aboutsummaryrefslogtreecommitdiffstats
path: root/libAACdec/src/rvlcconceal.cpp
diff options
context:
space:
mode:
authorXin Li <delphij@google.com>2018-06-08 11:06:57 -0700
committerXin Li <delphij@google.com>2018-06-08 11:06:57 -0700
commit6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835 (patch)
tree41c65cebd836ff3f949f1134512985e4a1288593 /libAACdec/src/rvlcconceal.cpp
parentb9fc83e0e9412548830f07e60c53d8072adb60de (diff)
parent1f93990cfc1bb76aa538634512938e39565f471a (diff)
downloadfdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.tar.gz
fdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.tar.bz2
fdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.zip
Merge pi-dev-plus-aosp-without-vendor into stage-aosp-master
Bug: 79597307 Change-Id: Ia98e005208999b395595ef647902768a1199eaa4
Diffstat (limited to 'libAACdec/src/rvlcconceal.cpp')
-rw-r--r--libAACdec/src/rvlcconceal.cpp830
1 files changed, 460 insertions, 370 deletions
diff --git a/libAACdec/src/rvlcconceal.cpp b/libAACdec/src/rvlcconceal.cpp
index cf33dd5..77fda68 100644
--- a/libAACdec/src/rvlcconceal.cpp
+++ b/libAACdec/src/rvlcconceal.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,7 +90,15 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
+
+/**************************** AAC decoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
/*!
\file
@@ -89,37 +108,33 @@ amm-info@iis.fraunhofer.de
#include "rvlcconceal.h"
-
#include "block.h"
#include "rvlc.h"
/*---------------------------------------------------------------------------------------------
function: calcRefValFwd
- description: The function determines the scalefactor which is closed to the scalefactorband
- conceal_min. The same is done for intensity data and noise energies.
+ description: The function determines the scalefactor which is closed to the
+scalefactorband conceal_min. The same is done for intensity data and noise
+energies.
-----------------------------------------------------------------------------------------------
output: - reference value scf
- reference value internsity data
- reference value noise energy
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------- */
-
-static
-void calcRefValFwd (CErRvlcInfo *pRvlc,
- CAacDecoderChannelInfo *pAacDecoderChannelInfo,
- int *refIsFwd,
- int *refNrgFwd,
- int *refScfFwd)
-{
- int band,bnds,group,startBand;
- int idIs,idNrg,idScf;
- int conceal_min,conceal_group_min;
- int MaximumScaleFactorBands;
+--------------------------------------------------------------------------------------------
+*/
+static void calcRefValFwd(CErRvlcInfo *pRvlc,
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
+ int band, bnds, group, startBand;
+ int idIs, idNrg, idScf;
+ int conceal_min, conceal_group_min;
+ int MaximumScaleFactorBands;
- if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == EightShortSequence)
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
MaximumScaleFactorBands = 16;
else
MaximumScaleFactorBands = 64;
@@ -131,69 +146,71 @@ void calcRefValFwd (CErRvlcInfo *pRvlc,
idIs = idNrg = idScf = 1;
/* set reference values */
- *refIsFwd = - SF_OFFSET;
- *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET - 90 - 256;
- *refScfFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
-
- startBand = conceal_min-1;
- for (group=conceal_group_min; group >= 0; group--) {
- for (band=startBand; band >= 0; band--) {
- bnds = 16*group+band;
+ *refIsFwd = -SF_OFFSET;
+ *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
+ SF_OFFSET - 90 - 256;
+ *refScfFwd =
+ pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
+
+ startBand = conceal_min - 1;
+ for (group = conceal_group_min; group >= 0; group--) {
+ for (band = startBand; band >= 0; band--) {
+ bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
break;
case INTENSITY_HCB:
case INTENSITY_HCB2:
if (idIs) {
- *refIsFwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
- idIs=0; /* reference value has been set */
+ *refIsFwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ idIs = 0; /* reference value has been set */
}
break;
case NOISE_HCB:
if (idNrg) {
- *refNrgFwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
- idNrg=0; /* reference value has been set */
+ *refNrgFwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ idNrg = 0; /* reference value has been set */
}
- break ;
+ break;
default:
if (idScf) {
- *refScfFwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
- idScf=0; /* reference value has been set */
+ *refScfFwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ idScf = 0; /* reference value has been set */
}
break;
}
}
- startBand = pRvlc->maxSfbTransmitted-1;
+ startBand = pRvlc->maxSfbTransmitted - 1;
}
-
}
/*---------------------------------------------------------------------------------------------
function: calcRefValBwd
- description: The function determines the scalefactor which is closed to the scalefactorband
- conceal_max. The same is done for intensity data and noise energies.
