/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

� Copyright  1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
  All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:

You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.

You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */

#include "code_env.h"
#include "sbr_rom.h"

/*****************************************************************************

 functionname: FDKsbrEnc_InitSbrHuffmanTables
 description:  initializes Huffman Tables dependent on chosen amp_res
 returns:      error handle
 input:
 output:

*****************************************************************************/
INT
FDKsbrEnc_InitSbrHuffmanTables (HANDLE_SBR_ENV_DATA       sbrEnvData,
                      HANDLE_SBR_CODE_ENVELOPE  henv,
                      HANDLE_SBR_CODE_ENVELOPE  hnoise,
                      AMP_RES                   amp_res)
{
  if ( (!henv)  ||  (!hnoise)  || (!sbrEnvData) )
    return (1); /* not init. */

  sbrEnvData->init_sbr_amp_res = amp_res;

  switch (amp_res) {
  case  SBR_AMP_RES_3_0:
    /*envelope data*/

    /*Level/Pan - coding */
    sbrEnvData->hufftableLevelTimeC   = v_Huff_envelopeLevelC11T;
    sbrEnvData->hufftableLevelTimeL   = v_Huff_envelopeLevelL11T;
    sbrEnvData->hufftableBalanceTimeC = bookSbrEnvBalanceC11T;
    sbrEnvData->hufftableBalanceTimeL = bookSbrEnvBalanceL11T;

    sbrEnvData->hufftableLevelFreqC   = v_Huff_envelopeLevelC11F;
    sbrEnvData->hufftableLevelFreqL   = v_Huff_envelopeLevelL11F;
    sbrEnvData->hufftableBalanceFreqC = bookSbrEnvBalanceC11F;
    sbrEnvData->hufftableBalanceFreqL = bookSbrEnvBalanceL11F;

    /*Right/Left - coding */
    sbrEnvData->hufftableTimeC        = v_Huff_envelopeLevelC11T;
    sbrEnvData->hufftableTimeL        = v_Huff_envelopeLevelL11T;
    sbrEnvData->hufftableFreqC        = v_Huff_envelopeLevelC11F;
    sbrEnvData->hufftableFreqL        = v_Huff_envelopeLevelL11F;

    sbrEnvData->codeBookScfLavBalance  = CODE_BOOK_SCF_LAV_BALANCE11;
    sbrEnvData->codeBookScfLav         = CODE_BOOK_SCF_LAV11;

    sbrEnvData->si_sbr_start_env_bits           = SI_SBR_START_ENV_BITS_AMP_RES_3_0;
    sbrEnvData->si_sbr_start_env_bits_balance   = SI_SBR_START_ENV_BITS_BALANCE_AMP_RES_3_0;
    break;

  case SBR_AMP_RES_1_5:
   /*envelope data*/

    /*Level/Pan - coding */
    sbrEnvData->hufftableLevelTimeC   = v_Huff_envelopeLevelC10T;
    sbrEnvData->hufftableLevelTimeL   = v_Huff_envelopeLevelL10T;
    sbrEnvData->hufftableBalanceTimeC = bookSbrEnvBalanceC10T;
    sbrEnvData->hufftableBalanceTimeL = bookSbrEnvBalanceL10T;

    sbrEnvData->hufftableLevelFreqC   = v_Huff_envelopeLevelC10F;
    sbrEnvData->hufftableLevelFreqL   = v_Huff_envelopeLevelL10F;
    sbrEnvData->hufftableBalanceFreqC = bookSbrEnvBalanceC10F;
    sbrEnvData->hufftableBalanceFreqL = bookSbrEnvBalanceL10F;

