psyOutElement->toolsInfo.msMask, - psyStatic[0]->blockSwitchingControl.noOfGroups*hPsyConfShort->sfbCnt, - psyConf[1].sfbCnt, - maxSfbPerGroup[0], - psyData[0]->groupedSfbOffset, - psyConf[0].allowIS && commonWindow, - psyOutChannel[1]->isBook, - psyOutChannel[1]->isScale, - pnsData); - - /* it's OK to pass the ".Long" arrays here. They contain grouped short data since FDKaacEnc_groupShortData() */ - FDKaacEnc_MsStereoProcessing( psyData, - psyOutChannel, - psyOutChannel[1]->isBook, - &psyOutElement->toolsInfo.msDigest, - psyOutElement->toolsInfo.msMask, - psyStatic[0]->blockSwitchingControl.noOfGroups*hPsyConfShort->sfbCnt, - hPsyConfShort->sfbCnt, - maxSfbPerGroup[0], - psyOutChannel[0]->sfbOffsets); - } + } else { + FDKaacEnc_IntensityStereoProcessing( + psyData[0]->sfbEnergy.Long, psyData[1]->sfbEnergy.Long, + psyData[0]->mdctSpectrum, psyData[1]->mdctSpectrum, + psyData[0]->sfbThreshold.Long, psyData[1]->sfbThreshold.Long, + psyOutChannel[1]->sfbThresholdLdData, + psyData[0]->sfbSpreadEnergy.Long, psyData[1]->sfbSpreadEnergy.Long, + psyOutChannel[0]->sfbEnergyLdData, psyOutChannel[1]->sfbEnergyLdData, + &psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask, + psyStatic[0]->blockSwitchingControl.noOfGroups * + hPsyConfShort->sfbCnt, + psyConf[1].sfbCnt, maxSfbPerGroup[0], psyData[0]->groupedSfbOffset, + psyConf[0].allowIS && psyOutElement->commonWindow, + psyOutChannel[1]->isBook, psyOutChannel[1]->isScale, pnsData); + + /* it's OK to pass the ".Long" arrays here. They contain grouped short + * data since FDKaacEnc_groupShortData() */ + FDKaacEnc_MsStereoProcessing( + psyData, psyOutChannel, psyOutChannel[1]->isBook, + &psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask, + psyConf[1].allowMS, + psyStatic[0]->blockSwitchingControl.noOfGroups * + hPsyConfShort->sfbCnt, + hPsyConfShort->sfbCnt, maxSfbPerGroup[0], + psyOutChannel[0]->sfbOffsets); } + } /* (channels == 2) */ /* PNS Coding */ - for(ch=0;ch<channels;ch++) { - if (psyStatic[ch]->isLFE) { - /* no PNS coding */ - for(sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { - psyOutChannel[ch]->noiseNrg[sfb] = NO_NOISE_PNS; - } - } else - { - FDKaacEnc_CodePnsChannel(psyData[ch]->sfbActive, - &(psyConf[ch].pnsConf), - pnsData[ch]->pnsFlag, - psyData[ch]->sfbEnergyLdData.Long, - psyOutChannel[ch]->noiseNrg, /* this is the energy that will be written to the bitstream */ - psyOutChannel[ch]->sfbThresholdLdData); + for (ch = 0; ch < channels; ch++) { + if (psyStatic[ch]->isLFE) { + /* no PNS coding */ + for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) { + psyOutChannel[ch]->noiseNrg[sfb] = NO_NOISE_PNS; } + } else { + FDKaacEnc_CodePnsChannel( + psyData[ch]->sfbActive, &(hThisPsyConf[ch]->pnsConf), + pnsData[ch]->pnsFlag, psyData[ch]->sfbEnergyLdData.Long, + psyOutChannel[ch]->noiseNrg, /* this is the energy that will be + written to the bitstream */ + psyOutChannel[ch]->sfbThresholdLdData); + } } - /* - build output - */ - for(ch=0;ch<channels;ch++) - { - INT j, grp, mask; - - psyOutChannel[ch]->maxSfbPerGroup = maxSfbPerGroup[ch]; - psyOutChannel[ch]->mdctScale = psyData[ch]->mdctScale; - - if(isShortWindow[ch]==0) { - - psyOutChannel[ch]->sfbCnt = hPsyConfLong->sfbActive; - psyOutChannel[ch]->sfbPerGroup = hPsyConfLong->sfbActive; - psyOutChannel[ch]->lastWindowSequence = psyStatic[ch]->blockSwitchingControl.lastWindowSequence; - psyOutChannel[ch]->windowShape = psyStatic[ch]->blockSwitchingControl.windowShape; - } - else { - INT sfbCnt = psyStatic[ch]->blockSwitchingControl.noOfGroups*hPsyConfShort->sfbCnt; - - psyOutChannel[ch]->sfbCnt = sfbCnt; - psyOutChannel[ch]->sfbPerGroup = hPsyConfShort->sfbCnt; - psyOutChannel[ch]->lastWindowSequence = SHORT_WINDOW; - psyOutChannel[ch]->windowShape = SINE_WINDOW; - } - - /* generate grouping mask */ - mask = 0; - for (grp = 0; grp < psyStatic[ch]->blockSwitchingControl.noOfGroups; grp++) - { - mask <<= 1; - for (j=1; j<psyStatic[ch]->blockSwitchingControl.groupLen[grp]; j++) { - mask = (mask<<1) | 1 ; - } - } - psyOutChannel[ch]->groupingMask = mask; + /* + build output + */ + for (ch = 0; ch < channels; ch++) { + INT mask; + int grp; + psyOutChannel[ch]->maxSfbPerGroup = maxSfbPerGroup[ch]; + psyOutChannel[ch]->mdctScale = psyData[ch]->mdctScale; + if (isShortWindow[ch] == 0) { + psyOutChannel[ch]->sfbCnt = hPsyConfLong->sfbActive; + psyOutChannel[ch]->sfbPerGroup = hPsyConfLong->sfbActive; + psyOutChannel[ch]->lastWindowSequence = + psyStatic[ch]->blockSwitchingControl.lastWindowSequence; + psyOutChannel[ch]->windowShape = + psyStatic[ch]->blockSwitchingControl.windowShape; + } else { + INT sfbCnt = psyStatic[ch]->blockSwitchingControl.noOfGroups * + hPsyConfShort->sfbCnt; - /* build interface */ - FDKmemcpy(psyOutChannel[ch]->groupLen,psyStatic[ch]->blockSwitchingControl.groupLen,MAX_NO_OF_GROUPS*sizeof(INT)); - FDKmemcpy(psyOutChannel[ch]->sfbEnergy,(&psyData[ch]->sfbEnergy)->Long, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); - FDKmemcpy(psyOutChannel[ch]->sfbSpreadEnergy,(&psyData[ch]->sfbSpreadEnergy)->Long, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); -// FDKmemcpy(psyOutChannel[ch]->mdctSpectrum, psyData[ch]->mdctSpectrum, (1024)*sizeof(FIXP_DBL)); + psyOutChannel[ch]->sfbCnt = sfbCnt; + psyOutChannel[ch]->sfbPerGroup = hPsyConfShort->sfbCnt; + psyOutChannel[ch]->lastWindowSequence = SHORT_WINDOW; + psyOutChannel[ch]->windowShape = SINE_WINDOW; + } + /* generate grouping mask */ + mask = 0; + for (grp = 0; grp < psyStatic[ch]->blockSwitchingControl.noOfGroups; + grp++) { + int j; + mask <<= 1; + for (j = 1; j < psyStatic[ch]->blockSwitchingControl.groupLen[grp]; j++) { + mask = (mask << 1) | 1; + } } + psyOutChannel[ch]->groupingMask = mask; + + /* build