summaryrefslogtreecommitdiffstats
path: root/libtoolame-dab/fft.c
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2016-02-15 02:44:20 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2016-02-15 02:44:20 +0100
commit22f1fce330059ef8a383cf327a023d6a9da5ad3e (patch)
tree6893f158dcaaaa1b9f1317923c32a841ba31f768 /libtoolame-dab/fft.c
parent891bb2592944aa2be2d81e1583e73e632e70537f (diff)
downloadfdk-aac-dabplus-22f1fce330059ef8a383cf327a023d6a9da5ad3e.tar.gz
fdk-aac-dabplus-22f1fce330059ef8a383cf327a023d6a9da5ad3e.tar.bz2
fdk-aac-dabplus-22f1fce330059ef8a383cf327a023d6a9da5ad3e.zip
Include toolame-dab as library
Diffstat (limited to 'libtoolame-dab/fft.c')
-rw-r--r--libtoolame-dab/fft.c1296
1 files changed, 1296 insertions, 0 deletions
diff --git a/libtoolame-dab/fft.c b/libtoolame-dab/fft.c
new file mode 100644
index 0000000..985bdd4
--- /dev/null
+++ b/libtoolame-dab/fft.c
@@ -0,0 +1,1296 @@
+/*
+** FFT and FHT routines
+** Copyright 1988, 1993; Ron Mayer
+**
+** fht(fz,n);
+** Does a hartley transform of "n" points in the array "fz".
+**
+** NOTE: This routine uses at least 2 patented algorithms, and may be
+** under the restrictions of a bunch of different organizations.
+** Although I wrote it completely myself; it is kind of a derivative
+** of a routine I once authored and released under the GPL, so it
+** may fall under the free software foundation's restrictions;
+** it was worked on as a Stanford Univ project, so they claim
+** some rights to it; it was further optimized at work here, so
+** I think this company claims parts of it. The patents are
+** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
+** trig generator), both at Stanford Univ.
+** If it were up to me, I'd say go do whatever you want with it;
+** but it would be polite to give credit to the following people
+** if you use this anywhere:
+** Euler - probable inventor of the fourier transform.
+** Gauss - probable inventor of the FFT.
+** Hartley - probable inventor of the hartley transform.
+** Buneman - for a really cool trig generator
+** Mayer(me) - for authoring this particular version and
+** including all the optimizations in one package.
+** Thanks,
+** Ron Mayer; mayer@acuson.com
+**
+*/
+#include <stdio.h>
+#include <math.h>
+#include "common.h"
+#include "fft.h"
+#define SQRT2 1.4142135623730951454746218587388284504414
+
+
+static FLOAT costab[20] = {
+ .00000000000000000000000000000000000000000000000000,