    /*Right/Left - coding */
    sbrEnvData->hufftableTimeC        = v_Huff_envelopeLevelC10T;
    sbrEnvData->hufftableTimeL        = v_Huff_envelopeLevelL10T;
    sbrEnvData->hufftableFreqC        = v_Huff_envelopeLevelC10F;
    sbrEnvData->hufftableFreqL        = v_Huff_envelopeLevelL10F;

    sbrEnvData->codeBookScfLavBalance = CODE_BOOK_SCF_LAV_BALANCE10;
    sbrEnvData->codeBookScfLav = CODE_BOOK_SCF_LAV10;

    sbrEnvData->si_sbr_start_env_bits           = SI_SBR_START_ENV_BITS_AMP_RES_1_5;
    sbrEnvData->si_sbr_start_env_bits_balance   = SI_SBR_START_ENV_BITS_BALANCE_AMP_RES_1_5;
    break;

  default:
    return (1); /* undefined amp_res mode */
  }

  /* these are common to both amp_res values */
  /*Noise data*/

  /*Level/Pan - coding */
  sbrEnvData->hufftableNoiseLevelTimeC   = v_Huff_NoiseLevelC11T;
  sbrEnvData->hufftableNoiseLevelTimeL   = v_Huff_NoiseLevelL11T;
  sbrEnvData->hufftableNoiseBalanceTimeC = bookSbrNoiseBalanceC11T;
  sbrEnvData->hufftableNoiseBalanceTimeL = bookSbrNoiseBalanceL11T;

  sbrEnvData->hufftableNoiseLevelFreqC   = v_Huff_envelopeLevelC11F;
  sbrEnvData->hufftableNoiseLevelFreqL   = v_Huff_envelopeLevelL11F;
  sbrEnvData->hufftableNoiseBalanceFreqC = bookSbrEnvBalanceC11F;
  sbrEnvData->hufftableNoiseBalanceFreqL = bookSbrEnvBalanceL11F;


  /*Right/Left - coding */
  sbrEnvData->hufftableNoiseTimeC        = v_Huff_NoiseLevelC11T;
  sbrEnvData->hufftableNoiseTimeL        = v_Huff_NoiseLevelL11T;
  sbrEnvData->hufftableNoiseFreqC        = v_Huff_envelopeLevelC11F;
  sbrEnvData->hufftableNoiseFreqL        = v_Huff_envelopeLevelL11F;

  sbrEnvData->si_sbr_start_noise_bits         = SI_SBR_START_NOISE_BITS_AMP_RES_3_0;
  sbrEnvData->si_sbr_start_noise_bits_balance = SI_SBR_START_NOISE_BITS_BALANCE_AMP_RES_3_0;


  /* init envelope tables and codebooks */
  henv->codeBookScfLavBalanceTime = sbrEnvData->codeBookScfLavBalance;
  henv->codeBookScfLavBalanceFreq = sbrEnvData->codeBookScfLavBalance;
  henv->codeBookScfLavLevelTime = sbrEnvData->codeBookScfLav;
  henv->codeBookScfLavLevelFreq = sbrEnvData->codeBookScfLav;
  henv->codeBookScfLavTime = sbrEnvData->codeBookScfLav;
  henv->codeBookScfLavFreq = sbrEnvData->codeBookScfLav;

  henv->hufftableLevelTimeL = sbrEnvData->hufftableLevelTimeL;
  henv->hufftableBalanceTimeL = sbrEnvData->hufftableBalanceTimeL;
  henv->hufftableTimeL = sbrEnvData->hufftableTimeL;
  henv->hufftableLevelFreqL = sbrEnvData->hufftableLevelFreqL;
  henv->hufftableBalanceFreqL = sbrEnvData->hufftableBalanceFreqL;
  henv->hufftableFreqL = sbrEnvData->hufftableFreqL;

  henv->codeBookScfLavFreq = sbrEnvData->codeBookScfLav;
  henv->codeBookScfLavTime = sbrEnvData->codeBookScfLav;

  henv->start_bits = sbrEnvData->si_sbr_start_env_bits;
  henv->start_bits_balance = sbrEnvData->si_sbr_start_env_bits_balance;