+ description: The function determines the scalefactor which is closed to the
+scalefactorband conceal_max. The same is done for intensity data and noise
+energies.
-----------------------------------------------------------------------------------------------
output: - reference value scf
- reference value internsity data
- reference value noise energy
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------- */
-
-static
-void calcRefValBwd (CErRvlcInfo *pRvlc,
- CAacDecoderChannelInfo *pAacDecoderChannelInfo,
- int *refIsBwd,
- int *refNrgBwd,
- int *refScfBwd)
-{
- int band,bnds,group,startBand;
- int idIs,idNrg,idScf;
- int conceal_max,conceal_group_max;
+--------------------------------------------------------------------------------------------
+*/
+
+static void calcRefValBwd(CErRvlcInfo *pRvlc,
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
+ int band, bnds, group, startBand;
+ int idIs, idNrg, idScf;
+ int conceal_max, conceal_group_max;
int MaximumScaleFactorBands;
- if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == EightShortSequence)
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
MaximumScaleFactorBands = 16;
else
MaximumScaleFactorBands = 64;
@@ -206,86 +223,91 @@ void calcRefValBwd (CErRvlcInfo *pRvlc,
/* set reference values */
*refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
- *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position - SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
+ *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
+ SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
*refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
- startBand=conceal_max+1;
+ startBand = conceal_max + 1;
/* if needed, re-set reference values */
- for (group=conceal_group_max; group < pRvlc->numWindowGroups; group++) {
- for (band=startBand; band < pRvlc->maxSfbTransmitted; band++) {
- bnds = 16*group+band;
+ for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
+ for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
break;
case INTENSITY_HCB:
case INTENSITY_HCB2:
if (idIs) {
- *refIsBwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
- idIs=0; /* reference value has been set */
+ *refIsBwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ idIs = 0; /* reference value has been set */
}
break;
case NOISE_HCB:
if (idNrg) {
- *refNrgBwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
- idNrg=0; /* reference value has been set */
+ *refNrgBwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ idNrg = 0; /* reference value has been set */
}
- break ;
+ break;
default:
if (idScf) {
- *refScfBwd = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
- idScf=0; /* reference value has been set */
+ *refScfBwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ idScf = 0; /* reference value has been set */
}
break;
}
}
- startBand=0;
+ startBand = 0;
}
-
}
-
/*---------------------------------------------------------------------------------------------
function: BidirectionalEstimation_UseLowerScfOfCurrentFrame
- description: This approach by means of bidirectional estimation is generally performed when
- a single bit error has been detected, the bit error can be isolated between
- 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag is not set. The
- sets of scalefactors decoded in forward and backward direction are compared
- with each other. The smaller scalefactor will be considered as the correct one
- respectively. The reconstruction of the scalefactors with this approach archieve
- good results in audio quality. The strategy must be applied to scalefactors,
- intensity data and noise energy seperately.
+ description: This approach by means of bidirectional estimation is generally
+performed when a single bit error has been detected, the bit error can be
+isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
+is not set. The sets of scalefactors decoded in forward and backward direction
+are compared with each other. The smaller scalefactor will be considered as the
+correct one respectively. The reconstruction of the scalefactors with this
+approach archieve good results in audio quality. The strategy must be applied to
+scalefactors, intensity data and noise energy seperately.