+ .70710678118654752440084436210484903928483593768847,
+ .92387953251128675612818318939678828682241662586364,
+ .98078528040323044912618223613423903697393373089333,
+ .99518472667219688624483695310947992157547486872985,
+ .99879545620517239271477160475910069444320361470461,
+ .99969881869620422011576564966617219685006108125772,
+ .99992470183914454092164649119638322435060646880221,
+ .99998117528260114265699043772856771617391725094433,
+ .99999529380957617151158012570011989955298763362218,
+ .99999882345170190992902571017152601904826792288976,
+ .99999970586288221916022821773876567711626389934930,
+ .99999992646571785114473148070738785694820115568892,
+ .99999998161642929380834691540290971450507605124278,
+ .99999999540410731289097193313960614895889430318945,
+ .99999999885102682756267330779455410840053741619428
+};
+static FLOAT sintab[20] = {
+ 1.0000000000000000000000000000000000000000000000000,
+ .70710678118654752440084436210484903928483593768846,
+ .38268343236508977172845998403039886676134456248561,
+ .19509032201612826784828486847702224092769161775195,
+ .09801714032956060199419556388864184586113667316749,
+ .04906767432741801425495497694268265831474536302574,
+ .02454122852291228803173452945928292506546611923944,
+ .01227153828571992607940826195100321214037231959176,
+ .00613588464915447535964023459037258091705788631738,
+ .00306795676296597627014536549091984251894461021344,
+ .00153398018628476561230369715026407907995486457522,
+ .00076699031874270452693856835794857664314091945205,
+ .00038349518757139558907246168118138126339502603495,
+ .00019174759731070330743990956198900093346887403385,
+ .00009587379909597734587051721097647635118706561284,
+ .00004793689960306688454900399049465887274686668768
+};
+
+/* This is a simplified version for n an even power of 2 */
+/* MFC: In the case of LayerII encoding, n==1024 always. */
+
+static void fht (FLOAT * fz)
+{
+ int i, k, k1, k2, k3, k4, kx;
+ FLOAT *fi, *fn, *gi;
+ FLOAT t_c, t_s;
+
+ FLOAT a;
+ static const struct {
+ unsigned short k1, k2;
+ } k1k2tab[8 * 62] = {
+ {
+ 0x020, 0x010}
+ , {
+ 0x040, 0x008}
+ , {
+ 0x050, 0x028}
+ , {
+ 0x060, 0x018}
+ , {
+ 0x068, 0x058}
+ , {
+ 0x070, 0x038}
+ , {
+ 0x080, 0x004}
+ , {
+ 0x088, 0x044}
+ , {
+ 0x090, 0x024}
+ , {
+ 0x098, 0x064}
+ , {
+ 0x0a0, 0x014}
+ , {
+ 0x0a4, 0x094}
+ , {
+ 0x0a8, 0x054}
+ , {
+ 0x0b0, 0x034}
+ , {
+ 0x0b8, 0x074}
+ , {
+ 0x0c0, 0x00c}
+ , {
+ 0x0c4, 0x08c}
+ , {
+ 0x0c8, 0x04c}
+ , {
