summaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/sbrdec_freq_sca.cpp
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
committerThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
commit2228e360595641dd906bf1773307f43d304f5b2e (patch)
tree57f3d390ebb0782cc0de0fb984c8ea7e45b4f386 /libSBRdec/src/sbrdec_freq_sca.cpp
downloadfdk-aac-dabplus-2228e360595641dd906bf1773307f43d304f5b2e.tar.gz
fdk-aac-dabplus-2228e360595641dd906bf1773307f43d304f5b2e.tar.bz2
fdk-aac-dabplus-2228e360595641dd906bf1773307f43d304f5b2e.zip
Snapshot 2bda038c163298531d47394bc2c09e1409c5d0db
Change-Id: If584e579464f28b97d50e51fc76ba654a5536c54
Diffstat (limited to 'libSBRdec/src/sbrdec_freq_sca.cpp')
-rw-r--r--libSBRdec/src/sbrdec_freq_sca.cpp805
1 files changed, 805 insertions, 0 deletions
diff --git a/libSBRdec/src/sbrdec_freq_sca.cpp b/libSBRdec/src/sbrdec_freq_sca.cpp
new file mode 100644
index 0000000..b877545
--- /dev/null
+++ b/libSBRdec/src/sbrdec_freq_sca.cpp
@@ -0,0 +1,805 @@
+
+/* -----------------------------------------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
+ All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
+the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
+This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
+audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
+independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
+of the MPEG specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
+may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
+individually for the purpose of encoding or decoding bit streams in products that are compliant with
+the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
+these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
+software may already be covered under those patent licenses when it is used for those licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
+are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
+applications information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification, are permitted without
+payment of copyright license fees provided that you satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
+your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation and/or other materials
+provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
+You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived from this library without
+prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
+software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
+and the date of any change. For modified versions of the FDK AAC Codec, the term
+"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
+"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
+ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
+respect to this software.
+
+You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
+by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
+"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
+of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
+including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
+or business interruption, however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of this software, even if
+advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------------------------------------- */
+
+/*!
+ \file
+ \brief Frequency scale calculation
+*/
+
+#include "sbrdec_freq_sca.h"
+
+#include "transcendent.h"
+#include "sbr_rom.h"
+#include "env_extr.h"
+
+#include "genericStds.h" /* need log() for debug-code only */
+
+#define MAX_OCTAVE 29
+#define MAX_SECOND_REGION 50
+
+
+static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
+static void CalcBands(UCHAR * diff, UCHAR start, UCHAR stop, UCHAR num_bands);
+static SBR_ERROR modifyBands(UCHAR max_band, UCHAR * diff, UCHAR length);
+static void cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress);
+
+
+
+/*!
+ \brief Retrieve QMF-band where the SBR range starts
+
+ Convert startFreq which was read from the bitstream into a
+ QMF-channel number.
+
+ \return Number of start band
+*/
+static UCHAR
+getStartBand(UINT fs, /*!< Output sampling frequency */
+ UCHAR startFreq, /*!< Index to table of possible start bands */
+ UINT headerDataFlags) /*!< Info to SBR mode */
+{
+ INT band;
+ UINT fsMapped;
+
+ fsMapped = fs;
+
+ switch (fsMapped) {
+ case 48000:
+ band = FDK_sbrDecoder_sbr_start_freq_48[startFreq];
+ break;
+ case 44100:
+ band = FDK_sbrDecoder_sbr_start_freq_44[startFreq];
+ break;
+ case 32000:
+ band = FDK_sbrDecoder_sbr_start_freq_32[startFreq];
+ break;
+ case 24000:
+ band = FDK_sbrDecoder_sbr_start_freq_24[startFreq];
+ break;
+ case 22050:
+ band = FDK_sbrDecoder_sbr_start_freq_22[startFreq];
+ break;
+ case 16000:
+ band = FDK_sbrDecoder_sbr_start_freq_16[startFreq];
+ break;
+ default:
+ band = 255;
+ }
+
+ return band;
+}
+
+
+/*!
