aboutsummaryrefslogtreecommitdiffstats
path: root/libAACenc/src/adj_thr.cpp
diff options
context:
space:
mode:
authorDave Burke <daveburke@google.com>2012-04-17 09:51:45 -0700
committerDave Burke <daveburke@google.com>2012-04-17 23:04:43 -0700
commit9bf37cc9712506b2483650c82d3c41152337ef7e (patch)
tree77db44e2bae06e3d144b255628be2b7a55c581d3 /libAACenc/src/adj_thr.cpp
parenta37315fe10ee143d6d0b28c19d41a476a23e63ea (diff)
downloadfdk-aac-dabplus-9bf37cc9712506b2483650c82d3c41152337ef7e.tar.gz
fdk-aac-dabplus-9bf37cc9712506b2483650c82d3c41152337ef7e.tar.bz2
fdk-aac-dabplus-9bf37cc9712506b2483650c82d3c41152337ef7e.zip
Fraunhofer AAC codec.
License boilerplate update to follow. Change-Id: I2810460c11a58b6d148d84673cc031f3685e79b5
Diffstat (limited to 'libAACenc/src/adj_thr.cpp')
-rw-r--r--libAACenc/src/adj_thr.cpp2262
1 files changed, 2262 insertions, 0 deletions
diff --git a/libAACenc/src/adj_thr.cpp b/libAACenc/src/adj_thr.cpp
new file mode 100644
index 0000000..d9d89f2
--- /dev/null
+++ b/libAACenc/src/adj_thr.cpp
@@ -0,0 +1,2262 @@
+/******************************** MPEG Audio Encoder **************************
+
+ (C) Copyright Fraunhofer IIS (1999)
+ All Rights Reserved
+
+ Please be advised that this software and/or program delivery is
+ Confidential Information of Fraunhofer and subject to and covered by the
+
+ Fraunhofer IIS Software Evaluation Agreement
+ between Google Inc. and Fraunhofer
+ effective and in full force since March 1, 2012.
+
+ You may use this software and/or program only under the terms and
+ conditions described in the above mentioned Fraunhofer IIS Software
+ Evaluation Agreement. Any other and/or further use requires a separate agreement.
+
+
+ This software and/or program is protected by copyright law and international
+ treaties. Any reproduction or distribution of this software and/or program,
+ or any portion of it, may result in severe civil and criminal penalties, and
+ will be prosecuted to the maximum extent possible under law.
+
+ $Id$
+ Initial author: M. Werner
+ contents/description: Threshold compensation
+
+******************************************************************************/
+
+#include "common_fix.h"
+
+#include "adj_thr_data.h"
+#include "adj_thr.h"
+#include "qc_data.h"
+#include "sf_estim.h"
+#include "aacEnc_ram.h"
+
+
+
+
+#define INV_INT_TAB_SIZE (8)
+static const FIXP_DBL invInt[INV_INT_TAB_SIZE] =
+{
+ 0x7fffffff, 0x7fffffff, 0x40000000, 0x2aaaaaaa, 0x20000000, 0x19999999, 0x15555555, 0x12492492
+};
+
+
+#define INV_SQRT4_TAB_SIZE (8)
+static const FIXP_DBL invSqrt4[INV_SQRT4_TAB_SIZE] =
+{
+ 0x7fffffff, 0x7fffffff, 0x6ba27e65, 0x61424bb5, 0x5a827999, 0x55994845, 0x51c8e33c, 0x4eb160d1
+};
+
+
+/*static const INT invRedExp = 4;*/
+static const FIXP_DBL SnrLdMin1 = (FIXP_DBL)0xfcad0ddf; /*FL2FXCONST_DBL(FDKlog(0.316)/FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdMin2 = (FIXP_DBL)0x0351e1a2; /*FL2FXCONST_DBL(FDKlog(3.16) /FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdFac = (FIXP_DBL)0xff5b2c3e; /*FL2FXCONST_DBL(FDKlog(0.8) /FDKlog(2.0)/LD_DATA_SCALING);*/
+
+static const FIXP_DBL SnrLdMin3 = (FIXP_DBL)0xfe000000; /*FL2FXCONST_DBL(FDKlog(0.5) /FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdMin4 = (FIXP_DBL)0x02000000; /*FL2FXCONST_DBL(FDKlog(2.0) /FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdMin5 = (FIXP_DBL)0xfc000000; /*FL2FXCONST_DBL(FDKlog(0.25) /FDKlog(2.0)/LD_DATA_SCALING);*/
+
+
+/* values for avoid hole flag */
+enum _avoid_hole_state {
+ NO_AH =0,
+ AH_INACTIVE =1,
+ AH_ACTIVE =2
+};
+
+
+/* Q format definitions */
+#define Q_BITFAC (24) /* Q scaling used in FDKaacEnc_bitresCalcBitFac() calculation */
+#define Q_AVGBITS (17) /* scale bit values */
+
+static INT FDKaacEnc_bits2pe2(
+ const INT bits,
+ const FIXP_DBL factor_m,
+ const INT factor_e
+ )
+{
+ return (INT)(fMult(factor_m, (FIXP_DBL)(bits<<Q_AVGBITS)) >> (Q_AVGBITS-factor_e));
+}
+
+/*****************************************************************************
+functionname: FDKaacEnc_calcThreshExp
+description: loudness calculation (threshold to the power of redExp)
+*****************************************************************************/
+static void FDKaacEnc_calcThreshExp(FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
+ QC_OUT_CHANNEL* qcOutChannel[(2)],
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ const INT nChannels)
+{
+ INT ch, sfb, sfbGrp;
+ FIXP_DBL thrExpLdData;
+
+ for (ch=0; ch<nChannels; ch++) {
+ for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ thrExpLdData = psyOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb]>>2 ;
+ thrExp[ch][sfbGrp+sfb] = CalcInvLdData(thrExpLdData);
+ }
+ }
+ }
+}
+
+
+/*****************************************************************************
+ functionname: FDKaacEnc_adaptMinSnr
+ description: reduce minSnr requirements for bands with relative low energies
+*****************************************************************************/
+static void FDKaacEnc_adaptMinSnr(QC_OUT_CHANNEL *qcOutChannel[(2)],
+ PSY_OUT_CHANNEL *psyOutChannel[(2)],
+ MINSNR_ADAPT_PARAM *msaParam,
+ const INT nChannels)
+{
+ INT ch, sfb, sfbGrp, nSfb;
+ FIXP_DBL avgEnLD64, dbRatio, minSnrRed;
+ FIXP_DBL minSnrLimitLD64 = FL2FXCONST_DBL(-0.00503012648262f); /* ld64(0.8f) */
+ FIXP_DBL nSfbLD64;
+ FIXP_DBL accu;
+
+ for (ch=0; ch<nChannels; ch++) {
+ /* calc average energy per scalefactor band */
+ nSfb = 0;
+ accu = FL2FXCONST_DBL(0.0f);
+
+ for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ accu += psyOutChannel[ch]->sfbEnergy[sfbGrp+sfb]>>6;
+ nSfb++;
+ }
+ }
+
+ if ((accu == FL2FXCONST_DBL(0.0f)) || (nSfb == 0)) {
+ avgEnLD64 = FL2FXCONST_DBL(-1.0f);
+ }
+ else {
+ nSfbLD64 = CalcLdInt(nSfb);
+ avgEnLD64 = CalcLdData(accu);
+ avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - nSfbLD64; /* 0.09375f: compensate shift with 6 */
+ }
+
+ /* reduce minSnr requirement by minSnr^minSnrRed dependent on avgEn/sfbEn */
+ for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ if ( (msaParam->startRatio + qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]) < avgEnLD64 ) {
+ dbRatio = fMult((avgEnLD64 - qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]),FL2FXCONST_DBL(0.3010299956f)); /* scaled by (1.0f/(10.0f*64.0f)) */
+ minSnrRed = msaParam->redOffs + fMult(msaParam->redRatioFac,dbRatio); /* scaled by 1.0f/64.0f*/
+ minSnrRed = fixMax(minSnrRed, msaParam->maxRed); /* scaled by 1.0f/64.0f*/
+ qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb] = (fMult(qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb],minSnrRed)) << 6;
+ qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(minSnrLimitLD64, qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb]);
+ }
+ }
+ }
+ }
+}
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_initAvoidHoleFlag
+description: determine bands where avoid hole is not necessary resp. possible
+*****************************************************************************/
+static void FDKaacEnc_initAvoidHoleFlag(QC_OUT_CHANNEL *qcOutChannel[(2)],
+ PSY_OUT_CHANNEL *psyOutChannel[(2)],
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ struct TOOLSINFO *toolsInfo,
+ const INT nChannels,
+ const PE_DATA *peData,
+ AH_PARAM *ahParam)
+{
+ INT ch, sfb, sfbGrp;
+ FIXP_DBL sfbEn, sfbEnm1;