interface */ + FDKmemcpy(psyOutChannel[ch]->groupLen, + psyStatic[ch]->blockSwitchingControl.groupLen, + MAX_NO_OF_GROUPS * sizeof(INT)); + FDKmemcpy(psyOutChannel[ch]->sfbEnergy, (&psyData[ch]->sfbEnergy)->Long, + MAX_GROUPED_SFB * sizeof(FIXP_DBL)); + FDKmemcpy(psyOutChannel[ch]->sfbSpreadEnergy, + (&psyData[ch]->sfbSpreadEnergy)->Long, + MAX_GROUPED_SFB * sizeof(FIXP_DBL)); + // FDKmemcpy(psyOutChannel[ch]->mdctSpectrum, + // psyData[ch]->mdctSpectrum, (1024)*sizeof(FIXP_DBL)); + } - return AAC_ENC_OK; + return AAC_ENC_OK; } +void FDKaacEnc_PsyClose(PSY_INTERNAL **phPsyInternal, PSY_OUT **phPsyOut) { + int n, i; -void FDKaacEnc_PsyClose(PSY_INTERNAL **phPsyInternal, - PSY_OUT **phPsyOut) -{ - int n, i; - - - if(phPsyInternal!=NULL) { - PSY_INTERNAL *hPsyInternal = *phPsyInternal; + if (phPsyInternal != NULL) { + PSY_INTERNAL *hPsyInternal = *phPsyInternal; - if (hPsyInternal) - { - for (i=0; i<(8); i++) { - if (hPsyInternal->pStaticChannels[i]) { - if (hPsyInternal->pStaticChannels[i]->psyInputBuffer) - FreeRam_aacEnc_PsyInputBuffer(&hPsyInternal->pStaticChannels[i]->psyInputBuffer); /* AUDIO INPUT BUFFER */ + if (hPsyInternal) { + for (i = 0; i < (8); i++) { + if (hPsyInternal->pStaticChannels[i]) { + if (hPsyInternal->pStaticChannels[i]->psyInputBuffer) + FreeRam_aacEnc_PsyInputBuffer( + &hPsyInternal->pStaticChannels[i] + ->psyInputBuffer); /* AUDIO INPUT BUFFER */ - FreeRam_aacEnc_PsyStatic(&hPsyInternal->pStaticChannels[i]); /* PSY_STATIC */ - } + FreeRam_aacEnc_PsyStatic( + &hPsyInternal->pStaticChannels[i]); /* PSY_STATIC */ } + } - for (i=0; i<(8); i++) { - if (hPsyInternal->psyElement[i]) - FreeRam_aacEnc_PsyElement(&hPsyInternal->psyElement[i]); /* PSY_ELEMENT */ - } - - - FreeRam_aacEnc_PsyInternal(phPsyInternal); + for (i = 0; i < ((8)); i++) { + if (hPsyInternal->psyElement[i]) + FreeRam_aacEnc_PsyElement( + &hPsyInternal->psyElement[i]); /* PSY_ELEMENT */ } - } - if (phPsyOut!=NULL) { - for (n=0; n<(1); n++) { - if (phPsyOut[n]) - { - for (i=0; i<(8); i++) { - if (phPsyOut[n]->pPsyOutChannels[i]) - FreeRam_aacEnc_PsyOutChannel(&phPsyOut[n]->pPsyOutChannels[i]); /* PSY_OUT_CHANNEL */ - } + FreeRam_aacEnc_PsyInternal(phPsyInternal); + } + } - for (i=0; i<(8); i++) { - if (phPsyOut[n]->psyOutElement[i]) - FreeRam_aacEnc_PsyOutElements(&phPsyOut[n]->psyOutElement[i]); /* PSY_OUT_ELEMENTS */ - } + if (phPsyOut != NULL) { + for (n = 0; n < (1); n++) { + if (phPsyOut[n]) { + for (i = 0; i < (8); i++) { + if (phPsyOut[n]->pPsyOutChannels[i]) + FreeRam_aacEnc_PsyOutChannel( + &phPsyOut[n]->pPsyOutChannels[i]); /* PSY_OUT_CHANNEL */ + } - FreeRam_aacEnc_PsyOut(&phPsyOut[n]); + for (i = 0; i < ((8)); i++) { + if (phPsyOut[n]->psyOutElement[i]) + FreeRam_aacEnc_PsyOutElements( + &phPsyOut[n]->psyOutElement[i]); /* PSY_OUT_ELEMENTS */ } + + FreeRam_aacEnc_PsyOut(&phPsyOut[n]); } } + } } |