+ 0x0d0, 0x02c}
+ , {
+ 0x0d4, 0x0ac}
+ , {
+ 0x0d8, 0x06c}
+ , {
+ 0x0e0, 0x01c}
+ , {
+ 0x0e4, 0x09c}
+ , {
+ 0x0e8, 0x05c}
+ , {
+ 0x0ec, 0x0dc}
+ , {
+ 0x0f0, 0x03c}
+ , {
+ 0x0f4, 0x0bc}
+ , {
+ 0x0f8, 0x07c}
+ , {
+ 0x100, 0x002}
+ , {
+ 0x104, 0x082}
+ , {
+ 0x108, 0x042}
+ , {
+ 0x10c, 0x0c2}
+ , {
+ 0x110, 0x022}
+ , {
+ 0x114, 0x0a2}
+ , {
+ 0x118, 0x062}
+ , {
+ 0x11c, 0x0e2}
+ , {
+ 0x120, 0x012}
+ , {
+ 0x122, 0x112}
+ , {
+ 0x124, 0x092}
+ , {
+ 0x128, 0x052}
+ , {
+ 0x12c, 0x0d2}
+ , {
+ 0x130, 0x032}
+ , {
+ 0x134, 0x0b2}
+ , {
+ 0x138, 0x072}
+ , {
+ 0x13c, 0x0f2}
+ , {
+ 0x140, 0x00a}
+ , {
+ 0x142, 0x10a}
+ , {
+ 0x144, 0x08a}
+ , {
+ 0x148, 0x04a}
+ , {
+ 0x14c, 0x0ca}
+ , {
+ 0x150, 0x02a}
+ , {
+ 0x152, 0x12a}
+ , {
+ 0x154, 0x0aa}
+ , {
+ 0x158, 0x06a}
+ , {
+ 0x15c, 0x0ea}
+ , {
+ 0x160, 0x01a}
+ , {
+ 0x162, 0x11a}
+ , {
+ 0x164, 0x09a}
+ , {
+ 0x168, 0x05a}
+ , {
+ 0x16a, 0x15a}
+ , {
+ 0x16c, 0x0da}
+ , {
+ 0x170, 0x03a}
+ , {
+ 0x172, 0x13a}
+ , {
+ 0x174, 0x0ba}
+ , {
+ 0x178, 0x07a}
+ , {
+ 0x17c, 0x0fa}
+ , {
+ 0x180, 0x006}
+ , {
+ 0x182, 0x106}
+ , {
+ 0x184, 0x086}
+ , {
+ 0x188, 0x046}
+ , {
+ 0x18a, 0x146}
+ , {
+ 0x18c, 0x0c6}
+ , {
+ 0x190, 0x026}
+ , {
+ 0x192, 0x126}
+ , {
+ 0x194, 0x0a6}
+ , {
+ 0x198, 0x066}
+ , {
+ 0x19a, 0x166}
+ , {
+ 0x19c, 0x0e6}
+ , {
+ 0x1a0, 0x016}
+ , {
+ 0x1a2, 0x116}
+ , {
+ 0x1a4, 0x096}
+ , {
+ 0x1a6, 0x196}
+ , {
+ 0x1a8, 0x056}
+ , {
+ 0x1aa, 0x156}
+ , {
+ 0x1ac, 0x0d6}
+ , {
+ 0x1b0, 0x036}
+ , {
+ 0x1b2, 0x136}
+ , {
+ 0x1b4, 0x0b6}
+ , {
+ 0x1b8, 0x076}
+ , {
+ 0x1ba, 0x176}
+ , {
+ 0x1bc, 0x0f6}
+ , {
+ 0x1c0, 0x00e}
+ , {
+ 0x1c2, 0x10e}
+ , {
+ 0x1c4, 0x08e}
+ , {
+ 0x1c6, 0x18e}
+ , {
+ 0x1c8, 0x04e}
+ , {
+ 0x1ca, 0x14e}
+ , {
+ 0x1cc, 0x0ce}
+ , {
+ 0x1d0, 0x02e}
+ , {
+ 0x1d2, 0x12e}
+ , {
+ 0x1d4, 0x0ae}
+ , {
+ 0x1d6, 0x1ae}
+ , {
+ 0x1d8, 0x06e}
+ , {
+ 0x1da, 0x16e}
+ , {
+ 0x1dc, 0x0ee}
+ , {
+ 0x1e0, 0x01e}
+ , {
+ 0x1e2, 0x11e}
+ , {
+ 0x1e4, 0x09e}
+ , {
+ 0x1e6, 0x19e}
+ , {
+ 0x1e8, 0x05e}
+ , {
+ 0x1ea, 0x15e}
+ , {
+ 0x1ec, 0x0de}
+ , {
+ 0x1ee, 0x1de}
+ , {
+ 0x1f0, 0x03e}
+ , {
+ 0x1f2, 0x13e}
+ , {
+ 0x1f4, 0x0be}
+ , {
+ 0x1f6, 0x1be}
+ , {
+ 0x1f8, 0x07e}
+ , {
+ 0x1fa, 0x17e}
+ , {
+ 0x1fc, 0x0fe}
+ , {
+ 0x200, 0x001}
+ , {
+ 0x202, 0x101}
+ , {
+ 0x204, 0x081}
+ , {
+ 0x206, 0x181}
+ , {
+ 0x208, 0x041}
+ , {
+ 0x20a, 0x141}
+ , {
+ 0x20c, 0x0c1}
+ , {
+ 0x20e, 0x1c1}
+ , {
+ 0x210, 0x021}
+ , {