+ FIXP_DBL sfbEnLdData;
+ FIXP_DBL avgEnLdData;
+
+ /* decrease spread energy by 3dB for long blocks, resp. 2dB for shorts
+ (avoid more holes in long blocks) */
+ for (ch=0; ch<nChannels; ch++) {
+ INT sfbGrp, sfb;
+ QC_OUT_CHANNEL* qcOutChan = qcOutChannel[ch];
+
+ if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW) {
+ for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup)
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++)
+ qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] >>= 1 ;
+ }
+ else {
+ for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup)
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++)
+ qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] =
+ fMult(FL2FXCONST_DBL(0.63f),
+ qcOutChan->sfbSpreadEnergy[sfbGrp+sfb]) ;
+ }
+ }
+
+ /* increase minSnr for local peaks, decrease it for valleys */
+ if (ahParam->modifyMinSnr) {
+ for(ch=0; ch<nChannels; ch++) {
+ QC_OUT_CHANNEL* qcOutChan = qcOutChannel[ch];
+ for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ FIXP_DBL sfbEnp1, avgEn;
+ if (sfb > 0)
+ sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp+sfb-1];
+ else
+ sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp+sfb];
+
+ if (sfb < psyOutChannel[ch]->maxSfbPerGroup-1)
+ sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp+sfb+1];
+ else
+ sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp+sfb];
+
+ avgEn = (sfbEnm1>>1) + (sfbEnp1>>1);
+ avgEnLdData = CalcLdData(avgEn);
+ sfbEn = qcOutChan->sfbEnergy[sfbGrp+sfb];
+ sfbEnLdData = qcOutChan->sfbEnergyLdData[sfbGrp+sfb];
+ /* peak ? */
+ if (sfbEn > avgEn) {
+ FIXP_DBL tmpMinSnrLdData;
+ if (psyOutChannel[ch]->lastWindowSequence==LONG_WINDOW)
+ tmpMinSnrLdData = fixMax( SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), (FIXP_DBL)SnrLdMin1 ) ;
+ else
+ tmpMinSnrLdData = fixMax( SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), (FIXP_DBL)SnrLdMin3 ) ;
+
+ qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] =
+ fixMin(qcOutChan->sfbMinSnrLdData[sfbGrp+sfb], tmpMinSnrLdData);
+ }
+ /* valley ? */
+ if ( ((sfbEnLdData+(FIXP_DBL)SnrLdMin4) < (FIXP_DBL)avgEnLdData) && (sfbEn > FL2FXCONST_DBL(0.0)) ) {
+ FIXP_DBL tmpMinSnrLdData = avgEnLdData - sfbEnLdData -(FIXP_DBL)SnrLdMin4 + qcOutChan->sfbMinSnrLdData[sfbGrp+sfb];
+ tmpMinSnrLdData = fixMin((FIXP_DBL)SnrLdFac, tmpMinSnrLdData);
+ qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(tmpMinSnrLdData,
+ (FIXP_DBL)(qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + SnrLdMin2 ));
+ }
+ }
+ }
+ }
+ }
+
+ /* stereo: adapt the minimum requirements sfbMinSnr of mid and
+ side channels to avoid spending unnoticable bits */
+ if (nChannels == 2) {
+ QC_OUT_CHANNEL* qcOutChanM = qcOutChannel[0];
+ QC_OUT_CHANNEL* qcOutChanS = qcOutChannel[1];
+ PSY_OUT_CHANNEL* psyOutChanM = psyOutChannel[0];
+ for(sfbGrp = 0;sfbGrp < psyOutChanM->sfbCnt;sfbGrp+= psyOutChanM->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChanM->maxSfbPerGroup; sfb++) {
+ if (toolsInfo->msMask[sfbGrp+sfb]) {
+ FIXP_DBL maxSfbEnLd = fixMax(qcOutChanM->sfbEnergyLdData[sfbGrp+sfb],qcOutChanS->sfbEnergyLdData[sfbGrp+sfb]);
+ FIXP_DBL maxThrLd, sfbMinSnrTmpLd;
+
+ if ( ((SnrLdMin5>>1) + (maxSfbEnLd>>1) + (qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb]>>1)) <= FL2FXCONST_DBL(-0.5f))
+ maxThrLd = FL2FXCONST_DBL(-1.0f) ;
+ else
+ maxThrLd = SnrLdMin5 + maxSfbEnLd + qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb];
+
+ if (qcOutChanM->sfbEnergy[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))
+ sfbMinSnrTmpLd = maxThrLd - qcOutChanM->sfbEnergyLdData[sfbGrp+sfb];
+ else
+ sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
+
+ qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] = fixMax(qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb],sfbMinSnrTmpLd);
+
+ if (qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] <= FL2FXCONST_DBL(0.0f))
+ qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb], (FIXP_DBL)SnrLdFac);
+
+ if (qcOutChanS->sfbEnergy[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))
+ sfbMinSnrTmpLd = maxThrLd - qcOutChanS->sfbEnergyLdData[sfbGrp+sfb];
+ else
+ sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
+
+ qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] = fixMax(qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb],sfbMinSnrTmpLd);
+
+ if (qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] <= FL2FXCONST_DBL(0.0f))
+ qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb],(FIXP_DBL)SnrLdFac);
+
+ if (qcOutChanM->sfbEnergy[sfbGrp+sfb]>qcOutChanM->sfbSpreadEnergy[sfbGrp+sfb])
+ qcOutChanS->sfbSpreadEnergy[sfbGrp+sfb] =
+ fMult(qcOutChanS->sfbEnergy[sfbGrp+sfb], FL2FXCONST_DBL(0.9f));
+
+ if (qcOutChanS->sfbEnergy[sfbGrp+sfb]>qcOutChanS->sfbSpreadEnergy[sfbGrp+sfb])
+ qcOutChanM->sfbSpreadEnergy[sfbGrp+sfb] =
+ fMult(qcOutChanM->sfbEnergy[sfbGrp+sfb], FL2FXCONST_DBL(0.9f));
+ }
+ }
+ }
+ }
+
+ /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
+ for(ch=0; ch<nChannels; ch++) {
+ QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
+ PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
+ for(sfbGrp = 0;sfbGrp < psyOutChan->sfbCnt;sfbGrp+= psyOutChan->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
+ if ((qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] > qcOutChan->sfbEnergy[sfbGrp+sfb])
+ || (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))) {
+ ahFlag[ch][sfbGrp+sfb] = NO_AH;
+ }
+ else {
+ ahFlag[ch][sfbGrp+sfb] = AH_INACTIVE;
+ }
+ }
+ }
+ }
+}
+
+
+
+/**
+ * \brief Calculate constants that do not change during successive pe calculations.
+ *
+ * \param peData Pointer to structure containing PE data of current element.
+ * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding nChannels elements.
+ * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding nChannels elements.
+ * \param nChannels Number of channels in element.
+ * \param peOffset Fixed PE offset defined while FDKaacEnc_AdjThrInit() depending on bitrate.
+ *
+ * \return void
+ */
+static
+void FDKaacEnc_preparePe(PE_DATA *peData,
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ QC_OUT_CHANNEL* qcOutChannel[(2)],
+ const INT nChannels,
+ const INT peOffset)
+{
+ INT ch;
+
+ for(ch=0; ch<nChannels; ch++) {
+ PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
+ FDKaacEnc_prepareSfbPe(&peData->peChannelData[ch],
+ psyOutChan->sfbEnergyLdData,
+ psyOutChan->sfbThresholdLdData,
+ qcOutChannel[ch]->sfbFormFactorLdData,
+ psyOutChan->sfbOffsets,
+ psyOutChan->sfbCnt,
+ psyOutChan->sfbPerGroup,
+ psyOutChan->maxSfbPerGroup);
+ }
+ peData->offset = peOffset;
+}
+
+/**
+ * \brief Calculate weighting factor for threshold adjustment.
+ *
+ * Calculate weighting factor to be applied at energies and thresholds in ld64 format.
+ *
+ * \param peData, Pointer to PE data in current element.
+ * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding nChannels elements.
+ * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding nChannels elements.
+ * \param toolsInfo Pointer to tools info struct of current element.
+ * \param adjThrStateElement Pointer to ATS_ELEMENT holding enFacPatch states.
+ * \param nChannels Number of channels in element.
+ * \param usePatchTool Apply the weighting tool 0 (no) else (yes).