  /* init noise tables and codebooks */

  hnoise->codeBookScfLavBalanceTime = CODE_BOOK_SCF_LAV_BALANCE11;
  hnoise->codeBookScfLavBalanceFreq = CODE_BOOK_SCF_LAV_BALANCE11;
  hnoise->codeBookScfLavLevelTime = CODE_BOOK_SCF_LAV11;
  hnoise->codeBookScfLavLevelFreq = CODE_BOOK_SCF_LAV11;
  hnoise->codeBookScfLavTime = CODE_BOOK_SCF_LAV11;
  hnoise->codeBookScfLavFreq = CODE_BOOK_SCF_LAV11;

  hnoise->hufftableLevelTimeL = sbrEnvData->hufftableNoiseLevelTimeL;
  hnoise->hufftableBalanceTimeL = sbrEnvData->hufftableNoiseBalanceTimeL;
  hnoise->hufftableTimeL = sbrEnvData->hufftableNoiseTimeL;
  hnoise->hufftableLevelFreqL = sbrEnvData->hufftableNoiseLevelFreqL;
  hnoise->hufftableBalanceFreqL = sbrEnvData->hufftableNoiseBalanceFreqL;
  hnoise->hufftableFreqL = sbrEnvData->hufftableNoiseFreqL;


  hnoise->start_bits = sbrEnvData->si_sbr_start_noise_bits;
  hnoise->start_bits_balance = sbrEnvData->si_sbr_start_noise_bits_balance;

  /* No delta coding in time from the previous frame due to 1.5dB FIx-FIX rule */
  henv->upDate = 0;
  hnoise->upDate = 0;
  return  (0);
}

/*******************************************************************************
 Functionname:  indexLow2High
 *******************************************************************************

 Description:   Nice small patch-functions in order to cope with non-factor-2
                ratios between high-res and low-res

 Arguments:     INT offset, INT index, FREQ_RES res

 Return:        INT

*******************************************************************************/
static INT indexLow2High(INT offset, INT index, FREQ_RES res)
{

  if(res == FREQ_RES_LOW)
  {
    if (offset >= 0)
    {
        if (index < offset)
          return(index);
        else
          return(2*index - offset);
    }
    else
    {
        offset = -offset;
        if (index < offset)
          return(2*index+index);
        else
          return(2*index + offset);
    }
  }
  else
    return(index);
}



/*******************************************************************************
 Functionname:  mapLowResEnergyVal
 *******************************************************************************

 Description:

 Arguments:     INT currVal,INT* prevData, INT offset, INT index, FREQ_RES res

 Return:        none

*******************************************************************************/
static void mapLowResEnergyVal(SCHAR currVal, SCHAR* prevData, INT offset, INT index, FREQ_RES res)
{

  if(res == FREQ_RES_LOW)
  {
    if (offset >= 0)
    {
        if(index < offset)
            prevData[index] = currVal;
        else
        {
            prevData[2*index - offset] = currVal;
            prevData[2*index+1 - offset] = currVal;
        }
    }
    else
    {
        offset = -offset;
        if (index < offset)
        {
            prevData[3*index] = currVal;
            prevData[3*index+1] = currVal;
            prevData[3*index+2] = currVal;
        }
        else
        {
            prevData[2*index + offset] = currVal;
            prevData[2*index + 1 + offset] = currVal;
        }
    }
  }
  else
    prevData[index] = currVal;
}



/*******************************************************************************
 Functionname:  computeBits
 *******************************************************************************

 Description:

 Arguments:     INT delta,
                INT codeBookScfLavLevel,
                INT codeBookScfLavBalance,
                const UCHAR * hufftableLevel,
                const UCHAR * hufftableBalance, INT coupling, INT channel)

 Return:        INT

*******************************************************************************/
static INT
computeBits (SCHAR *delta,
             INT codeBookScfLavLevel,
             INT codeBookScfLavBalance,
             const UCHAR * hufftableLevel,
             const UCHAR * hufftableBalance, INT coupling, INT channel)
{
  INT index;
  INT delta_bits = 0;

  if (coupling) {
    if (channel == 1)
      {
        if (*delta < 0)
          index = fixMax(*delta, -codeBookScfLavBalance);
        else
          index = fixMin(*delta,  codeBookScfLavBalance);

        if (index != *delta) {
          *delta = index;
          return (10000);
        }