+ 0x212, 0x121}
+ , {
+ 0x214, 0x0a1}
+ , {
+ 0x216, 0x1a1}
+ , {
+ 0x218, 0x061}
+ , {
+ 0x21a, 0x161}
+ , {
+ 0x21c, 0x0e1}
+ , {
+ 0x21e, 0x1e1}
+ , {
+ 0x220, 0x011}
+ , {
+ 0x221, 0x211}
+ , {
+ 0x222, 0x111}
+ , {
+ 0x224, 0x091}
+ , {
+ 0x226, 0x191}
+ , {
+ 0x228, 0x051}
+ , {
+ 0x22a, 0x151}
+ , {
+ 0x22c, 0x0d1}
+ , {
+ 0x22e, 0x1d1}
+ , {
+ 0x230, 0x031}
+ , {
+ 0x232, 0x131}
+ , {
+ 0x234, 0x0b1}
+ , {
+ 0x236, 0x1b1}
+ , {
+ 0x238, 0x071}
+ , {
+ 0x23a, 0x171}
+ , {
+ 0x23c, 0x0f1}
+ , {
+ 0x23e, 0x1f1}
+ , {
+ 0x240, 0x009}
+ , {
+ 0x241, 0x209}
+ , {
+ 0x242, 0x109}
+ , {
+ 0x244, 0x089}
+ , {
+ 0x246, 0x189}
+ , {
+ 0x248, 0x049}
+ , {
+ 0x24a, 0x149}
+ , {
+ 0x24c, 0x0c9}
+ , {
+ 0x24e, 0x1c9}
+ , {
+ 0x250, 0x029}
+ , {
+ 0x251, 0x229}
+ , {
+ 0x252, 0x129}
+ , {
+ 0x254, 0x0a9}
+ , {
+ 0x256, 0x1a9}
+ , {
+ 0x258, 0x069}
+ , {
+ 0x25a, 0x169}
+ , {
+ 0x25c, 0x0e9}
+ , {
+ 0x25e, 0x1e9}
+ , {
+ 0x260, 0x019}
+ , {
+ 0x261, 0x219}
+ , {
+ 0x262, 0x119}
+ , {
+ 0x264, 0x099}
+ , {
+ 0x266, 0x199}
+ , {
+ 0x268, 0x059}
+ , {
+ 0x269, 0x259}
+ , {
+ 0x26a, 0x159}
+ , {
+ 0x26c, 0x0d9}
+ , {
+ 0x26e, 0x1d9}
+ , {
+ 0x270, 0x039}
+ , {
+ 0x271, 0x239}
+ , {
+ 0x272, 0x139}
+ , {
+ 0x274, 0x0b9}
+ , {
+ 0x276, 0x1b9}
+ , {
+ 0x278, 0x079}
+ , {
+ 0x27a, 0x179}
+ , {
+ 0x27c, 0x0f9}
+ , {
+ 0x27e, 0x1f9}
+ , {
+ 0x280, 0x005}
+ , {
+ 0x281, 0x205}
+ , {
+ 0x282, 0x105}
+ , {
+ 0x284, 0x085}
+ , {
+ 0x286, 0x185}
+ , {
+ 0x288, 0x045}
+ , {
+ 0x289, 0x245}
+ , {
+ 0x28a, 0x145}
+ , {
+ 0x28c, 0x0c5}
+ , {
+ 0x28e, 0x1c5}
+ , {
+ 0x290, 0x025}
+ , {
+ 0x291, 0x225}
+ , {
+ 0x292, 0x125}
+ , {
+ 0x294, 0x0a5}
+ , {
+ 0x296, 0x1a5}
+ , {
+ 0x298, 0x065}
+ , {
+ 0x299, 0x265}
+ , {
+ 0x29a, 0x165}
+ , {
+ 0x29c, 0x0e5}
+ , {
+ 0x29e, 0x1e5}
+ , {
+ 0x2a0, 0x015}
+ , {
+ 0x2a1, 0x215}
+ , {
+ 0x2a2, 0x115}
+ , {
+ 0x2a4, 0x095}
+ , {
+ 0x2a5, 0x295}
+ , {
+ 0x2a6, 0x195}
+ , {
+ 0x2a8, 0x055}
+ , {
+ 0x2a9, 0x255}
+ , {
+ 0x2aa, 0x155}
+ , {
+ 0x2ac, 0x0d5}
+ , {
+ 0x2ae, 0x1d5}
+ , {
+ 0x2b0, 0x035}
+ , {
+ 0x2b1, 0x235}
+ , {
+ 0x2b2, 0x135}
+ , {
+ 0x2b4, 0x0b5}
+ , {
+ 0x2b6, 0x1b5}
+ , {
+ 0x2b8, 0x075}
+ , {
+ 0x2b9, 0x275}
+ , {
+ 0x2ba, 0x175}
+ , {
+ 0x2bc, 0x0f5}
+ , {
+ 0x2be, 0x1f5}
+ , {
+ 0x2c0, 0x00d}
+ , {
+ 0x2c1, 0x20d}
+ , {
+ 0x2c2, 0x10d}
+ , {
+ 0x2c4, 0x08d}
+ , {
+ 0x2c5, 0x28d}
+ , {
+ 0x2c6, 0x18d}
+ , {
+ 0x2c8, 0x04d}
+ , {
+ 0x2c9, 0x24d}
+ , {
+ 0x2ca, 0x14d}
+ , {
+ 0x2cc, 0x0cd}