+ *
+ * \return void
+ */
+static
+void FDKaacEnc_calcWeighting(PE_DATA *peData,
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ QC_OUT_CHANNEL* qcOutChannel[(2)],
+ struct TOOLSINFO *toolsInfo,
+ ATS_ELEMENT* adjThrStateElement,
+ const INT nChannels,
+ const INT usePatchTool)
+{
+ int ch, noShortWindowInFrame = TRUE;
+ INT exePatchM = 0;
+
+ for (ch=0; ch<nChannels; ch++) {
+ if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
+ noShortWindowInFrame = FALSE;
+ }
+ FDKmemclear(qcOutChannel[ch]->sfbEnFacLd, MAX_GROUPED_SFB*sizeof(FIXP_DBL));
+ }
+
+ if (usePatchTool==0) {
+ return; /* tool is disabled */
+ }
+
+ for (ch=0; ch<nChannels; ch++) {
+
+ PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
+
+ if (noShortWindowInFrame) { /* retain energy ratio between blocks of different length */
+
+ FIXP_DBL nrgSum14, nrgSum12, nrgSum34, nrgTotal;
+ FIXP_DBL nrgFacLd_14, nrgFacLd_12, nrgFacLd_34;
+ INT usePatch, exePatch;
+ int sfb, nLinesSum = 0;
+
+ nrgSum14 = nrgSum12 = nrgSum34 = nrgTotal = FL2FXCONST_DBL(0.f);
+
+ /* calculate flatness of audible spectrum, i.e. spectrum above masking threshold. */
+ for (sfb = 0; sfb < psyOutChan->sfbCnt; sfb++) {
+
+ FIXP_DBL nrgFac12 = CalcInvLdData(psyOutChan->sfbEnergyLdData[sfb]>>1); /* nrg^(1/2) */
+ FIXP_DBL nrgFac14 = CalcInvLdData(psyOutChan->sfbEnergyLdData[sfb]>>2); /* nrg^(1/4) */
+
+ /* maximal number of bands is 64, results scaling factor 6 */
+ nLinesSum += peData->peChannelData[ch].sfbNLines[sfb]; /* relevant lines */
+ nrgTotal += ( psyOutChan->sfbEnergy[sfb] >> 6 ); /* sum up nrg */
+ nrgSum12 += ( nrgFac12 >> 6 ); /* sum up nrg^(2/4) */
+ nrgSum14 += ( nrgFac14 >> 6 ); /* sum up nrg^(1/4) */
+ nrgSum34 += ( fMult(nrgFac14, nrgFac12) >> 6 ); /* sum up nrg^(3/4) */
+ }
+
+ nrgTotal = CalcLdData(nrgTotal); /* get ld64 of total nrg */
+
+ nrgFacLd_14 = CalcLdData(nrgSum14) - nrgTotal; /* ld64(nrgSum14/nrgTotal) */
+ nrgFacLd_12 = CalcLdData(nrgSum12) - nrgTotal; /* ld64(nrgSum12/nrgTotal) */
+ nrgFacLd_34 = CalcLdData(nrgSum34) - nrgTotal; /* ld64(nrgSum34/nrgTotal) */
+
+ adjThrStateElement->chaosMeasureEnFac[ch] = FDKmax( FL2FXCONST_DBL(0.1875f), fDivNorm(nLinesSum,psyOutChan->sfbOffsets[psyOutChan->sfbCnt]) );
+
+ usePatch = (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.78125f));
+ exePatch = ((usePatch) && (adjThrStateElement->lastEnFacPatch[ch]));
+
+ for (sfb = 0; sfb < psyOutChan->sfbCnt; sfb++) {
+ INT sfbExePatch;
+
+ /* for MS coupled SFBs, also execute patch in side channel if done in mid channel */
+ if ((ch == 1) && (toolsInfo->msMask[sfb])) {
+ sfbExePatch = exePatchM;
+ }
+ else {
+ sfbExePatch = exePatch;
+ }
+
+ if ( (sfbExePatch) && (psyOutChan->sfbEnergy[sfb]>FL2FXCONST_DBL(0.f)) )
+ {
+ /* execute patch based on spectral flatness calculated above */
+ if (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.8125f)) {
+ qcOutChannel[ch]->sfbEnFacLd[sfb] = ( (nrgFacLd_14 + (psyOutChan->sfbEnergyLdData[sfb]+(psyOutChan->sfbEnergyLdData[sfb]>>1)))>>1 ); /* sfbEnergy^(3/4) */
+ }
+ else if (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.796875f)) {
+ qcOutChannel[ch]->sfbEnFacLd[sfb] = ( (nrgFacLd_12 + psyOutChan->sfbEnergyLdData[sfb])>>1 ); /* sfbEnergy^(2/4) */
+ }
+ else {
+ qcOutChannel[ch]->sfbEnFacLd[sfb] = ( (nrgFacLd_34 + (psyOutChan->sfbEnergyLdData[sfb]>>1))>>1 ); /* sfbEnergy^(1/4) */
+ }
+ qcOutChannel[ch]->sfbEnFacLd[sfb] = fixMin(qcOutChannel[ch]->sfbEnFacLd[sfb],(FIXP_DBL)0);
+
+ }
+ } /* sfb loop */
+
+ adjThrStateElement->lastEnFacPatch[ch] = usePatch;
+ exePatchM = exePatch;
+ }
+ else {
+ /* !noShortWindowInFrame */
+ adjThrStateElement->chaosMeasureEnFac[ch] = FL2FXCONST_DBL(0.75f);
+ adjThrStateElement->lastEnFacPatch[ch] = TRUE; /* allow use of sfbEnFac patch in upcoming frame */
+ }
+
+ } /* ch loop */
+
+}
+
+
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_calcPe
+description: calculate pe for both channels
+*****************************************************************************/
+static
+void FDKaacEnc_calcPe(PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ QC_OUT_CHANNEL* qcOutChannel[(2)],
+ PE_DATA *peData,
+ const INT nChannels)
+{
+ INT ch;
+
+ peData->pe = peData->offset;
+ peData->constPart = 0;
+ peData->nActiveLines = 0;
+ for(ch=0; ch<nChannels; ch++) {
+ PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
+ FDKaacEnc_calcSfbPe(&peData->peChannelData[ch],
+ qcOutChannel[ch]->sfbWeightedEnergyLdData,
+ qcOutChannel[ch]->sfbThresholdLdData,
+ psyOutChannel[ch]->sfbCnt,
+ psyOutChannel[ch]->sfbPerGroup,
+ psyOutChannel[ch]->maxSfbPerGroup,
+ psyOutChannel[ch]->isBook,
+ psyOutChannel[ch]->isScale);
+
+ peData->pe += peChanData->pe;
+ peData->constPart += peChanData->constPart;
+ peData->nActiveLines += peChanData->nActiveLines;
+ }
+}
+
+void FDKaacEnc_peCalculation(PE_DATA *peData,
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ QC_OUT_CHANNEL* qcOutChannel[(2)],
+ struct TOOLSINFO *toolsInfo,
+ ATS_ELEMENT* adjThrStateElement,
+ const INT nChannels)
+{
+ /* constants that will not change during successive pe calculations */
+ FDKaacEnc_preparePe(peData, psyOutChannel, qcOutChannel, nChannels, adjThrStateElement->peOffset);
+
+ /* calculate weighting factor for threshold adjustment */
+ FDKaacEnc_calcWeighting(peData, psyOutChannel, qcOutChannel, toolsInfo, adjThrStateElement, nChannels, 1);
+{
+ /* no weighting of threholds and energies for mlout */
+ /* weight energies and thresholds */
+ int ch;
+ for (ch=0; ch<nChannels; ch++) {
+
+ int sfb, sfbGrp;
+ QC_OUT_CHANNEL* pQcOutCh = qcOutChannel[ch];
+
+ for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ pQcOutCh->sfbWeightedEnergyLdData[sfb+sfbGrp] = pQcOutCh->sfbEnergyLdData[sfb+sfbGrp] - pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
+ pQcOutCh->sfbThresholdLdData[sfb+sfbGrp] -= pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
+ }
+ }
+ }
+}
+
+ /* pe without reduction */
+ FDKaacEnc_calcPe(psyOutChannel, qcOutChannel, peData, nChannels);
+}
+
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_FDKaacEnc_calcPeNoAH
+description: sum the pe data only for bands where avoid hole is inactive
+*****************************************************************************/
+static void FDKaacEnc_FDKaacEnc_calcPeNoAH(INT *pe,
+ INT *constPart,
+ INT *nActiveLines,
+ PE_DATA *peData,
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ const INT nChannels)
+{
+ INT ch, sfb,sfbGrp;
+
+ INT pe_tmp = peData->offset;
+ INT constPart_tmp = 0;
+ INT nActiveLines_tmp = 0;
+ for(ch=0; ch<nChannels; ch++) {
+ PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
+ for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ if(ahFlag[ch][sfbGrp+sfb] < AH_ACTIVE) {