        delta_bits = hufftableBalance[index + codeBookScfLavBalance];
      }
    else {
      if (*delta < 0)
        index = fixMax(*delta, -codeBookScfLavLevel);
      else
        index = fixMin(*delta,  codeBookScfLavLevel);

      if (index != *delta) {
        *delta = index;
        return (10000);
      }
      delta_bits = hufftableLevel[index + codeBookScfLavLevel];
    }
  }
  else {
    if (*delta < 0)
      index = fixMax(*delta, -codeBookScfLavLevel);
    else
      index = fixMin(*delta,  codeBookScfLavLevel);

    if (index != *delta) {
      *delta = index;
      return (10000);
    }
    delta_bits = hufftableLevel[index + codeBookScfLavLevel];
  }

  return (delta_bits);
}




/*******************************************************************************
 Functionname:  FDKsbrEnc_codeEnvelope
 *******************************************************************************

 Description:

 Arguments:     INT *sfb_nrg,
                const FREQ_RES *freq_res,
                SBR_CODE_ENVELOPE * h_sbrCodeEnvelope,
                INT *directionVec, INT scalable, INT nEnvelopes, INT channel,
                INT headerActive)

 Return:        none
                h_sbrCodeEnvelope->sfb_nrg_prev is modified !
                sfb_nrg is modified
                h_sbrCodeEnvelope->update is modfied !
                *directionVec is modified

*******************************************************************************/
void
FDKsbrEnc_codeEnvelope(SCHAR             *sfb_nrg,
                       const FREQ_RES    *freq_res,
                       SBR_CODE_ENVELOPE *h_sbrCodeEnvelope,
                       INT               *directionVec,
                       INT                coupling,
                       INT                nEnvelopes,
                       INT                channel,
                       INT                headerActive)
{
  INT i, no_of_bands, band;
  FIXP_DBL tmp1,tmp2,tmp3,dF_edge_1stEnv;
  SCHAR *ptr_nrg;

  INT codeBookScfLavLevelTime;
  INT codeBookScfLavLevelFreq;
  INT codeBookScfLavBalanceTime;
  INT codeBookScfLavBalanceFreq;
  const UCHAR *hufftableLevelTimeL;
  const UCHAR *hufftableBalanceTimeL;
  const UCHAR *hufftableLevelFreqL;
  const UCHAR *hufftableBalanceFreqL;

  INT offset = h_sbrCodeEnvelope->offset;
  INT envDataTableCompFactor;

  INT delta_F_bits = 0, delta_T_bits = 0;
  INT use_dT;

  SCHAR delta_F[MAX_FREQ_COEFFS];
  SCHAR delta_T[MAX_FREQ_COEFFS];
  SCHAR last_nrg, curr_nrg;

  tmp1 = FL2FXCONST_DBL(0.5f) >> (DFRACT_BITS-16-1);
  tmp2 = h_sbrCodeEnvelope->dF_edge_1stEnv >> (DFRACT_BITS-16);
  tmp3 = (FIXP_DBL)(((INT)(LONG)h_sbrCodeEnvelope->dF_edge_incr*h_sbrCodeEnvelope->dF_edge_incr_fac) >> (DFRACT_BITS-16));

  dF_edge_1stEnv = tmp1 + tmp2 + tmp3;