+ , {
+ 0x2ce, 0x1cd}
+ , {
+ 0x2d0, 0x02d}
+ , {
+ 0x2d1, 0x22d}
+ , {
+ 0x2d2, 0x12d}
+ , {
+ 0x2d4, 0x0ad}
+ , {
+ 0x2d5, 0x2ad}
+ , {
+ 0x2d6, 0x1ad}
+ , {
+ 0x2d8, 0x06d}
+ , {
+ 0x2d9, 0x26d}
+ , {
+ 0x2da, 0x16d}
+ , {
+ 0x2dc, 0x0ed}
+ , {
+ 0x2de, 0x1ed}
+ , {
+ 0x2e0, 0x01d}
+ , {
+ 0x2e1, 0x21d}
+ , {
+ 0x2e2, 0x11d}
+ , {
+ 0x2e4, 0x09d}
+ , {
+ 0x2e5, 0x29d}
+ , {
+ 0x2e6, 0x19d}
+ , {
+ 0x2e8, 0x05d}
+ , {
+ 0x2e9, 0x25d}
+ , {
+ 0x2ea, 0x15d}
+ , {
+ 0x2ec, 0x0dd}
+ , {
+ 0x2ed, 0x2dd}
+ , {
+ 0x2ee, 0x1dd}
+ , {
+ 0x2f0, 0x03d}
+ , {
+ 0x2f1, 0x23d}
+ , {
+ 0x2f2, 0x13d}
+ , {
+ 0x2f4, 0x0bd}
+ , {
+ 0x2f5, 0x2bd}
+ , {
+ 0x2f6, 0x1bd}
+ , {
+ 0x2f8, 0x07d}
+ , {
+ 0x2f9, 0x27d}
+ , {
+ 0x2fa, 0x17d}
+ , {
+ 0x2fc, 0x0fd}
+ , {
+ 0x2fe, 0x1fd}
+ , {
+ 0x300, 0x003}
+ , {
+ 0x301, 0x203}
+ , {
+ 0x302, 0x103}
+ , {
+ 0x304, 0x083}
+ , {
+ 0x305, 0x283}
+ , {
+ 0x306, 0x183}
+ , {
+ 0x308, 0x043}
+ , {
+ 0x309, 0x243}
+ , {
+ 0x30a, 0x143}
+ , {
+ 0x30c, 0x0c3}
+ , {
+ 0x30d, 0x2c3}
+ , {
+ 0x30e, 0x1c3}
+ , {
+ 0x310, 0x023}
+ , {
+ 0x311, 0x223}
+ , {
+ 0x312, 0x123}
+ , {
+ 0x314, 0x0a3}
+ , {
+ 0x315, 0x2a3}
+ , {
+ 0x316, 0x1a3}
+ , {
+ 0x318, 0x063}
+ , {
+ 0x319, 0x263}
+ , {
+ 0x31a, 0x163}
+ , {
+ 0x31c, 0x0e3}
+ , {
+ 0x31d, 0x2e3}
+ , {
+ 0x31e, 0x1e3}
+ , {
+ 0x320, 0x013}
+ , {
+ 0x321, 0x213}
+ , {
+ 0x322, 0x113}
+ , {
+ 0x323, 0x313}
+ , {
+ 0x324, 0x093}
+ , {
+ 0x325, 0x293}
+ , {
+ 0x326, 0x193}
+ , {
+ 0x328, 0x053}
+ , {
+ 0x329, 0x253}
+ , {
+ 0x32a, 0x153}
+ , {
+ 0x32c, 0x0d3}
+ , {
+ 0x32d, 0x2d3}
+ , {
+ 0x32e, 0x1d3}
+ , {
+ 0x330, 0x033}
+ , {
+ 0x331, 0x233}
+ , {
+ 0x332, 0x133}
+ , {
+ 0x334, 0x0b3}
+ , {
+ 0x335, 0x2b3}
+ , {
+ 0x336, 0x1b3}
+ , {
+ 0x338, 0x073}
+ , {
+ 0x339, 0x273}
+ , {
+ 0x33a, 0x173}
+ , {
+ 0x33c, 0x0f3}
+ , {
+ 0x33d, 0x2f3}
+ , {
+ 0x33e, 0x1f3}
+ , {
+ 0x340, 0x00b}
+ , {
+ 0x341, 0x20b}
+ , {
+ 0x342, 0x10b}
+ , {
+ 0x343, 0x30b}
+ , {
+ 0x344, 0x08b}
+ , {
+ 0x345, 0x28b}
+ , {
+ 0x346, 0x18b}
+ , {
+ 0x348, 0x04b}
+ , {
+ 0x349, 0x24b}
+ , {
+ 0x34a, 0x14b}
+ , {
+ 0x34c, 0x0cb}
+ , {
+ 0x34d, 0x2cb}
+ , {
+ 0x34e, 0x1cb}
+ , {
+ 0x350, 0x02b}
+ , {
+ 0x351, 0x22b}
+ , {
+ 0x352, 0x12b}
+ , {
+ 0x353, 0x32b}
+ , {
+ 0x354, 0x0ab}
+ , {
+ 0x355, 0x2ab}
+ , {
+ 0x356, 0x1ab}
+ , {
+ 0x358, 0x06b}
+ , {
+ 0x359, 0x26b}
+ , {
+ 0x35a, 0x16b}
+ , {
+ 0x35c, 0x0eb}
+ , {
+ 0x35d, 0x2eb}
+ , {
+ 0x35e, 0x1eb}
+ , {
+ 0x360, 0x01b}
+ , {