-----------------------------------------------------------------------------------------------
- output: Concealed scalefactor, noise energy and intensity data between conceal_min and
- conceal_max
+ output: Concealed scalefactor, noise energy and intensity data between
+conceal_min and conceal_max
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------- */
-
-void BidirectionalEstimation_UseLowerScfOfCurrentFrame (CAacDecoderChannelInfo *pAacDecoderChannelInfo)
-{
- CErRvlcInfo *pRvlc = &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
- int band,bnds,startBand,endBand,group;
- int conceal_min,conceal_max;
- int conceal_group_min,conceal_group_max;
+--------------------------------------------------------------------------------------------
+*/
+
+void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, startBand, endBand, group;
+ int conceal_min, conceal_max;
+ int conceal_group_min, conceal_group_max;
int MaximumScaleFactorBands;
- if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == EightShortSequence) {
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
MaximumScaleFactorBands = 16;
- }
- else {
+ } else {
MaximumScaleFactorBands = 64;
}
-
- /* If an error was detected just in forward or backward direction, set the corresponding border for concealment to a
- appropriate scalefactor band. The border is set to first or last sfb respectively, because the error will possibly
- not follow directly after the corrupt bit but just after decoding some more (wrong) scalefactors. */
- if (pRvlc->conceal_min == CONCEAL_MIN_INIT)
- pRvlc->conceal_min = 0;
+
+ /* If an error was detected just in forward or backward direction, set the
+ corresponding border for concealment to a appropriate scalefactor band. The
+ border is set to first or last sfb respectively, because the error will
+ possibly not follow directly after the corrupt bit but just after decoding
+ some more (wrong) scalefactors. */
+ if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
- pRvlc->conceal_max = (pRvlc->numWindowGroups-1)*16+pRvlc->maxSfbTransmitted-1;
+ pRvlc->conceal_max =
+ (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
@@ -293,20 +315,21 @@ void BidirectionalEstimation_UseLowerScfOfCurrentFrame (CAacDecoderChannelInfo *
conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
if (pRvlc->conceal_min == pRvlc->conceal_max) {
-
- int refIsFwd,refNrgFwd,refScfFwd;
- int refIsBwd,refNrgBwd,refScfBwd;
+ int refIsFwd, refNrgFwd, refScfFwd;
+ int refIsBwd, refNrgBwd, refScfBwd;
bnds = pRvlc->conceal_min;
- calcRefValFwd(pRvlc,pAacDecoderChannelInfo,&refIsFwd,&refNrgFwd,&refScfFwd);
- calcRefValBwd(pRvlc,pAacDecoderChannelInfo,&refIsBwd,&refNrgBwd,&refScfBwd);
+ calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
+ &refScfFwd);
+ calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
+ &refScfBwd);
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
break;
case INTENSITY_HCB:
case INTENSITY_HCB2:
- if (refIsFwd < refIsBwd)
+ if (refIsFwd < refIsBwd)
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
else
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
@@ -320,55 +343,64 @@ void BidirectionalEstimation_UseLowerScfOfCurrentFrame (CAacDecoderChannelInfo *
default:
if (refScfFwd < refScfBwd)
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
- else
+ else
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
break;
}
- }
- else {
- pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[pRvlc->conceal_max] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[pRvlc->conceal_max];
- pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[pRvlc->conceal_min] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[pRvlc->conceal_min];
-
- /* consider the smaller of the forward and backward decoded value as the correct one */
- startBand = conceal_min;
- if (conceal_group_min == conceal_group_max)
- endBand = conceal_max;
- else
- endBand = pRvlc->maxSfbTransmitted-1;
-
- for (group=conceal_group_min; group <= conceal_group_max; group++) {
- for (band=startBand; band <= endBand; band++) {
- bnds = 16*group+band;
- if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] < pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ } else {