+ pe_tmp += peChanData->sfbPe[sfbGrp+sfb];
+ constPart_tmp += peChanData->sfbConstPart[sfbGrp+sfb];
+ nActiveLines_tmp += peChanData->sfbNActiveLines[sfbGrp+sfb];
+ }
+ }
+ }
+ }
+ /* correct scaled pe and constPart values */
+ *pe = pe_tmp >> PE_CONSTPART_SHIFT;
+ *constPart = constPart_tmp >> PE_CONSTPART_SHIFT;
+
+ *nActiveLines = nActiveLines_tmp;
+}
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_reduceThresholdsCBR
+description: apply reduction formula
+*****************************************************************************/
+static const FIXP_DBL limitThrReducedLdData = (FIXP_DBL)0x00008000; /*FL2FXCONST_DBL(FDKpow(2.0,-LD_DATA_SCALING/4.0));*/
+
+static void FDKaacEnc_reduceThresholdsCBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
+ const INT nChannels,
+ const FIXP_DBL redVal,
+ const SCHAR redValScaling)
+{
+ INT ch, sfb, sfbGrp;
+ FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
+ FIXP_DBL sfbThrExp;
+
+ for(ch=0; ch<nChannels; ch++) {
+ QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
+ for(sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb];
+ sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp+sfb];
+ sfbThrExp = thrExp[ch][sfbGrp+sfb];
+ if ((sfbEnLdData > sfbThrLdData) && (ahFlag[ch][sfbGrp+sfb] != AH_ACTIVE)) {
+
+ /* threshold reduction formula:
+ float tmp = thrExp[ch][sfb]+redVal;
+ tmp *= tmp;
+ sfbThrReduced = tmp*tmp;
+ */
+ int minScale = fixMin(CountLeadingBits(sfbThrExp), CountLeadingBits(redVal) - (DFRACT_BITS-1-redValScaling) )-1;
+
+ /* 4*log( sfbThrExp + redVal ) */
+ sfbThrReducedLdData = CalcLdData(fAbs(scaleValue(sfbThrExp, minScale) + scaleValue(redVal,(DFRACT_BITS-1-redValScaling)+minScale)))
+ - (FIXP_DBL)(minScale<<(DFRACT_BITS-1-LD_DATA_SHIFT));
+ sfbThrReducedLdData <<= 2;
+
+ /* avoid holes */
+ if ( ((sfbThrReducedLdData - sfbEnLdData) > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] )
+ && (ahFlag[ch][sfbGrp+sfb] != NO_AH) )
+ {
+ if (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > (FL2FXCONST_DBL(-1.0f) - sfbEnLdData) ){
+ sfbThrReducedLdData = fixMax((qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData), sfbThrLdData);
+ }
+ else sfbThrReducedLdData = sfbThrLdData;
+ ahFlag[ch][sfbGrp+sfb] = AH_ACTIVE;
+ }
+
+ /* minimum of 29 dB Ratio for Thresholds */
+ if ((sfbEnLdData+(FIXP_DBL)MAXVAL_DBL) > FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)){
+ sfbThrReducedLdData = fixMax(sfbThrReducedLdData, (sfbEnLdData - FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)));
+ }
+
+ qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
+ }
+ }
+ }
+ }
+}
+
+/* similar to prepareSfbPe1() */
+static FIXP_DBL FDKaacEnc_calcChaosMeasure(PSY_OUT_CHANNEL *psyOutChannel,
+ const FIXP_DBL *sfbFormFactorLdData)
+{
+ #define SCALE_FORM_FAC (4) /* (SCALE_FORM_FAC+FORM_FAC_SHIFT) >= ld(FRAME_LENGTH)*/
+ #define SCALE_NRGS (8)
+ #define SCALE_NLINES (16)
+ #define SCALE_NRGS_SQRT4 (2) /* 0.25 * SCALE_NRGS */
+ #define SCALE_NLINES_P34 (12) /* 0.75 * SCALE_NLINES */
+
+ INT sfbGrp, sfb;
+ FIXP_DBL chaosMeasure;
+ INT frameNLines = 0;
+ FIXP_DBL frameFormFactor = FL2FXCONST_DBL(0.f);
+ FIXP_DBL frameEnergy = FL2FXCONST_DBL(0.f);
+
+ for (sfbGrp=0; sfbGrp<psyOutChannel->sfbCnt; sfbGrp+=psyOutChannel->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChannel->maxSfbPerGroup; sfb++){
+ if (psyOutChannel->sfbEnergyLdData[sfbGrp+sfb] > psyOutChannel->sfbThresholdLdData[sfbGrp+sfb]) {
+ frameFormFactor += (CalcInvLdData(sfbFormFactorLdData[sfbGrp+sfb])>>SCALE_FORM_FAC);
+ frameNLines += (psyOutChannel->sfbOffsets[sfbGrp+sfb+1] - psyOutChannel->sfbOffsets[sfbGrp+sfb]);
+ frameEnergy += (psyOutChannel->sfbEnergy[sfbGrp+sfb]>>SCALE_NRGS);
+ }
+ }
+ }
+
+ if(frameNLines > 0){
+
+ /* frameNActiveLines = frameFormFactor*2^FORM_FAC_SHIFT * ((frameEnergy *2^SCALE_NRGS)/frameNLines)^-0.25
+ chaosMeasure = frameNActiveLines / frameNLines */
+ chaosMeasure =
+ CalcInvLdData( (((CalcLdData(frameFormFactor)>>1) -
+ (CalcLdData(frameEnergy)>>(2+1))) -
+ (fMultDiv2(FL2FXCONST_DBL(0.75f),CalcLdData((FIXP_DBL)frameNLines<<(DFRACT_BITS-1-SCALE_NLINES))) -
+ (((FIXP_DBL)(SCALE_FORM_FAC-SCALE_NRGS_SQRT4+FORM_FAC_SHIFT-(SCALE_NLINES_P34))<<(DFRACT_BITS-1-LD_DATA_SHIFT))>>1))
+ )<<1 );
+ } else {
+
+ /* assuming total chaos, if no sfb is above thresholds */
+ chaosMeasure = FL2FXCONST_DBL(1.f);
+ }
+
+ return chaosMeasure;
+}
+
+
+/* apply reduction formula for VBR-mode */
+static void FDKaacEnc_reduceThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
+ const INT nChannels,
+ const FIXP_DBL vbrQualFactor,
+ FIXP_DBL* chaosMeasureOld)
+{
+ INT ch, sfbGrp, sfb;
+ FIXP_DBL chGroupEnergy[TRANS_FAC][2];/*energy for each group and channel*/
+ FIXP_DBL chChaosMeasure[2];
+ FIXP_DBL frameEnergy = FL2FXCONST_DBL(1e-10f);
+ FIXP_DBL chaosMeasure = FL2FXCONST_DBL(0.f);
+ FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrExp;
+ FIXP_DBL sfbThrReducedLdData;
+ FIXP_DBL chaosMeasureAvg;
+ INT groupCnt; /* loop counter */
+ FIXP_DBL redVal[TRANS_FAC]; /* reduction values; in short-block case one redVal for each group */
+ QC_OUT_CHANNEL *qcOutChan = NULL;
+ PSY_OUT_CHANNEL *psyOutChan = NULL;
+
+#define SCALE_GROUP_ENERGY (8)
+
+#define CONST_CHAOS_MEAS_AVG_FAC_0 (FL2FXCONST_DBL(0.25f))
+#define CONST_CHAOS_MEAS_AVG_FAC_1 (FL2FXCONST_DBL(1.f-0.25f))
+
+#define MIN_LDTHRESH (FL2FXCONST_DBL(-0.515625f))
+
+
+ for(ch=0; ch<nChannels; ch++){
+ qcOutChan = qcOutChannel[ch];
+ psyOutChan = psyOutChannel[ch];
+
+ /* adding up energy for each channel and each group separately */
+ FIXP_DBL chEnergy = FL2FXCONST_DBL(0.f);
+ groupCnt=0;
+
+ for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup, groupCnt++) {
+ chGroupEnergy[groupCnt][ch] = FL2FXCONST_DBL(0.f);
+ for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++){
+ chGroupEnergy[groupCnt][ch] += (psyOutChan->sfbEnergy[sfbGrp+sfb]>>SCALE_GROUP_ENERGY);
+ }
+ chEnergy += chGroupEnergy[groupCnt][ch];
+ }
+ frameEnergy += chEnergy;
+
+ /* chaosMeasure */
+ if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) {
+ chChaosMeasure[ch] = FL2FXCONST_DBL(0.5f); /* assume a constant chaos measure of 0.5f for short blocks */
+ } else {
+ chChaosMeasure[ch] = FDKaacEnc_calcChaosMeasure(psyOutChannel[ch], qcOutChannel[ch]->sfbFormFactorLdData);
+ }
+ chaosMeasure += fMult(chChaosMeasure[ch], chEnergy);
+ }
+
+ if(frameEnergy > chaosMeasure) {
+ INT scale = CntLeadingZeros(frameEnergy) - 1;
+ FIXP_DBL num = chaosMeasure<<scale;
+ FIXP_DBL denum = frameEnergy<<scale;
+ chaosMeasure = schur_div(num,denum,16);
+ }
+ else {
+ chaosMeasure = FL2FXCONST_DBL(1.f);
+ }
+