+ \brief Retrieve QMF-band where the SBR range starts
+
+ Convert startFreq which was read from the bitstream into a
+ QMF-channel number.
+
+ \return Number of start band
+*/
+static UCHAR
+getStopBand(UINT fs, /*!< Output sampling frequency */
+ UCHAR stopFreq, /*!< Index to table of possible start bands */
+ UINT headerDataFlags, /*!< Info to SBR mode */
+ UCHAR k0) /*!< Start freq index */
+{
+ UCHAR k2;
+
+ if (stopFreq < 14) {
+ INT stopMin;
+ UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
+ UCHAR *diff0 = diff_tot;
+ UCHAR *diff1 = diff_tot+MAX_OCTAVE;
+
+ if (fs < 32000) {
+ stopMin = (((2*6000*2*(64)) / fs) + 1) >> 1;
+ }
+ else {
+ if (fs < 64000) {
+ stopMin = (((2*8000*2*(64)) / fs) + 1) >> 1;
+ }
+ else {
+ stopMin = (((2*10000*2*(64)) / fs) + 1) >> 1;
+ }
+ }
+
+ /*
+ Choose a stop band between k1 and 64 depending on stopFreq (0..13),
+ based on a logarithmic scale.
+ The vectors diff0 and diff1 are used temporarily here.
+ */
+ CalcBands( diff0, stopMin, 64, 13);
+ shellsort( diff0, 13);
+ cumSum(stopMin, diff0, 13, diff1);
+ k2 = diff1[stopFreq];
+ }
+ else if (stopFreq==14)
+ k2 = 2*k0;
+ else
+ k2 = 3*k0;
+
+ /* Limit to Nyquist */
+ if (k2 > (64))
+ k2 = (64);
+
+
+ /* Range checks */
+ /* 1 <= difference <= 48; 1 <= fs <= 96000 */
+ if ( ((k2 - k0) > MAX_FREQ_COEFFS) || (k2 <= k0) ) {
+ return 255;
+ }
+
+ if (headerDataFlags & (SBRDEC_SYNTAX_USAC|SBRDEC_SYNTAX_RSVD50)) {
+ /* 1 <= difference <= 35; 42000 <= fs <= 96000 */
+ if ( (fs >= 42000) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS44100 ) ) {
+ return 255;
+ }
+ /* 1 <= difference <= 32; 46009 <= fs <= 96000 */
+ if ( (fs >= 46009) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS48000 ) ) {
+ return 255;
+ }
+ }
+ else {
+ /* 1 <= difference <= 35; fs == 44100 */
+ if ( (fs == 44100) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS44100 ) ) {
+ return 255;
+ }
+ /* 1 <= difference <= 32; 48000 <= fs <= 96000 */
+ if ( (fs >= 48000) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS48000 ) ) {
+ return 255;
+ }
+ }
+
+ return k2;
+}
+
+
+/*!
+ \brief Generates master frequency tables
+
+ Frequency tables are calculated according to the selected domain
+ (linear/logarithmic) and granularity.