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_max] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_max];
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_min] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_min];
+
+ /* consider the smaller of the forward and backward decoded value as the
+ * correct one */
+ startBand = conceal_min;
+ if (conceal_group_min == conceal_group_max)
+ endBand = conceal_max;
+ else
+ endBand = pRvlc->maxSfbTransmitted - 1;
+
+ for (group = conceal_group_min; group <= conceal_group_max; group++) {
+ for (band = startBand; band <= endBand; band++) {
+ bnds = 16 * group + band;
+ if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
else
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
- }
- startBand = 0;
- if ((group+1) == conceal_group_max)
- endBand = conceal_max;
- }
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ }
+ startBand = 0;
+ if ((group + 1) == conceal_group_max) endBand = conceal_max;
+ }
}
/* now copy all data to the output buffer which needs not to be concealed */
- if (conceal_group_min == 0)
- endBand = conceal_min;
- else
- endBand = pRvlc->maxSfbTransmitted;
- for (group=0; group <= conceal_group_min; group++) {
- for (band=0; band < endBand; band++) {
- bnds = 16*group+band;
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ if (conceal_group_min == 0)
+ endBand = conceal_min;
+ else
+ endBand = pRvlc->maxSfbTransmitted;
+ for (group = 0; group <= conceal_group_min; group++) {
+ for (band = 0; band < endBand; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
}
- if ((group+1) == conceal_group_min)
- endBand = conceal_min;
+ if ((group + 1) == conceal_group_min) endBand = conceal_min;
}
- startBand = conceal_max+1;
- for (group=conceal_group_max; group < pRvlc->numWindowGroups; group++) {
- for (band=startBand; band < pRvlc->maxSfbTransmitted; band++) {
- bnds = 16*group+band;
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ startBand = conceal_max + 1;
+ for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
+ for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
}
startBand = 0;
}
@@ -377,71 +409,79 @@ void BidirectionalEstimation_UseLowerScfOfCurrentFrame (CAacDecoderChannelInfo *
/*---------------------------------------------------------------------------------------------
function: BidirectionalEstimation_UseScfOfPrevFrameAsReference
- description: This approach by means of bidirectional estimation is generally performed when
- a single bit error has been detected, the bit error can be isolated between
- 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is set and the
- previous frame has the same block type as the current frame. The scalefactor
- decoded in forward and backward direction and the scalefactor of the previous
- frame are compared with each other. The smaller scalefactor will be considered
- as the correct one. At this the codebook of the previous and current frame must
- be of the same set (scf, nrg, is) in each scalefactorband. Otherwise the
- scalefactor of the previous frame is not considered in the minimum calculation.
- The reconstruction of the scalefactors with this approach archieve good results
- in audio quality. The strategy must be applied to scalefactors, intensity data
- and noise energy seperately.
+ description: This approach by means of bidirectional estimation is generally
+performed when a single bit error has been detected, the bit error can be
+isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
+set and the previous frame has the same block type as the current frame. The
+scalefactor decoded in forward and backward direction and the scalefactor of the
+previous frame are compared with each other. The smaller scalefactor will be
+considered as the correct one. At this the codebook of the previous and current
+frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
+the scalefactor of the previous frame is not considered in the minimum
+calculation. The reconstruction of the scalefactors with this approach archieve
+good results in audio quality. The strategy must be applied to scalefactors,
+intensity data and noise energy seperately.