+ chaosMeasureAvg = fMult(CONST_CHAOS_MEAS_AVG_FAC_0, chaosMeasure) +
+ fMult(CONST_CHAOS_MEAS_AVG_FAC_1, *chaosMeasureOld); /* averaging chaos measure */
+ *chaosMeasureOld = chaosMeasure = (fixMin(chaosMeasure, chaosMeasureAvg)); /* use min-value, safe for next frame */
+
+ /* characteristic curve
+ chaosMeasure = 0.2f + 0.7f/0.3f * (chaosMeasure - 0.2f);
+ chaosMeasure = fixMin(1.0f, fixMax(0.1f, chaosMeasure));
+ constants scaled by 4.f
+ */
+ chaosMeasure = ((FL2FXCONST_DBL(0.2f)>>2) + fMult(FL2FXCONST_DBL(0.7f/(4.f*0.3f)), (chaosMeasure - FL2FXCONST_DBL(0.2f))));
+ chaosMeasure = (fixMin((FIXP_DBL)(FL2FXCONST_DBL(1.0f)>>2), fixMax((FIXP_DBL)(FL2FXCONST_DBL(0.1f)>>2), chaosMeasure)))<<2;
+
+ /* calculation of reduction value */
+ if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW){ /* short-blocks */
+ FDK_ASSERT(TRANS_FAC==8);
+ #define WIN_TYPE_SCALE (3)
+
+ INT sfbGrp, groupCnt=0;
+ for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup,groupCnt++) {
+
+ FIXP_DBL groupEnergy = FL2FXCONST_DBL(0.f);
+
+ for(ch=0;ch<nChannels;ch++){
+ groupEnergy += chGroupEnergy[groupCnt][ch]; /* adding up the channels groupEnergy */
+ }
+
+ FDK_ASSERT(psyOutChannel[0]->groupLen[groupCnt]<=INV_INT_TAB_SIZE);
+ groupEnergy = fMult(groupEnergy,invInt[psyOutChannel[0]->groupLen[groupCnt]]); /* correction of group energy */
+ groupEnergy = fixMin(groupEnergy, frameEnergy>>WIN_TYPE_SCALE); /* do not allow an higher redVal as calculated framewise */
+
+ groupEnergy>>=2; /* 2*WIN_TYPE_SCALE = 6 => 6+2 = 8 ==> 8/4 = int number */
+
+ redVal[groupCnt] = fMult(fMult(vbrQualFactor,chaosMeasure),
+ CalcInvLdData(CalcLdData(groupEnergy)>>2) )
+ << (int)( ( 2 + (2*WIN_TYPE_SCALE) + SCALE_GROUP_ENERGY )>>2 ) ;
+
+ }
+ } else { /* long-block */
+
+ redVal[0] = fMult( fMult(vbrQualFactor,chaosMeasure),
+ CalcInvLdData(CalcLdData(frameEnergy)>>2) )
+ << (int)( SCALE_GROUP_ENERGY>>2 ) ;
+ }
+
+ for(ch=0; ch<nChannels; ch++) {
+ qcOutChan = qcOutChannel[ch];
+ psyOutChan = psyOutChannel[ch];
+
+ for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++){
+
+ sfbEnLdData = (qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb]);
+ sfbThrLdData = (qcOutChan->sfbThresholdLdData[sfbGrp+sfb]);
+ sfbThrExp = thrExp[ch][sfbGrp+sfb];
+
+ if ( (sfbThrLdData>=MIN_LDTHRESH) && (sfbEnLdData > sfbThrLdData) && (ahFlag[ch][sfbGrp+sfb] != AH_ACTIVE)) {
+
+ /* Short-Window */
+ if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
+ const int groupNumber = (int) sfb/psyOutChan->sfbPerGroup;
+
+ FDK_ASSERT(INV_SQRT4_TAB_SIZE>psyOutChan->groupLen[groupNumber]);
+
+ sfbThrExp = fMult(sfbThrExp, fMult( FL2FXCONST_DBL(2.82f/4.f), invSqrt4[psyOutChan->groupLen[groupNumber]]))<<2 ;
+
+ if ( sfbThrExp <= (limitThrReducedLdData-redVal[groupNumber]) ) {
+ sfbThrReducedLdData = FL2FXCONST_DBL(-1.0f);
+ }
+ else {
+ if ((FIXP_DBL)redVal[groupNumber] >= FL2FXCONST_DBL(1.0f)-sfbThrExp)
+ sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
+ else {
+ /* threshold reduction formula */
+ sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[groupNumber]);
+ sfbThrReducedLdData <<= 2;
+ }
+ }
+ sfbThrReducedLdData += ( CalcLdInt(psyOutChan->groupLen[groupNumber]) -
+ ((FIXP_DBL)6<<(DFRACT_BITS-1-LD_DATA_SHIFT)) );
+ }
+
+ /* Long-Window */
+ else {
+ if ((FIXP_DBL)redVal[0] >= FL2FXCONST_DBL(1.0f)-sfbThrExp) {
+ sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
+ }
+ else {
+ /* threshold reduction formula */
+ sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[0]);
+ sfbThrReducedLdData <<= 2;
+ }
+ }
+
+ /* avoid holes */
+ if ( ((sfbThrReducedLdData - sfbEnLdData) > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] )
+ && (ahFlag[ch][sfbGrp+sfb] != NO_AH) )
+ {
+ if (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > (FL2FXCONST_DBL(-1.0f) - sfbEnLdData) ){
+ sfbThrReducedLdData = fixMax((qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData), sfbThrLdData);
+ }
+ else sfbThrReducedLdData = sfbThrLdData;
+ ahFlag[ch][sfbGrp+sfb] = AH_ACTIVE;
+ }
+
+ if (sfbThrReducedLdData<FL2FXCONST_DBL(-0.5f))
+ sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
+
+ /* minimum of 29 dB Ratio for Thresholds */
+ if ((sfbEnLdData+FL2FXCONST_DBL(1.0f)) > FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)){
+ sfbThrReducedLdData = fixMax(sfbThrReducedLdData, sfbEnLdData - FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING));
+ }
+
+ sfbThrReducedLdData = fixMax(MIN_LDTHRESH,sfbThrReducedLdData);
+
+ qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
+ }
+ }
+ }
+ }
+}
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_correctThresh
+description: if pe difference deltaPe between desired pe and real pe is small enough,
+the difference can be distributed among the scale factor bands.
+New thresholds can be derived from this pe-difference
+*****************************************************************************/
+static void FDKaacEnc_correctThresh(CHANNEL_MAPPING* cm,
+ QC_OUT_ELEMENT* qcElement[(6)],
+ PSY_OUT_ELEMENT* psyOutElement[(6)],
+ UCHAR ahFlag[(6)][(2)][MAX_GROUPED_SFB],
+ FIXP_DBL thrExp[(6)][(2)][MAX_GROUPED_SFB],
+ const FIXP_DBL redVal[(6)],
+ const SCHAR redValScaling[(6)],
+ const INT deltaPe,
+ const INT processElements,
+ const INT elementOffset)
+{
+ INT ch, sfb, sfbGrp;
+ QC_OUT_CHANNEL *qcOutChan;
+ PSY_OUT_CHANNEL *psyOutChan;
+ PE_CHANNEL_DATA *peChanData;
+ FIXP_DBL thrFactorLdData;
+ FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
+ FIXP_DBL *sfbPeFactorsLdData[(6)][(2)];
+ FIXP_DBL sfbNActiveLinesLdData[(2)][MAX_GROUPED_SFB];
+ INT normFactorInt;
+ FIXP_DBL normFactorLdData;
+
+ INT nElements = elementOffset+processElements;
+ INT elementId;
+
+ /* scratch is empty; use temporal memory from quantSpec in QC_OUT_CHANNEL */
+ for(elementId=elementOffset;elementId<nElements;elementId++) {
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+ SHORT* ptr = qcElement[elementId]->qcOutChannel[ch]->quantSpec;
+ sfbPeFactorsLdData[elementId][ch] = (FIXP_DBL*)ptr;
+ }
+ }
+
+ /* for each sfb calc relative factors for pe changes */
+ normFactorInt = 0;
+
+ for(elementId=elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+
+ qcOutChan = qcElement[elementId]->qcOutChannel[ch];
+ psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
+ peChanData = &qcElement[elementId]->peData.peChannelData[ch];
+
+ for(sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; sfbGrp+= psyOutChan->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
+
+ if ( peChanData->sfbNActiveLines[sfbGrp+sfb] == 0 ) {
+ sfbNActiveLinesLdData[ch][sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
+ }
+ else {
+ /* Both CalcLdInt and CalcLdData can be used!