+ IEC 14496-3 4.6.18.3.2.1
+
+ \return errorCode, 0 if successful
+*/
+SBR_ERROR
+sbrdecUpdateFreqScale(UCHAR * v_k_master, /*!< Master table to be created */
+ UCHAR *numMaster, /*!< Number of entries in master table */
+ UINT fs, /*!< SBR working sampling rate */
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
+ UINT flags)
+{
+ FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
+ INT dk=0;
+
+ /* Internal variables */
+ UCHAR k0, k2, i;
+ UCHAR num_bands0 = 0;
+ UCHAR num_bands1 = 0;
+ UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
+ UCHAR *diff0 = diff_tot;
+ UCHAR *diff1 = diff_tot+MAX_OCTAVE;
+ INT k2_achived;
+ INT k2_diff;
+ INT incr=0;
+
+ /*
+ Determine start band
+ */
+ k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
+ if (k0 == 255) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ /*
+ Determine stop band
+ */
+ k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
+ if (k2 == 255) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ if(hHeaderData->bs_data.freqScale>0) { /* Bark */
+ INT k1;
+
+ if(hHeaderData->bs_data.freqScale==1) {
+ bpo_div16 = FL2FXCONST_SGL(12.0f/16.0f);
+ }
+ else if(hHeaderData->bs_data.freqScale==2) {
+ bpo_div16 = FL2FXCONST_SGL(10.0f/16.0f);
+ }
+ else {
+ bpo_div16 = FL2FXCONST_SGL(8.0f/16.0f);
+ }
+
+
+ if( 1000 * k2 > 2245 * k0 ) { /* Two or more regions */
+ k1 = 2*k0;
+
+ num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
+ num_bands1 = numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale );
+ if ( num_bands0 < 1) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+ if ( num_bands1 < 1 ) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ CalcBands(diff0, k0, k1, num_bands0);
+ shellsort( diff0, num_bands0);
+ if (diff0[0] == 0) {
+#ifdef DEBUG_TOOLS
+#endif
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ cumSum(k0, diff0, num_bands0, v_k_master);
+
+ CalcBands(diff1, k1, k2, num_bands1);
+ shellsort( diff1, num_bands1);
+ if(diff0[num_bands0-1] > diff1[0]) {
+ SBR_ERROR err;
+
+ err = modifyBands(diff0[num_bands0-1],diff1, num_bands1);
+ if (err)
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ /* Add 2nd region */
+ cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
+ *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
+
+ }
+ else { /* Only one region */
+ k1=k2;
+
+ num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
+ if ( num_bands0 < 1) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+ CalcBands(diff0, k0, k1, num_bands0);
+ shellsort(diff0, num_bands0);
+ if (diff0[0] == 0) {
+#ifdef DEBUG_TOOLS
+#endif
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ cumSum(k0, diff0, num_bands0, v_k_master);
+ *numMaster = num_bands0; /* Output nr of bands */
+
+ }
+ }
+ else { /* Linear mode */
+ if (hHeaderData->bs_data.alterScale==0) {
+ dk = 1;
+ /* FLOOR to get to few number of bands (next lower even number) */
+ num_bands0 = (k2 - k0) & 254;
+ } else {
+ dk = 2;
+ num_bands0 = ( ((k2 - k0) >> 1) + 1 ) & 254; /* ROUND to the closest fit */
+ }
+
+ if (num_bands0 < 1) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ /* We must return already here because 'i' can become negative below. */
+ }
+
+ k2_achived = k0 + num_bands0*dk;
+ k2_diff = k2 - k2_achived;
+
+ for(i=0;i<num_bands0;i++)
+ diff_tot[i] = dk;
+
+ /* If linear scale wasn't achieved */
+ /* and we got too wide SBR area */
+ if (k2_diff < 0) {
+ incr = 1;
+ i = 0;
+ }
+
+ /* If linear scale wasn't achieved */
+ /* and we got too small SBR area */
+ if (k2_diff > 0) {
+ incr = -1;
+ i = num_bands0-1;
+ }
+
+ /* Adjust diff vector to get sepc. SBR range */
+ while (k2_diff != 0) {
+ diff_tot[i] = diff_tot[i] - incr;
+ i = i + incr;
+ k2_diff = k2_diff + incr;
+ }
+
+ cumSum(k0, diff_tot, num_bands0, v_k_master);/* cumsum */
+ *numMaster = num_bands0; /* Output nr of bands */
+ }
+
+ if (*numMaster < 1) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+
+ /*
+ Print out the calculated table
+ */
+
+ return SBRDEC_OK;
+}
+
+
+/*!
+ \brief Calculate frequency ratio of one SBR band
+
+ All SBR bands should span a constant frequency range in the logarithmic
+ domain. This function calculates the ratio of any SBR band's upper and lower
+ frequency.