-----------------------------------------------------------------------------------------------
- output: Concealed scalefactor, noise energy and intensity data between conceal_min and
- conceal_max
+ output: Concealed scalefactor, noise energy and intensity data between
+conceal_min and conceal_max
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------- */
-
-void BidirectionalEstimation_UseScfOfPrevFrameAsReference (
- CAacDecoderChannelInfo *pAacDecoderChannelInfo,
- CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo
- )
-{
- CErRvlcInfo *pRvlc = &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
- int band,bnds,startBand,endBand,group;
- int conceal_min,conceal_max;
- int conceal_group_min,conceal_group_max;
+--------------------------------------------------------------------------------------------
+*/
+
+void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, startBand, endBand, group;
+ int conceal_min, conceal_max;
+ int conceal_group_min, conceal_group_max;
int MaximumScaleFactorBands;
- int commonMin;
+ SHORT commonMin;
- if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == EightShortSequence) {
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
MaximumScaleFactorBands = 16;
- }
- else {
+ } else {
MaximumScaleFactorBands = 64;
}
- /* If an error was detected just in forward or backward direction, set the corresponding border for concealment to a
- appropriate scalefactor band. The border is set to first or last sfb respectively, because the error will possibly
- not follow directly after the corrupt bit but just after decoding some more (wrong) scalefactors. */
- if (pRvlc->conceal_min == CONCEAL_MIN_INIT)
- pRvlc->conceal_min = 0;
+ /* If an error was detected just in forward or backward direction, set the
+ corresponding border for concealment to a appropriate scalefactor band. The
+ border is set to first or last sfb respectively, because the error will
+ possibly not follow directly after the corrupt bit but just after decoding
+ some more (wrong) scalefactors. */
+ if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
- pRvlc->conceal_max = (pRvlc->numWindowGroups-1)*16+pRvlc->maxSfbTransmitted-1;
+ pRvlc->conceal_max =
+ (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
- pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[pRvlc->conceal_max] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[pRvlc->conceal_max];
- pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[pRvlc->conceal_min] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[pRvlc->conceal_min];
-
- /* consider the smaller of the forward and backward decoded value as the correct one */
- startBand = conceal_min;
- if (conceal_group_min == conceal_group_max)
- endBand = conceal_max;
- else
- endBand = pRvlc->maxSfbTransmitted-1;
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_max] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_max];
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_min] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_min];
+
+ /* consider the smaller of the forward and backward decoded value as the
+ * correct one */
+ startBand = conceal_min;
+ if (conceal_group_min == conceal_group_max)
+ endBand = conceal_max;
+ else
+ endBand = pRvlc->maxSfbTransmitted - 1;
- for (group=conceal_group_min; group <= conceal_group_max; group++) {
- for (band=startBand; band <= endBand; band++) {
- bnds = 16*group+band;
+ for (group = conceal_group_min; group <= conceal_group_max; group++) {
+ for (band = startBand; band <= endBand; band++) {
+ bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
@@ -449,62 +489,92 @@ void BidirectionalEstimation_UseScfOfPrevFrameAsReference (
case INTENSITY_HCB:
case INTENSITY_HCB2:
- if ( (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]==INTENSITY_HCB) || (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]==INTENSITY_HCB2) ) {
- commonMin = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousScaleFactor[bnds]);
- }
- else {
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
}
break;
case NOISE_HCB:
- if ( pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]==NOISE_HCB ) {
- commonMin = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousScaleFactor[bnds]);
+ if (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
} else {
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
}
break;
default:
- if ( (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=ZERO_HCB)
- && (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=NOISE_HCB)
- && (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=INTENSITY_HCB)
- && (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=INTENSITY_HCB2) )
- {
- commonMin = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousScaleFactor[bnds]);
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
} else {
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
}
break;
}
}
- startBand = 0;
- if ((group+1) == conceal_group_max)
- endBand = conceal_max;
+ startBand = 0;
+ if ((group + 1) == conceal_group_max) endBand = conceal_max;
}
/* now copy all data to the output buffer which needs not to be concealed */
- if (conceal_group_min == 0)
- endBand = conceal_min;
- else
- endBand = pRvlc->maxSfbTransmitted;
- for (group=0; group <= conceal_group_min; group++) {
- for (band=0; band < endBand; band++) {
- bnds = 16*group+band;
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ if (conceal_group_min == 0)
+ endBand = conceal_min;
+ else
+ endBand = pRvlc->maxSfbTransmitted;
+ for (group = 0; group <= conceal_group_min; group++) {
+ for (band = 0; band < endBand; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
}
- if ((group+1) == conceal_group_min)
- endBand = conceal_min;
+ if ((group + 1) == conceal_group_min) endBand = conceal_min;
}
- startBand = conceal_max+1;
- for (group=conceal_group_max; group < pRvlc->numWindowGroups; group++) {
- for (band=startBand; band < pRvlc->maxSfbTransmitted; band++) {
- bnds = 16*group+band;
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ startBand = conceal_max + 1;
+ for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
+ for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
}
startBand = 0;
}
@@ -513,81 +583,82 @@ void BidirectionalEstimation_UseScfOfPrevFrameAsReference (
/*---------------------------------------------------------------------------------------------
function: StatisticalEstimation
- description: This approach by means of statistical estimation is generally performed when
- both the start value and the end value are different and no further errors have
- been detected. Considering the forward and backward decoded scalefactors, the
- set with the lower scalefactors in sum will be considered as the correct one.