+ * No offset has to be subtracted, because sfbNActiveLinesLdData
+ * is shorted while thrFactor calculation */
+ sfbNActiveLinesLdData[ch][sfbGrp+sfb] = CalcLdInt(peChanData->sfbNActiveLines[sfbGrp+sfb]);
+ }
+ if ( ((ahFlag[elementId][ch][sfbGrp+sfb] < AH_ACTIVE) || (deltaPe > 0)) &&
+ peChanData->sfbNActiveLines[sfbGrp+sfb] != 0 )
+ {
+ if (thrExp[elementId][ch][sfbGrp+sfb] > -redVal[elementId]) {
+
+ /* sfbPeFactors[ch][sfbGrp+sfb] = peChanData->sfbNActiveLines[sfbGrp+sfb] /
+ (thrExp[elementId][ch][sfbGrp+sfb] + redVal[elementId]); */
+
+ int minScale = fixMin(CountLeadingBits(thrExp[elementId][ch][sfbGrp+sfb]), CountLeadingBits(redVal[elementId]) - (DFRACT_BITS-1-redValScaling[elementId]) ) - 1;
+
+ /* sumld = ld64( sfbThrExp + redVal ) */
+ FIXP_DBL sumLd = CalcLdData(scaleValue(thrExp[elementId][ch][sfbGrp+sfb], minScale) + scaleValue(redVal[elementId], (DFRACT_BITS-1-redValScaling[elementId])+minScale))
+ - (FIXP_DBL)(minScale<<(DFRACT_BITS-1-LD_DATA_SHIFT));
+
+ if (sumLd < FL2FXCONST_DBL(0.f)) {
+ sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[ch][sfbGrp+sfb] - sumLd;
+ }
+ else {
+ if ( sfbNActiveLinesLdData[ch][sfbGrp+sfb] > (FL2FXCONST_DBL(-1.f) + sumLd) ) {
+ sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[ch][sfbGrp+sfb] - sumLd;
+ }
+ else {
+ sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[ch][sfbGrp+sfb];
+ }
+ }
+
+ normFactorInt += (INT)CalcInvLdData(sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb]);
+ }
+ else sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(1.0f);
+ }
+ else sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
+ }
+ }
+ }
+ }
+ }
+
+ /* normFactorLdData = ld64(deltaPe/normFactorInt) */
+ normFactorLdData = CalcLdData((FIXP_DBL)((deltaPe<0) ? (-deltaPe) : (deltaPe))) - CalcLdData((FIXP_DBL)normFactorInt);
+
+ /* distribute the pe difference to the scalefactors
+ and calculate the according thresholds */
+ for(elementId=elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+ qcOutChan = qcElement[elementId]->qcOutChannel[ch];
+ psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
+ peChanData = &qcElement[elementId]->peData.peChannelData[ch];
+
+ for(sfbGrp = 0;sfbGrp < psyOutChan->sfbCnt;sfbGrp+= psyOutChan->sfbPerGroup){
+ for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
+
+ if (peChanData->sfbNActiveLines[sfbGrp+sfb] > 0) {
+
+ /* pe difference for this sfb */
+ if ( (sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb]==FL2FXCONST_DBL(-1.0f)) ||
+ (deltaPe==0) )
+ {
+ thrFactorLdData = FL2FXCONST_DBL(0.f);
+ }
+ else {
+ /* new threshold */
+ FIXP_DBL tmp = CalcInvLdData(sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] + normFactorLdData - sfbNActiveLinesLdData[ch][sfbGrp+sfb] - FL2FXCONST_DBL((float)LD_DATA_SHIFT/LD_DATA_SCALING));
+
+ /* limit thrFactor to 60dB */
+ tmp = (deltaPe<0) ? tmp : (-tmp);
+ thrFactorLdData = FDKmin(tmp, FL2FXCONST_DBL(20.f/LD_DATA_SCALING));
+ }
+
+ /* new threshold */
+ sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp+sfb];
+ sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb];
+
+ if (thrFactorLdData < FL2FXCONST_DBL(0.f)) {
+ if( sfbThrLdData > (FL2FXCONST_DBL(-1.f)-thrFactorLdData) ) {
+ sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
+ }
+ else {
+ sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
+ }
+ }
+ else{
+ sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
+ }
+
+ /* avoid hole */
+ if ( (sfbThrReducedLdData - sfbEnLdData > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]) &&
+ (ahFlag[elementId][ch][sfbGrp+sfb] == AH_INACTIVE) )
+ {
+ /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, sfbThr); */
+ if ( sfbEnLdData > (sfbThrLdData-qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]) ) {
+ sfbThrReducedLdData = qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData;
+ }
+ else {
+ sfbThrReducedLdData = sfbThrLdData;
+ }
+ ahFlag[elementId][ch][sfbGrp+sfb] = AH_ACTIVE;
+ }
+
+ qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+/*****************************************************************************
+ functionname: FDKaacEnc_reduceMinSnr
+ description: if the desired pe can not be reached, reduce pe by
+ reducing minSnr
+*****************************************************************************/
+void FDKaacEnc_reduceMinSnr(CHANNEL_MAPPING* cm,
+ QC_OUT_ELEMENT* qcElement[(6)],
+ PSY_OUT_ELEMENT* psyOutElement[(6)],
+ UCHAR ahFlag[(6)][(2)][MAX_GROUPED_SFB],
+ const INT desiredPe,
+ INT* redPeGlobal,
+ const INT processElements,
+ const INT elementOffset)
+
+{
+ INT elementId;
+ INT nElements = elementOffset+processElements;
+
+ INT newGlobalPe = *redPeGlobal;
+
+ for(elementId=elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ INT ch;
+ INT maxSfbPerGroup[2];
+ INT sfbCnt[2];
+ INT sfbPerGroup[2];
+
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+ maxSfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup-1;
+ sfbCnt[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
+ sfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup;
+ }
+
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ do
+ {
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+
+ INT sfb, sfbGrp;
+ QC_OUT_CHANNEL *qcOutChan = qcElement[elementId]->qcOutChannel[ch];
+ INT noReduction = 1;
+
+ if (maxSfbPerGroup[ch]>=0) { /* sfb in next channel */
+ INT deltaPe = 0;
+ sfb = maxSfbPerGroup[ch]--;
+ noReduction = 0;
+
+ for (sfbGrp = 0; sfbGrp < sfbCnt[ch]; sfbGrp += sfbPerGroup[ch]) {
+
+ if (ahFlag[elementId][ch][sfbGrp+sfb] != NO_AH &&
+ qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] < SnrLdFac)
+ {
+ /* increase threshold to new minSnr of 1dB */
+ qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] = SnrLdFac;
+
+ /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, sfbThr); */
+ if ( qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb] >= qcOutChan->sfbThresholdLdData[sfbGrp+sfb] - qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] ) {
+
+ qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb] + qcOutChan->sfbMinSnrLdData[sfbGrp+sfb];
+
+ /* calc new pe */
+ /* C2 + C3*ld(1/0.8) = 1.5 */
+ deltaPe -= (peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT);
+
+ /* sfbPe = 1.5 * sfbNLines */
+ peData->peChannelData[ch].sfbPe[sfbGrp+sfb] = (3*peData->peChannelData[ch].sfbNLines[sfbGrp+sfb]) << (PE_CONSTPART_SHIFT-1);
+ deltaPe += (peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT);
+ }
+ }
+
+ } /* sfbGrp loop */
+
+ peData->pe += deltaPe;
+ peData->peChannelData[ch].pe += deltaPe;
+ newGlobalPe += deltaPe;
+
+ /* stop if enough has been saved */
+ if (peData->pe <= desiredPe) {
+ goto bail;
+ }
+
+ } /* sfb > 0 */
+
+ if ( (ch==(cm->elInfo[elementId].nChannelsInEl-1)) && noReduction ) {
+ goto bail;
+ }
+
+ } /* ch loop */
+
+ } while ( peData->pe > desiredPe);
+
+ } /* != ID_DSE */
+ } /* element loop */
+
+
+bail:
+ /* update global PE */
+ *redPeGlobal = newGlobalPe;
+}
+
+
+/*****************************************************************************
+ functionname: FDKaacEnc_allowMoreHoles
+ description: if the desired pe can not be reached, some more scalefactor
+ bands have to be quantized to zero
+*****************************************************************************/
+static void FDKaacEnc_allowMoreHoles(CHANNEL_MAPPING* cm,
+ QC_OUT_ELEMENT* qcElement[(6)],
+ PSY_OUT_ELEMENT* psyOutElement[(6)],
+ ATS_ELEMENT* AdjThrStateElement[(6)],
+ UCHAR ahFlag[(6)][(2)][MAX_GROUPED_SFB],
+ const INT desiredPe,
+ const INT currentPe,