+ 0x361, 0x21b}
+ , {
+ 0x362, 0x11b}
+ , {
+ 0x363, 0x31b}
+ , {
+ 0x364, 0x09b}
+ , {
+ 0x365, 0x29b}
+ , {
+ 0x366, 0x19b}
+ , {
+ 0x368, 0x05b}
+ , {
+ 0x369, 0x25b}
+ , {
+ 0x36a, 0x15b}
+ , {
+ 0x36b, 0x35b}
+ , {
+ 0x36c, 0x0db}
+ , {
+ 0x36d, 0x2db}
+ , {
+ 0x36e, 0x1db}
+ , {
+ 0x370, 0x03b}
+ , {
+ 0x371, 0x23b}
+ , {
+ 0x372, 0x13b}
+ , {
+ 0x373, 0x33b}
+ , {
+ 0x374, 0x0bb}
+ , {
+ 0x375, 0x2bb}
+ , {
+ 0x376, 0x1bb}
+ , {
+ 0x378, 0x07b}
+ , {
+ 0x379, 0x27b}
+ , {
+ 0x37a, 0x17b}
+ , {
+ 0x37c, 0x0fb}
+ , {
+ 0x37d, 0x2fb}
+ , {
+ 0x37e, 0x1fb}
+ , {
+ 0x380, 0x007}
+ , {
+ 0x381, 0x207}
+ , {
+ 0x382, 0x107}
+ , {
+ 0x383, 0x307}
+ , {
+ 0x384, 0x087}
+ , {
+ 0x385, 0x287}
+ , {
+ 0x386, 0x187}
+ , {
+ 0x388, 0x047}
+ , {
+ 0x389, 0x247}
+ , {
+ 0x38a, 0x147}
+ , {
+ 0x38b, 0x347}
+ , {
+ 0x38c, 0x0c7}
+ , {
+ 0x38d, 0x2c7}
+ , {
+ 0x38e, 0x1c7}
+ , {
+ 0x390, 0x027}
+ , {
+ 0x391, 0x227}
+ , {
+ 0x392, 0x127}
+ , {
+ 0x393, 0x327}
+ , {
+ 0x394, 0x0a7}
+ , {
+ 0x395, 0x2a7}
+ , {
+ 0x396, 0x1a7}
+ , {
+ 0x398, 0x067}
+ , {
+ 0x399, 0x267}
+ , {
+ 0x39a, 0x167}
+ , {
+ 0x39b, 0x367}
+ , {
+ 0x39c, 0x0e7}
+ , {
+ 0x39d, 0x2e7}
+ , {
+ 0x39e, 0x1e7}
+ , {
+ 0x3a0, 0x017}
+ , {
+ 0x3a1, 0x217}
+ , {
+ 0x3a2, 0x117}
+ , {
+ 0x3a3, 0x317}
+ , {
+ 0x3a4, 0x097}
+ , {
+ 0x3a5, 0x297}
+ , {
+ 0x3a6, 0x197}
+ , {
+ 0x3a7, 0x397}
+ , {
+ 0x3a8, 0x057}
+ , {
+ 0x3a9, 0x257}
+ , {
+ 0x3aa, 0x157}
+ , {
+ 0x3ab, 0x357}
+ , {
+ 0x3ac, 0x0d7}
+ , {
+ 0x3ad, 0x2d7}
+ , {
+ 0x3ae, 0x1d7}
+ , {
+ 0x3b0, 0x037}
+ , {
+ 0x3b1, 0x237}
+ , {
+ 0x3b2, 0x137}
+ , {
+ 0x3b3, 0x337}
+ , {
+ 0x3b4, 0x0b7}
+ , {
+ 0x3b5, 0x2b7}
+ , {
+ 0x3b6, 0x1b7}
+ , {
+ 0x3b8, 0x077}
+ , {
+ 0x3b9, 0x277}
+ , {
+ 0x3ba, 0x177}
+ , {
+ 0x3bb, 0x377}
+ , {
+ 0x3bc, 0x0f7}
+ , {
+ 0x3bd, 0x2f7}
+ , {
+ 0x3be, 0x1f7}
+ , {
+ 0x3c0, 0x00f}
+ , {
+ 0x3c1, 0x20f}
+ , {
+ 0x3c2, 0x10f}
+ , {
+ 0x3c3, 0x30f}
+ , {
+ 0x3c4, 0x08f}
+ , {
+ 0x3c5, 0x28f}
+ , {
+ 0x3c6, 0x18f}
+ , {
+ 0x3c7, 0x38f}
+ , {
+ 0x3c8, 0x04f}
+ , {
+ 0x3c9, 0x24f}
+ , {
+ 0x3ca, 0x14f}
+ , {
+ 0x3cb, 0x34f}
+ , {
+ 0x3cc, 0x0cf}
+ , {
+ 0x3cd, 0x2cf}
+ , {
+ 0x3ce, 0x1cf}
+ , {
+ 0x3d0, 0x02f}
+ , {
+ 0x3d1, 0x22f}
+ , {
+ 0x3d2, 0x12f}
+ , {
+ 0x3d3, 0x32f}
+ , {
+ 0x3d4, 0x0af}
+ , {
+ 0x3d5, 0x2af}
+ , {
+ 0x3d6, 0x1af}
+ , {
+ 0x3d7, 0x3af}
+ , {
+ 0x3d8, 0x06f}
+ , {
+ 0x3d9, 0x26f}
+ , {
+ 0x3da, 0x16f}
+ , {
+ 0x3db, 0x36f}
+ , {
+ 0x3dc, 0x0ef}
+ , {