- The scalefactors are differentially encoded. Normally it would reach to compare
- one pair of the forward and backward decoded scalefactors to specify the lower
- set. But having detected no further errors does not necessarily mean the absence
- of errors. Therefore all scalefactors decoded in forward and backward direction
- are summed up seperately. The set with the lower sum will be used. The strategy
- must be applied to scalefactors, intensity data and noise energy seperately.
+ description: This approach by means of statistical estimation is generally
+performed when both the start value and the end value are different and no
+further errors have been detected. Considering the forward and backward decoded
+scalefactors, the set with the lower scalefactors in sum will be considered as
+the correct one. The scalefactors are differentially encoded. Normally it would
+reach to compare one pair of the forward and backward decoded scalefactors to
+specify the lower set. But having detected no further errors does not
+necessarily mean the absence of errors. Therefore all scalefactors decoded in
+forward and backward direction are summed up seperately. The set with the lower
+sum will be used. The strategy must be applied to scalefactors, intensity data
+and noise energy seperately.
-----------------------------------------------------------------------------------------------
output: Concealed scalefactor, noise energy and intensity data
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------- */
-
-void StatisticalEstimation (CAacDecoderChannelInfo *pAacDecoderChannelInfo)
-{
- CErRvlcInfo *pRvlc = &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
- int band,bnds,group;
- int sumIsFwd,sumIsBwd; /* sum of intensity data forward/backward */
- int sumNrgFwd,sumNrgBwd; /* sum of noise energy data forward/backward */
- int sumScfFwd,sumScfBwd; /* sum of scalefactor data forward/backward */
- int useIsFwd,useNrgFwd,useScfFwd; /* the flags signals the elements which are used for the final result */
- int MaximumScaleFactorBands;
+--------------------------------------------------------------------------------------------
+*/
- if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == EightShortSequence)
- MaximumScaleFactorBands = 16;
- else
- MaximumScaleFactorBands = 64;
+void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, group;
+ int sumIsFwd, sumIsBwd; /* sum of intensity data forward/backward */
+ int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
+ int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
+ int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
+ are used for the final result */
sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
useIsFwd = useNrgFwd = useScfFwd = 0;
- /* calculate sum of each group (scf,nrg,is) of forward and backward direction */
- for (group=0; group<pRvlc->numWindowGroups; group++) {
- for (band=0; band < pRvlc->maxSfbTransmitted; band++) {
- bnds = 16*group+band;
+ /* calculate sum of each group (scf,nrg,is) of forward and backward direction
+ */
+ for (group = 0; group < pRvlc->numWindowGroups; group++) {
+ for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
break;
case INTENSITY_HCB:
case INTENSITY_HCB2:
- sumIsFwd += pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
- sumIsBwd += pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ sumIsFwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ sumIsBwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
break;
case NOISE_HCB:
- sumNrgFwd += pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
- sumNrgBwd += pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
- break ;
+ sumNrgFwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ sumNrgBwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
default:
- sumScfFwd += pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
- sumScfBwd += pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ sumScfFwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ sumScfBwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
break;
}
}
}
/* find for each group (scf,nrg,is) the correct direction */
- if ( sumIsFwd < sumIsBwd )
- useIsFwd = 1;
+ if (sumIsFwd < sumIsBwd) useIsFwd = 1;
- if ( sumNrgFwd < sumNrgBwd )
- useNrgFwd = 1;
+ if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
- if ( sumScfFwd < sumScfBwd )
- useScfFwd = 1;
+ if (sumScfFwd < sumScfBwd) useScfFwd = 1;
/* conceal each group (scf,nrg,is) */
- for (group=0; group<pRvlc->numWindowGroups; group++) {
- for (band=0; band < pRvlc->maxSfbTransmitted; band++) {
- bnds = 16*group+band;
+ for (group = 0; group < pRvlc->numWindowGroups; group++) {