  if (coupling) {
    codeBookScfLavLevelTime = h_sbrCodeEnvelope->codeBookScfLavLevelTime;
    codeBookScfLavLevelFreq = h_sbrCodeEnvelope->codeBookScfLavLevelFreq;
    codeBookScfLavBalanceTime = h_sbrCodeEnvelope->codeBookScfLavBalanceTime;
    codeBookScfLavBalanceFreq = h_sbrCodeEnvelope->codeBookScfLavBalanceFreq;
    hufftableLevelTimeL = h_sbrCodeEnvelope->hufftableLevelTimeL;
    hufftableBalanceTimeL = h_sbrCodeEnvelope->hufftableBalanceTimeL;
    hufftableLevelFreqL = h_sbrCodeEnvelope->hufftableLevelFreqL;
    hufftableBalanceFreqL = h_sbrCodeEnvelope->hufftableBalanceFreqL;
  }
  else {
    codeBookScfLavLevelTime = h_sbrCodeEnvelope->codeBookScfLavTime;
    codeBookScfLavLevelFreq = h_sbrCodeEnvelope->codeBookScfLavFreq;
    codeBookScfLavBalanceTime = h_sbrCodeEnvelope->codeBookScfLavTime;
    codeBookScfLavBalanceFreq = h_sbrCodeEnvelope->codeBookScfLavFreq;
    hufftableLevelTimeL = h_sbrCodeEnvelope->hufftableTimeL;
    hufftableBalanceTimeL = h_sbrCodeEnvelope->hufftableTimeL;
    hufftableLevelFreqL = h_sbrCodeEnvelope->hufftableFreqL;
    hufftableBalanceFreqL = h_sbrCodeEnvelope->hufftableFreqL;
  }

  if(coupling == 1 && channel == 1)
    envDataTableCompFactor = 1;       /*should be one when the new huffman-tables are ready*/
  else
    envDataTableCompFactor = 0;


  if (h_sbrCodeEnvelope->deltaTAcrossFrames == 0)
    h_sbrCodeEnvelope->upDate = 0;

  /* no delta coding in time in case of a header */
  if (headerActive)
    h_sbrCodeEnvelope->upDate = 0;


  for (i = 0; i < nEnvelopes; i++)
  {
    if (freq_res[i] == FREQ_RES_HIGH)
      no_of_bands = h_sbrCodeEnvelope->nSfb[FREQ_RES_HIGH];
    else
      no_of_bands = h_sbrCodeEnvelope->nSfb[FREQ_RES_LOW];


    ptr_nrg = sfb_nrg;
    curr_nrg = *ptr_nrg;

    delta_F[0] = curr_nrg >> envDataTableCompFactor;

    if (coupling && channel == 1)
      delta_F_bits = h_sbrCodeEnvelope->start_bits_balance;
    else
      delta_F_bits = h_sbrCodeEnvelope->start_bits;


    if(h_sbrCodeEnvelope->upDate != 0)
    {
      delta_T[0] = (curr_nrg - h_sbrCodeEnvelope->sfb_nrg_prev[0]) >> envDataTableCompFactor;

      delta_T_bits = computeBits (&delta_T[0],
                                  codeBookScfLavLevelTime,
                                  codeBookScfLavBalanceTime,
                                  hufftableLevelTimeL,
                                  hufftableBalanceTimeL, coupling, channel);
    }


    mapLowResEnergyVal(curr_nrg, h_sbrCodeEnvelope->sfb_nrg_prev, offset, 0, freq_res[i]);

    /* ensure that nrg difference is not higher than codeBookScfLavXXXFreq */
    if ( coupling && channel == 1 ) {
      for (band = no_of_bands - 1; band > 0; band--) {
        if ( ptr_nrg[band] - ptr_nrg[band-1] > codeBookScfLavBalanceFreq ) {
          ptr_nrg[band-1] = ptr_nrg[band] - codeBookScfLavBalanceFreq;
        }
      }
      for (band = 1; band < no_of_bands; band++) {
        if ( ptr_nrg[band-1] - ptr_nrg[band] > codeBookScfLavBalanceFreq ) {
          ptr_nrg[band] = ptr_nrg[band-1] - codeBookScfLavBalanceFreq;
        }
      }
    }
    else {
      for (band = no_of_bands - 1; band > 0; band--) {
        if ( ptr_nrg[band] - ptr_nrg[band-1] > codeBookScfLavLevelFreq ) {
          ptr_nrg[band-1] = ptr_nrg[band] - codeBookScfLavLevelFreq;
        }
      }
      for (band = 1; band < no_of_bands; band++) {
        if ( ptr_nrg[band-1] - ptr_nrg[band] > codeBookScfLavLevelFreq ) {
          ptr_nrg[band] = ptr_nrg[band-1] - codeBookScfLavLevelFreq;
        }
      }
    }