+ 0x3dd, 0x2ef}
+ , {
+ 0x3de, 0x1ef}
+ , {
+ 0x3e0, 0x01f}
+ , {
+ 0x3e1, 0x21f}
+ , {
+ 0x3e2, 0x11f}
+ , {
+ 0x3e3, 0x31f}
+ , {
+ 0x3e4, 0x09f}
+ , {
+ 0x3e5, 0x29f}
+ , {
+ 0x3e6, 0x19f}
+ , {
+ 0x3e7, 0x39f}
+ , {
+ 0x3e8, 0x05f}
+ , {
+ 0x3e9, 0x25f}
+ , {
+ 0x3ea, 0x15f}
+ , {
+ 0x3eb, 0x35f}
+ , {
+ 0x3ec, 0x0df}
+ , {
+ 0x3ed, 0x2df}
+ , {
+ 0x3ee, 0x1df}
+ , {
+ 0x3ef, 0x3df}
+ , {
+ 0x3f0, 0x03f}
+ , {
+ 0x3f1, 0x23f}
+ , {
+ 0x3f2, 0x13f}
+ , {
+ 0x3f3, 0x33f}
+ , {
+ 0x3f4, 0x0bf}
+ , {
+ 0x3f5, 0x2bf}
+ , {
+ 0x3f6, 0x1bf}
+ , {
+ 0x3f7, 0x3bf}
+ , {
+ 0x3f8, 0x07f}
+ , {
+ 0x3f9, 0x27f}
+ , {
+ 0x3fa, 0x17f}
+ , {
+ 0x3fb, 0x37f}
+ , {
+ 0x3fc, 0x0ff}
+ , {
+ 0x3fd, 0x2ff}
+ , {
+ 0x3fe, 0x1ff}
+ };
+ {
+ int i;
+ for (i = 0; i < sizeof k1k2tab / sizeof k1k2tab[0]; ++i) {
+ k1 = k1k2tab[i].k1;
+ k2 = k1k2tab[i].k2;
+ a = fz[k1];
+ fz[k1] = fz[k2];
+ fz[k2] = a;
+ }
+ }
+
+ for (fi = fz, fn = fz + 1024; fi < fn; fi += 4) {
+ FLOAT f0, f1, f2, f3;
+ f1 = fi[0] - fi[1];
+ f0 = fi[0] + fi[1];
+ f3 = fi[2] - fi[3];
+ f2 = fi[2] + fi[3];
+ fi[2] = (f0 - f2);
+ fi[0] = (f0 + f2);
+ fi[3] = (f1 - f3);
+ fi[1] = (f1 + f3);
+ }
+
+ k = 0;
+ do {
+ FLOAT s1, c1;
+ k += 2;
+ k1 = 1 << k;
+ k2 = k1 << 1;
+ k4 = k2 << 1;
+ k3 = k2 + k1;
+ kx = k1 >> 1;
+ fi = fz;
+ gi = fi + kx;
+ fn = fz + 1024;
+ do {
+ FLOAT g0, f0, f1, g1, f2, g2, f3, g3;
+ f1 = fi[0] - fi[k1];
+ f0 = fi[0] + fi[k1];
+ f3 = fi[k2] - fi[k3];
+ f2 = fi[k2] + fi[k3];
+ fi[k2] = f0 - f2;
+ fi[0] = f0 + f2;
+ fi[k3] = f1 - f3;
+ fi[k1] = f1 + f3;
+ g1 = gi[0] - gi[k1];
+ g0 = gi[0] + gi[k1];
+ g3 = SQRT2 * gi[k3];
+ g2 = SQRT2 * gi[k2];
+ gi[k2] = g0 - g2;
+ gi[0] = g0 + g2;
+ gi[k3] = g1 - g3;
+ gi[k1] = g1 + g3;
+ gi += k4;
+ fi += k4;
+ }
+ while (fi < fn);
+ t_c = costab[k];
+ t_s = sintab[k];
+ c1 = 1;
+ s1 = 0;
+ for (i = 1; i < kx; i++) {
+ FLOAT c2, s2;
+ FLOAT t = c1;
+ c1 = t * t_c - s1 * t_s;
+ s1 = t * t_s + s1 * t_c;
+ c2 = c1 * c1 - s1 * s1;
+ s2 = 2 * (c1 * s1);
+ fn = fz + 1024;
+ fi = fz + i;
+ gi = fz + k1 - i;
+ do {
+ FLOAT a, b, g0, f0, f1, g1, f2, g2, f3, g3;
+ b = s2 * fi[k1] - c2 * gi[k1];
+ a = c2 * fi[k1] + s2 * gi[k1];
+ f1 = fi[0] - a;
+ f0 = fi[0] + a;
+ g1 = gi[0] - b;
+ g0 = gi[0] + b;
+ b = s2 * fi[k3] - c2 * gi[k3];
+ a = c2 * fi[k3] + s2 * gi[k3];
+ f3 = fi[k2] - a;
+ f2 = fi[k2] + a;
+ g3 = gi[k2] - b;
+ g2 = gi[k2] + b;
+ b = s1 * f2 - c1 * g3;
+ a = c1 * f2 + s1 * g3;
+ fi[k2] = f0 - a;
+ fi[0] = f0 + a;