+ for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
break;
@@ -595,63 +666,63 @@ void StatisticalEstimation (CAacDecoderChannelInfo *pAacDecoderChannelInfo)
case INTENSITY_HCB:
case INTENSITY_HCB2:
if (useIsFwd)
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
else
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
break;
case NOISE_HCB:
if (useNrgFwd)
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
else
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
- break ;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
default:
if (useScfFwd)
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
else
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
break;
}
}
}
}
-
/*---------------------------------------------------------------------------------------------
description: Approach by means of predictive interpolation
- This approach by means of predictive estimation is generally performed when
- the error cannot be isolated between 'conceal_min' and 'conceal_max', the
- 'sf_concealment' flag is set and the previous frame has the same block type
- as the current frame. Check for each scalefactorband if the same type of data
- (scalefactor, internsity data, noise energies) is transmitted. If so use the
- scalefactor (intensity data, noise energy) in the current frame. Otherwise set
- the scalefactor (intensity data, noise energy) for this scalefactorband to zero.
+ This approach by means of predictive estimation is generally
+performed when the error cannot be isolated between 'conceal_min' and
+'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
+same block type as the current frame. Check for each scalefactorband if the same
+type of data (scalefactor, internsity data, noise energies) is transmitted. If
+so use the scalefactor (intensity data, noise energy) in the current frame.
+Otherwise set the scalefactor (intensity data, noise energy) for this
+scalefactorband to zero.
-----------------------------------------------------------------------------------------------
output: Concealed scalefactor, noise energy and intensity data
-----------------------------------------------------------------------------------------------
return: -
--------------------------------------------------------------------------------------------- */
-
-void PredictiveInterpolation (
- CAacDecoderChannelInfo *pAacDecoderChannelInfo,
- CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo
- )
-{
- CErRvlcInfo *pRvlc = &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
- int band,bnds,group;
- int MaximumScaleFactorBands;
- int commonMin;
-
- if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == EightShortSequence)
- MaximumScaleFactorBands = 16;
- else
- MaximumScaleFactorBands = 64;
+--------------------------------------------------------------------------------------------
+*/
- for (group=0; group<pRvlc->numWindowGroups; group++) {
- for (band=0; band < pRvlc->maxSfbTransmitted; band++) {
- bnds = 16*group+band;
+void PredictiveInterpolation(
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, group;
+ SHORT commonMin;
+
+ for (group = 0; group < pRvlc->numWindowGroups; group++) {
+ for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
case ZERO_HCB:
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
@@ -659,34 +730,54 @@ void PredictiveInterpolation (
case INTENSITY_HCB:
case INTENSITY_HCB2:
- if ( (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]==INTENSITY_HCB) || (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]==INTENSITY_HCB2) ) {
- commonMin = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousScaleFactor[bnds]);
- }
- else {
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
}
break;
case NOISE_HCB:
- if ( pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]==NOISE_HCB ) {
- commonMin = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousScaleFactor[bnds]);
- }
- else {
+ if (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
}
break;
default:
- if ( (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=ZERO_HCB)
- && (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=NOISE_HCB)
- && (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=INTENSITY_HCB)
- && (pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousCodebook[bnds]!=INTENSITY_HCB2) ) {
- commonMin = FDKmin(pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]);
- pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = FDKmin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo.aRvlcPreviousScaleFactor[bnds]);
- }
- else {
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
}
break;
@@ -694,4 +785,3 @@ void PredictiveInterpolation (
}
}
}
-