+
+ \return num_band-th root of k_start/k_stop
+*/
+static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands)
+{
+/* Scaled bandfactor and step 1 bit right to avoid overflow
+ * use double data type */
+ FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
+ FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
+
+ int direction = 1;
+
+/* Because saturation can't be done in INT IIS,
+ * changed start and stop data type from FIXP_SGL to FIXP_DBL */
+ FIXP_DBL start = k_start << (DFRACT_BITS-8);
+ FIXP_DBL stop = k_stop << (DFRACT_BITS-8);
+
+ FIXP_DBL temp;
+
+ int j, i=0;
+
+ while ( step > FL2FXCONST_DBL(0.0f)) {
+ i++;
+ temp = stop;
+
+ /* Calculate temp^num_bands: */
+ for (j=0; j<num_bands; j++)
+ //temp = fMult(temp,bandfactor);
+ temp = fMultDiv2(temp,bandfactor)<<2;
+
+ if (temp<start) { /* Factor too strong, make it weaker */
+ if (direction == 0)
+ /* Halfen step. Right shift is not done as fract because otherwise the
+ lowest bit cannot be cleared due to rounding */
+ step = (FIXP_DBL)((LONG)step >> 1);
+ direction = 1;
+ bandfactor = bandfactor + step;
+ }
+ else { /* Factor is too weak: make it stronger */
+ if (direction == 1)
+ step = (FIXP_DBL)((LONG)step >> 1);
+ direction = 0;
+ bandfactor = bandfactor - step;
+ }
+
+ if (i>100) {
+ step = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ return FX_DBL2FX_SGL(bandfactor<<1);
+}
+
+
+/*!
+ \brief Calculate number of SBR bands between start and stop band
+
+ Given the number of bands per octave, this function calculates how many
+ bands fit in the given frequency range.
+ When the warpFlag is set, the 'band density' is decreased by a factor
+ of 1/1.3
+
+ \return number of bands
+*/
+static int
+numberOfBands(FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
+ int start, /*!< First QMF band of SBR frequency range */
+ int stop, /*!< Last QMF band of SBR frequency range + 1 */
+ int warpFlag) /*!< Stretching flag */
+{
+ FIXP_SGL num_bands_div128;
+ int num_bands;
+
+ num_bands_div128 = FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start,stop),bpo_div16));
+
+ if (warpFlag) {
+ /* Apply the warp factor of 1.3 to get wider bands. We use a value
+ of 32768/25200 instead of the exact value to avoid critical cases
+ of rounding.
+ */
+ num_bands_div128 = FX_DBL2FX_SGL(fMult(num_bands_div128, FL2FXCONST_SGL(25200.0/32768.0)));
+ }
+
+ /* add scaled 1 for rounding to even numbers: */
+ num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL( 1.0f/128.0f );
+ /* scale back to right aligned integer and double the value: */
+ num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
+
+ return(num_bands);
+}
+
+
+/*!
+ \brief Calculate width of SBR bands
+
+ Given the desired number of bands within the SBR frequency range,
+ this function calculates the width of each SBR band in QMF channels.
+ The bands get wider from start to stop (bark scale).
+*/
+static void
+CalcBands(UCHAR * diff, /*!< Vector of widths to be calculated */
+ UCHAR start, /*!< Lower end of subband range */
+ UCHAR stop, /*!< Upper end of subband range */
+ UCHAR num_bands) /*!< Desired number of bands */
+{
+ int i;
+ int previous;
+ int current;
+ FIXP_SGL exact, temp;
+ FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
+
+ previous = stop; /* Start with highest QMF channel */
+ exact = (FIXP_SGL)(stop << (FRACT_BITS-8)); /* Shift left to gain some accuracy */
+
+ for(i=num_bands-1; i>=0; i--) {
+ /* Calculate border of next lower sbr band */
+ exact = FX_DBL2FX_SGL(fMult(exact,bandfactor));
+
+ /* Add scaled 0.5 for rounding:
+ We use a value 128/256 instead of 0.5 to avoid some critical cases of rounding. */
+ temp = exact + FL2FXCONST_SGL(128.0/32768.0);
+
+ /* scale back to right alinged integer: */
+ current = (LONG)temp >> (FRACT_BITS-8);
+
+ /* Save width of band i */
+ diff[i] = previous - current;
+ previous = current;
+ }
+}
+
+
+/*!