+ const int processElements,
+ const int elementOffset)
+{
+ INT elementId;
+ INT nElements = elementOffset+processElements;
+ INT actPe = currentPe;
+
+ if (actPe <= desiredPe) {
+ return; /* nothing to do */
+ }
+
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ INT ch, sfb, sfbGrp;
+
+ PE_DATA *peData = &qcElement[elementId]->peData;
+ const INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+
+ QC_OUT_CHANNEL* qcOutChannel[(2)] = {NULL};
+ PSY_OUT_CHANNEL* psyOutChannel[(2)] = {NULL};
+
+ for (ch=0; ch<nChannels; ch++) {
+
+ /* init pointers */
+ qcOutChannel[ch] = qcElement[elementId]->qcOutChannel[ch];
+ psyOutChannel[ch] = psyOutElement[elementId]->psyOutChannel[ch];
+
+ for(sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+= psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=psyOutChannel[ch]->maxSfbPerGroup; sfb<psyOutChannel[ch]->sfbPerGroup; sfb++) {
+ peData->peChannelData[ch].sfbPe[sfbGrp+sfb] = 0;
+ }
+ }
+ }
+
+ /* for MS allow hole in the channel with less energy */
+ if ( nChannels==2 && psyOutChannel[0]->lastWindowSequence==psyOutChannel[1]->lastWindowSequence ) {
+
+ for (sfb=0; sfb<psyOutChannel[0]->maxSfbPerGroup; sfb++) {
+ for(sfbGrp=0; sfbGrp < psyOutChannel[0]->sfbCnt; sfbGrp+=psyOutChannel[0]->sfbPerGroup) {
+ if (psyOutElement[elementId]->toolsInfo.msMask[sfbGrp+sfb]) {
+ FIXP_DBL EnergyLd_L = qcOutChannel[0]->sfbWeightedEnergyLdData[sfbGrp+sfb];
+ FIXP_DBL EnergyLd_R = qcOutChannel[1]->sfbWeightedEnergyLdData[sfbGrp+sfb];
+
+ /* allow hole in side channel ? */
+ if ( (ahFlag[elementId][1][sfbGrp+sfb] != NO_AH) &&
+ (((FL2FXCONST_DBL(-0.02065512648f)>>1) + (qcOutChannel[0]->sfbMinSnrLdData[sfbGrp+sfb]>>1))
+ > ((EnergyLd_R>>1) - (EnergyLd_L>>1))) )
+ {
+ ahFlag[elementId][1][sfbGrp+sfb] = NO_AH;
+ qcOutChannel[1]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + EnergyLd_R;
+ actPe -= peData->peChannelData[1].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
+ }
+ /* allow hole in mid channel ? */
+ else if ( (ahFlag[elementId][0][sfbGrp+sfb] != NO_AH) &&
+ (((FL2FXCONST_DBL(-0.02065512648f)>>1) + (qcOutChannel[1]->sfbMinSnrLdData[sfbGrp+sfb]>>1))
+ > ((EnergyLd_L>>1) - (EnergyLd_R>>1))) )
+ {
+ ahFlag[elementId][0][sfbGrp+sfb] = NO_AH;
+ qcOutChannel[0]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + EnergyLd_L;
+ actPe -= peData->peChannelData[0].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
+ } /* if (ahFlag) */
+ } /* if MS */
+ } /* sfbGrp */
+ if (actPe <= desiredPe) {
+ return; /* stop if enough has been saved */
+ }
+ } /* sfb */
+ } /* MS possible ? */
+
+ /* more holes necessary? subsequently erase bands
+ starting with low energies */
+ INT startSfb[2];
+ FIXP_DBL avgEnLD64,minEnLD64;
+ INT ahCnt;
+ FIXP_DBL ahCntLD64;
+ INT enIdx;
+ FIXP_DBL enLD64[4];
+ FIXP_DBL avgEn;
+
+ /* do not go below startSfb */
+ for (ch=0; ch<nChannels; ch++) {
+ if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW)
+ startSfb[ch] = AdjThrStateElement[elementId]->ahParam.startSfbL;
+ else
+ startSfb[ch] = AdjThrStateElement[elementId]->ahParam.startSfbS;
+ }
+
+ /* calc avg and min energies of bands that avoid holes */
+ avgEn = FL2FXCONST_DBL(0.0f);
+ minEnLD64 = FL2FXCONST_DBL(0.0f);
+ ahCnt = 0;
+
+ for (ch=0; ch<nChannels; ch++) {
+
+ sfbGrp=0;
+ sfb=startSfb[ch];
+
+ do {
+ for (; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ if ((ahFlag[elementId][ch][sfbGrp+sfb]!=NO_AH) &&
+ (qcOutChannel[ch]->sfbWeightedEnergyLdData[sfbGrp+sfb] > qcOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb])){
+ minEnLD64 = fixMin(minEnLD64,qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]);
+ avgEn += qcOutChannel[ch]->sfbEnergy[sfbGrp+sfb] >> 6;
+ ahCnt++;
+ }
+ }
+
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup;
+ sfb=0;
+
+ } while (sfbGrp < psyOutChannel[ch]->sfbCnt);
+ }
+
+ if ( (avgEn == FL2FXCONST_DBL(0.0f)) || (ahCnt == 0) ) {
+ avgEnLD64 = FL2FXCONST_DBL(0.0f);
+ }
+ else {
+ avgEnLD64 = CalcLdData(avgEn);
+ ahCntLD64 = CalcLdInt(ahCnt);
+ avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - ahCntLD64; /* compensate shift with 6 */
+ }
+
+ /* calc some energy borders between minEn and avgEn */
+ /* for (enIdx=0; enIdx<4; enIdx++) */
+ /* en[enIdx] = minEn * (float)FDKpow(avgEn/(minEn+FLT_MIN), (2*enIdx+1)/7.0f); */
+ enLD64[0] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.14285714285f));
+ enLD64[1] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.42857142857f));
+ enLD64[2] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.71428571428f));
+ enLD64[3] = minEnLD64 + (avgEnLD64-minEnLD64);
+
+ for (enIdx=0; enIdx<4; enIdx++) {
+ INT noReduction = 1;
+
+ INT maxSfbPerGroup[2];
+ INT sfbCnt[2];
+ INT sfbPerGroup[2];
+
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+ maxSfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup-1;
+ sfbCnt[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
+ sfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup;
+ }
+
+ do {
+
+ noReduction = 1;
+
+ for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+
+ INT sfb, sfbGrp;
+
+ /* start with lowest energy border at highest sfb */
+ if (maxSfbPerGroup[ch]>=startSfb[ch]) { /* sfb in next channel */
+ sfb = maxSfbPerGroup[ch]--;
+ noReduction = 0;
+
+ for (sfbGrp = 0; sfbGrp < sfbCnt[ch]; sfbGrp += sfbPerGroup[ch]) {
+ /* sfb energy below border ? */
+ if (ahFlag[elementId][ch][sfbGrp+sfb] != NO_AH && qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb] < enLD64[enIdx]) {
+ /* allow hole */
+ ahFlag[elementId][ch][sfbGrp+sfb] = NO_AH;
+ qcOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + qcOutChannel[ch]->sfbWeightedEnergyLdData[sfbGrp+sfb];
+ actPe -= peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
+ }
+ } /* sfbGrp */
+
+ if (actPe <= desiredPe) {
+ return; /* stop if enough has been saved */
+ }
+ } /* sfb > 0 */
+ } /* ch loop */
+
+ } while( (noReduction == 0) && (actPe > desiredPe) );
+
+ if (actPe <= desiredPe) {
+ return; /* stop if enough has been saved */
+ }
+
+ } /* enIdx loop */
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+}
+
+/* reset avoid hole flags from AH_ACTIVE to AH_INACTIVE */
+static void FDKaacEnc_resetAHFlags( UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ const int nChannels,
+ PSY_OUT_CHANNEL *psyOutChannel[(2)])
+{
+ int ch, sfb, sfbGrp;
+
+ for(ch=0; ch<nChannels; ch++) {
+ for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ if ( ahFlag[ch][sfbGrp+sfb] == AH_ACTIVE) {
+ ahFlag[ch][sfbGrp+sfb] = AH_INACTIVE;
+ }
+ }
+ }
+ }
+}
+
+
+static FIXP_DBL CalcRedValPower(FIXP_DBL num,
+ FIXP_DBL denum,
+ INT* scaling )
+{
+ FIXP_DBL value = FL2FXCONST_DBL(0.f);
+
+ if (num>=FL2FXCONST_DBL(0.f)) {
+ value = fDivNorm( num, denum, scaling);
+ }
+ else {
+ value = -fDivNorm( -num, denum, scaling);
+ }
+ value = f2Pow(value, *scaling, scaling);
+ *scaling = DFRACT_BITS-1-*scaling;
+
+ return value;
+}
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_adaptThresholdsToPe
+description: two guesses for the reduction value and one final correction of the thresholds
+*****************************************************************************/
+static void FDKaacEnc_adaptThresholdsToPe(CHANNEL_MAPPING* cm,
+ ATS_ELEMENT* AdjThrStateElement[(6)],
+ QC_OUT_ELEMENT* qcElement[(6)],
+ PSY_OUT_ELEMENT* psyOutElement[(6)],
+ const INT desiredPe,
+ const INT processElements,
+ const INT elementOffset)
+{
+ FIXP_DBL redValue[(6)];
+ SCHAR redValScaling[(6)];
+ UCHAR pAhFlag[(6)][(2)][MAX_GROUPED_SFB];
+ FIXP_DBL pThrExp[(6)][(2)][MAX_GROUPED_SFB];