    /* Coding loop*/
    for (band = 1; band < no_of_bands; band++)
    {
      last_nrg = (*ptr_nrg);
      ptr_nrg++;
      curr_nrg = (*ptr_nrg);

      delta_F[band] = (curr_nrg - last_nrg) >> envDataTableCompFactor;

      delta_F_bits += computeBits (&delta_F[band],
                                   codeBookScfLavLevelFreq,
                                   codeBookScfLavBalanceFreq,
                                   hufftableLevelFreqL,
                                   hufftableBalanceFreqL, coupling, channel);

      if(h_sbrCodeEnvelope->upDate != 0)
      {
        delta_T[band] = curr_nrg - h_sbrCodeEnvelope->sfb_nrg_prev[indexLow2High(offset, band, freq_res[i])];
        delta_T[band] = delta_T[band] >> envDataTableCompFactor;
      }

      mapLowResEnergyVal(curr_nrg, h_sbrCodeEnvelope->sfb_nrg_prev, offset, band, freq_res[i]);

      if(h_sbrCodeEnvelope->upDate != 0)
      {
        delta_T_bits += computeBits (&delta_T[band],
                                     codeBookScfLavLevelTime,
                                     codeBookScfLavBalanceTime,
                                     hufftableLevelTimeL,
                                     hufftableBalanceTimeL, coupling, channel);
      }
    }

    /* Replace sfb_nrg with deltacoded samples and set flag */
    if (i == 0) {
      INT tmp_bits;
      tmp_bits = (((delta_T_bits * dF_edge_1stEnv) >> (DFRACT_BITS-18)) + (FIXP_DBL)1) >> 1;
      use_dT = (h_sbrCodeEnvelope->upDate != 0 && (delta_F_bits > tmp_bits));
    }
    else
      use_dT = (delta_T_bits < delta_F_bits && h_sbrCodeEnvelope->upDate != 0);

    if (use_dT)
    {
      directionVec[i] = TIME;
      FDKmemcpy (sfb_nrg, delta_T, no_of_bands * sizeof (SCHAR));
    }
    else {
      h_sbrCodeEnvelope->upDate = 0;
      directionVec[i] = FREQ;
      FDKmemcpy (sfb_nrg, delta_F, no_of_bands * sizeof (SCHAR));
    }
    sfb_nrg += no_of_bands;
    h_sbrCodeEnvelope->upDate = 1;
  }

}


/*******************************************************************************
 Functionname:  FDKsbrEnc_InitSbrCodeEnvelope
 *******************************************************************************

 Description:

 Arguments:

 Return:

*******************************************************************************/
INT
FDKsbrEnc_InitSbrCodeEnvelope (HANDLE_SBR_CODE_ENVELOPE  h_sbrCodeEnvelope,
                       INT *nSfb,
                       INT deltaTAcrossFrames,
                       FIXP_DBL dF_edge_1stEnv,
                       FIXP_DBL dF_edge_incr)
{

  FDKmemclear(h_sbrCodeEnvelope,sizeof(SBR_CODE_ENVELOPE));

  h_sbrCodeEnvelope->deltaTAcrossFrames = deltaTAcrossFrames;
  h_sbrCodeEnvelope->dF_edge_1stEnv = dF_edge_1stEnv;
  h_sbrCodeEnvelope->dF_edge_incr = dF_edge_incr;
  h_sbrCodeEnvelope->dF_edge_incr_fac = 0;
  h_sbrCodeEnvelope->upDate = 0;
  h_sbrCodeEnvelope->nSfb[FREQ_RES_LOW] = nSfb[FREQ_RES_LOW];
  h_sbrCodeEnvelope->nSfb[FREQ_RES_HIGH] = nSfb[FREQ_RES_HIGH];
  h_sbrCodeEnvelope->offset = 2*h_sbrCodeEnvelope->nSfb[FREQ_RES_LOW] - h_sbrCodeEnvelope->nSfb[FREQ_RES_HIGH];

  return (0);
}