+ \brief Calculate cumulated sum vector from delta vector
+*/
+static void
+cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress)
+{
+ int i;
+ start_adress[0]=start_value;
+ for(i=1; i<=length; i++)
+ start_adress[i] = start_adress[i-1] + diff[i-1];
+}
+
+
+/*!
+ \brief Adapt width of frequency bands in the second region
+
+ If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
+ is calculated separately. This function tries to avoid that the second region
+ starts with a band smaller than the highest band of the first region.
+*/
+static SBR_ERROR
+modifyBands(UCHAR max_band_previous, UCHAR * diff, UCHAR length)
+{
+ int change = max_band_previous - diff[0];
+
+ /* Limit the change so that the last band cannot get narrower than the first one */
+ if ( change > (diff[length-1]-diff[0])>>1 )
+ change = (diff[length-1]-diff[0])>>1;
+
+ diff[0] += change;
+ diff[length-1] -= change;
+ shellsort(diff, length);
+
+ return SBRDEC_OK;
+}
+
+
+/*!
+ \brief Update high resolution frequency band table
+*/
+static void
+sbrdecUpdateHiRes(UCHAR * h_hires,
+ UCHAR * num_hires,
+ UCHAR * v_k_master,
+ UCHAR num_bands,
+ UCHAR xover_band)
+{
+ UCHAR i;
+
+ *num_hires = num_bands-xover_band;
+
+ for(i=xover_band; i<=num_bands; i++) {
+ h_hires[i-xover_band] = v_k_master[i];
+ }
+}
+
+
+/*!
+ \brief Build low resolution table out of high resolution table
+*/
+static void
+sbrdecUpdateLoRes(UCHAR * h_lores,
+ UCHAR * num_lores,
+ UCHAR * h_hires,
+ UCHAR num_hires)
+{
+ UCHAR i;
+
+ if( (num_hires & 1) == 0) {
+ /* If even number of hires bands */
+ *num_lores = num_hires >> 1;
+ /* Use every second lores=hires[0,2,4...] */
+ for(i=0; i<=*num_lores; i++)
+ h_lores[i] = h_hires[i*2];
+ }
+ else {
+ /* Odd number of hires, which means xover is odd */
+ *num_lores = (num_hires+1) >> 1;
+ /* Use lores=hires[0,1,3,5 ...] */
+ h_lores[0] = h_hires[0];
+ for(i=1; i<=*num_lores; i++) {
+ h_lores[i] = h_hires[i*2-1];
+ }
+ }
+}
+
+
+/*!
+ \brief Derive a low-resolution frequency-table from the master frequency table
+*/
+void
+sbrdecDownSampleLoRes(UCHAR *v_result,
+ UCHAR num_result,
+ UCHAR *freqBandTableRef,
+ UCHAR num_Ref)
+{
+ int step;
+ int i,j;
+ int org_length,result_length;
+ int v_index[MAX_FREQ_COEFFS>>1];
+
+ /* init */
+ org_length = num_Ref;
+ result_length = num_result;
+
+ v_index[0] = 0; /* Always use left border */
+ i=0;
+ while(org_length > 0) {
+ /* Create downsample vector */
+ i++;
+ step = org_length / result_length;
+ org_length = org_length - step;
+ result_length--;
+ v_index[i] = v_index[i-1] + step;
+ }
+
+ for(j=0;j<=i;j++) {
+ /* Use downsample vector to index LoResolution vector */
+ v_result[j]=freqBandTableRef[v_index[j]];
+ }
+
+}
+
+
+/*!