+ gi[k3] = g1 - b;
+ gi[k1] = g1 + b;
+ b = c1 * g2 - s1 * f3;
+ a = s1 * g2 + c1 * f3;
+ gi[k2] = g0 - a;
+ gi[0] = g0 + a;
+ fi[k3] = f1 - b;
+ fi[k1] = f1 + b;
+ gi += k4;
+ fi += k4;
+ }
+ while (fi < fn);
+ }
+ }
+ while (k4 < 1024);
+}
+
+#ifdef NEWATAN
+#define ATANSIZE 2000
+#define ATANSCALE 50.0
+ static FLOAT atan_t[ATANSIZE];
+
+FLOAT atan_table(FLOAT y, FLOAT x) {
+ int index;
+ double index_d = ATANSCALE * fabs(y/x);
+
+ // Don't cast an infinite to an int, that's undefined behaviour
+ if (isfinite(index_d)) {
+ index = (int)(ATANSCALE * fabs(y/x));
+ }
+ else {
+ index = ATANSIZE-1;
+ }
+
+ if (index>=ATANSIZE)
+ index = ATANSIZE-1;
+
+ if (y>0 && x<0)
+ return( PI - atan_t[index] );
+
+ if (y<0 && x>0)
+ return( -atan_t[index] );
+
+ if (y<0 && x<0)
+ return( atan_t[index] - PI );
+
+ return(atan_t[index]);
+}
+
+void atan_table_init(void) {
+ int i;
+ for (i=0;i<ATANSIZE;i++)
+ atan_t[i] = atan((double)i/ATANSCALE);
+}
+
+#endif //NEWATAN
+
+/* For variations on psycho model 2:
+ N always equals 1024
+ BUT in the returned values, no energy/phi is used at or above an index of 513 */
+void psycho_2_fft (FLOAT * x_real, FLOAT * energy, FLOAT * phi)
+ /* got rid of size "N" argument as it is always 1024 for layerII */
+{
+ FLOAT a, b;
+ int i, j;
+#ifdef NEWATAN
+ static int init=0;
+
+ if (!init) {
+ atan_table_init();
+ init++;
+ }
+#endif
+
+
+ fht (x_real);
+
+
+ energy[0] = x_real[0] * x_real[0];
+
+ for (i = 1, j = 1023; i < 512; i++, j--) {
+ a = x_real[i];
+ b = x_real[j];
+ /* MFC FIXME Mar03 Why is this divided by 2.0?
+ if a and b are the real and imaginary components then
+ r = sqrt(a^2 + b^2),
+ but, back in the psycho2 model, they calculate r=sqrt(energy),
+ which, if you look at the original equation below is different */
+ energy[i] = (a * a + b * b) / 2.0;
+ if (energy[i] < 0.0005) {
+ energy[i] = 0.0005;
+ phi[i] = 0;
+ } else
+#ifdef NEWATAN
+ {
+ phi[i] = atan_table(-a, b) + PI/4;
+ }
+#else
+ {
+ phi[i] = atan2(-(double)a, (double)b) + PI/4;
+ }
+#endif
+ }
+ energy[512] = x_real[512] * x_real[512];
+ phi[512] = atan2 (0.0, (double) x_real[512]);
+}
+
+
+void psycho_1_fft (FLOAT * x_real, FLOAT * energy, int N)
+{
+ FLOAT a, b;
+ int i, j;
+
+ fht (x_real);
+
+ energy[0] = x_real[0] * x_real[0];
+
+ for (i = 1, j = N - 1; i < N / 2; i++, j--) {
+ a = x_real[i];
+ b = x_real[j];
+ energy[i] = (a * a + b * b) / 2.0;
+ }
+ energy[N / 2] = x_real[N / 2] * x_real[N / 2];
+}
+
+
+