+ \brief Sorting routine
+*/
+void shellsort(UCHAR *in, UCHAR n)
+{
+
+ int i, j, v, w;
+ int inc = 1;
+
+ do
+ inc = 3 * inc + 1;
+ while (inc <= n);
+
+ do {
+ inc = inc / 3;
+ for (i = inc; i < n; i++) {
+ v = in[i];
+ j = i;
+ while ((w=in[j-inc]) > v) {
+ in[j] = w;
+ j -= inc;
+ if (j < inc)
+ break;
+ }
+ in[j] = v;
+ }
+ } while (inc > 1);
+
+}
+
+
+
+/*!
+ \brief Reset frequency band tables
+ \return errorCode, 0 if successful
+*/
+SBR_ERROR
+resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags)
+{
+ SBR_ERROR err = SBRDEC_OK;
+ int k2,kx, lsb, usb;
+ int intTemp;
+ UCHAR nBandsLo, nBandsHi;
+ HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
+
+ /* Calculate master frequency function */
+ err = sbrdecUpdateFreqScale(hFreq->v_k_master,
+ &hFreq->numMaster,
+ hHeaderData->sbrProcSmplRate,
+ hHeaderData,
+ flags);
+
+ if ( err || (hHeaderData->bs_info.xover_band > hFreq->numMaster) ) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ /* Derive Hiresolution from master frequency function */
+ sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master, hFreq->numMaster, hHeaderData->bs_info.xover_band );
+ /* Derive Loresolution from Hiresolution */
+ sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1], nBandsHi);
+
+
+ hFreq->nSfb[0] = nBandsLo;
+ hFreq->nSfb[1] = nBandsHi;
+
+ /* Check index to freqBandTable[0] */
+ if ( !(nBandsLo > 0) || (nBandsLo > (MAX_FREQ_COEFFS>>1)) ) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ lsb = hFreq->freqBandTable[0][0];
+ usb = hFreq->freqBandTable[0][nBandsLo];
+
+ /* Additional check for lsb */
+ if ( (lsb > (32)) || (lsb >= usb) ) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+
+ /* Calculate number of noise bands */
+
+ k2 = hFreq->freqBandTable[1][nBandsHi];
+ kx = hFreq->freqBandTable[1][0];
+
+ if (hHeaderData->bs_data.noise_bands == 0)
+ {
+ hFreq->nNfb = 1;
+ }
+ else /* Calculate no of noise bands 1,2 or 3 bands/octave */
+ {
+ /* Fetch number of octaves divided by 32 */
+ intTemp = (LONG)FDK_getNumOctavesDiv8(kx,k2) >> 2;
+
+ /* Integer-Multiplication with number of bands: */
+ intTemp = intTemp * hHeaderData->bs_data.noise_bands;
+
+ /* Add scaled 0.5 for rounding: */
+ intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f/32.0f);
+
+ /* Convert to right-aligned integer: */
+ intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
+
+ /* Compare with float calculation */
+ FDK_ASSERT( intTemp == (int)((hHeaderData->bs_data.noise_bands * FDKlog( (float)k2/kx) / (float)(FDKlog(2.0)))+0.5) );
+
+ if( intTemp==0)
+ intTemp=1;
+
+ hFreq->nNfb = intTemp;
+ }
+
+ hFreq->nInvfBands = hFreq->nNfb;
+
+ if( hFreq->nNfb > MAX_NOISE_COEFFS ) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ /* Get noise bands */
+ sbrdecDownSampleLoRes(hFreq->freqBandTableNoise,
+ hFreq->nNfb,
+ hFreq->freqBandTable[0],
+ nBandsLo);
+
+
+
+
+ hFreq->lowSubband = lsb;
+ hFreq->highSubband = usb;
+
+ return SBRDEC_OK;
+}