+ int iter;
+
+ INT constPartGlobal, noRedPeGlobal, nActiveLinesGlobal, redPeGlobal;
+ constPartGlobal = noRedPeGlobal = nActiveLinesGlobal = redPeGlobal = 0;
+
+ int elementId;
+
+ int nElements = elementOffset+processElements;
+ if(nElements > cm->nElements) {
+ nElements = cm->nElements;
+ }
+
+ /* ------------------------------------------------------- */
+ /* Part I: Initialize data structures and variables... */
+ /* ------------------------------------------------------- */
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* thresholds to the power of redExp */
+ FDKaacEnc_calcThreshExp(pThrExp[elementId], qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, nChannels);
+
+ /* lower the minSnr requirements for low energies compared to the average
+ energy in this frame */
+ FDKaacEnc_adaptMinSnr(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, &AdjThrStateElement[elementId]->minSnrAdaptParam, nChannels);
+
+ /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
+ FDKaacEnc_initAvoidHoleFlag(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], &psyOutElement[elementId]->toolsInfo, nChannels, peData, &AdjThrStateElement[elementId]->ahParam);
+
+ /* sum up */
+ constPartGlobal += peData->constPart;
+ noRedPeGlobal += peData->pe;
+ nActiveLinesGlobal += fixMax((INT)peData->nActiveLines, 1);
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ /* ----------------------------------------------------------------------- */
+ /* Part II: Calculate bit consumption of initial bit constraints setup */
+ /* ----------------------------------------------------------------------- */
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ /*
+ redVal = ( 2 ^ ( (constPartGlobal-desiredPe) / (invRedExp*nActiveLinesGlobal) )
+ - 2 ^ ( (constPartGlobal-noRedPeGlobal) / (invRedExp*nActiveLinesGlobal) ) )
+ */
+
+
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* first guess of reduction value */
+ int scale0=0, scale1=0;
+ FIXP_DBL tmp0 = CalcRedValPower( constPartGlobal-desiredPe, 4*nActiveLinesGlobal, &scale0 );
+ FIXP_DBL tmp1 = CalcRedValPower( constPartGlobal-noRedPeGlobal, 4*nActiveLinesGlobal, &scale1 );
+
+ int scalMin = FDKmin(scale0, scale1)-1;
+
+ redValue[elementId] = scaleValue(tmp0,(scalMin-scale0)) - scaleValue(tmp1,(scalMin-scale1));
+ redValScaling[elementId] = scalMin;
+
+ /* reduce thresholds */
+ FDKaacEnc_reduceThresholdsCBR(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], pThrExp[elementId], nChannels, redValue[elementId], redValScaling[elementId]);
+
+ /* pe after first guess */
+ FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
+
+ redPeGlobal += peData->pe;
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ /* -------------------------------------------------- */
+ /* Part III: Iterate until bit constraints are met */
+ /* -------------------------------------------------- */
+ iter = 0;
+ while ((fixp_abs(redPeGlobal - desiredPe) > fMultI(FL2FXCONST_DBL(0.05f),desiredPe)) && (iter < 1)) {
+
+ INT desiredPeNoAHGlobal;
+ INT redPeNoAHGlobal = 0;
+ INT constPartNoAHGlobal = 0;
+ INT nActiveLinesNoAHGlobal = 0;
+
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ INT redPeNoAH, constPartNoAH, nActiveLinesNoAH;
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* pe for bands where avoid hole is inactive */
+ FDKaacEnc_FDKaacEnc_calcPeNoAH(&redPeNoAH, &constPartNoAH, &nActiveLinesNoAH,
+ peData, pAhFlag[elementId], psyOutElement[elementId]->psyOutChannel, nChannels);
+
+ redPeNoAHGlobal += redPeNoAH;
+ constPartNoAHGlobal += constPartNoAH;
+ nActiveLinesNoAHGlobal += nActiveLinesNoAH;
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ /* Calculate new redVal ... */
+ if(desiredPe < redPeGlobal) {
+
+ /* new desired pe without bands where avoid hole is active */
+ desiredPeNoAHGlobal = desiredPe - (redPeGlobal - redPeNoAHGlobal);
+
+ /* limit desiredPeNoAH to positive values, as the PE can not become negative */
+ desiredPeNoAHGlobal = FDKmax(0,desiredPeNoAHGlobal);
+
+ /* second guess (only if there are bands left where avoid hole is inactive)*/
+ if (nActiveLinesNoAHGlobal > 0) {
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ /*
+ redVal += ( 2 ^ ( (constPartNoAHGlobal-desiredPeNoAHGlobal) / (invRedExp*nActiveLinesNoAHGlobal) )
+ - 2 ^ ( (constPartNoAHGlobal-redPeNoAHGlobal) / (invRedExp*nActiveLinesNoAHGlobal) ) )
+ */
+ int scale0 = 0;
+ int scale1 = 0;
+
+ FIXP_DBL tmp0 = CalcRedValPower( constPartNoAHGlobal-desiredPeNoAHGlobal, 4*nActiveLinesNoAHGlobal, &scale0 );
+ FIXP_DBL tmp1 = CalcRedValPower( constPartNoAHGlobal-redPeNoAHGlobal, 4*nActiveLinesNoAHGlobal, &scale1 );
+
+ int scalMin = FDKmin(scale0, scale1)-1;
+
+ tmp0 = scaleValue(tmp0,(scalMin-scale0)) - scaleValue(tmp1,(scalMin-scale1));
+ scale0 = scalMin;
+
+ /* old reduction value */
+ tmp1 = redValue[elementId];
+ scale1 = redValScaling[elementId];
+
+ scalMin = fixMin(scale0,scale1)-1;
+
+ /* sum up old and new reduction value */
+ redValue[elementId] = scaleValue(tmp0,(scalMin-scale0)) + scaleValue(tmp1,(scalMin-scale1));
+ redValScaling[elementId] = scalMin;
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+ } /* nActiveLinesNoAHGlobal > 0 */
+ }
+ else {
+ /* desiredPe >= redPeGlobal */
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ INT redVal_scale = 0;
+ FIXP_DBL tmp = fDivNorm((FIXP_DBL)redPeGlobal, (FIXP_DBL)desiredPe, &redVal_scale);
+
+ /* redVal *= redPeGlobal/desiredPe; */
+ redValue[elementId] = fMult(redValue[elementId], tmp);
+ redValScaling[elementId] -= redVal_scale;
+
+ FDKaacEnc_resetAHFlags(pAhFlag[elementId], cm->elInfo[elementId].nChannelsInEl, psyOutElement[elementId]->psyOutChannel);
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+ }
+
+ redPeGlobal = 0;
+ /* Calculate new redVal's PE... */
+ for (elementId = elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* reduce thresholds */
+ FDKaacEnc_reduceThresholdsCBR(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], pThrExp[elementId], nChannels, redValue[elementId], redValScaling[elementId]);
+
+ /* pe after second guess */
+ FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
+ redPeGlobal += peData->pe;
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ iter++;
+ } /* EOF while */
+
+
+ /* ------------------------------------------------------- */
+ /* Part IV: if still required, further reduce constraints */
+ /* ------------------------------------------------------- */
+ /* 1.0* 1.15* 1.20*
+ * desiredPe desiredPe desiredPe
+ * | | |
+ * ...XXXXXXXXXXXXXXXXXXXXXXXXXXX| |
+ * | | |XXXXXXXXXXX...
+ * | |XXXXXXXXXXX|
+ * --- A --- | --- B --- | --- C ---
+ *
+ * (X): redPeGlobal
+ * (A): FDKaacEnc_correctThresh()
+ * (B): FDKaacEnc_allowMoreHoles()
+ * (C): FDKaacEnc_reduceMinSnr()
+ */
+
+ /* correct thresholds to get closer to the desired pe */
+ if ( redPeGlobal > desiredPe ) {
+ FDKaacEnc_correctThresh(cm, qcElement, psyOutElement, pAhFlag, pThrExp, redValue, redValScaling,
+ desiredPe - redPeGlobal, processElements, elementOffset);
+
+ /* update PE */
+ redPeGlobal = 0;
+ for(elementId=elementOffset;elementId<nElements;elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* pe after correctThresh */
+ FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
+ redPeGlobal += peData->pe;
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+ }
+
+ if ( redPeGlobal > desiredPe ) {
+ /* reduce pe by reducing minSnr requirements */
+ FDKaacEnc_reduceMinSnr(cm, qcElement, psyOutElement, pAhFlag,
+ (fMultI(FL2FXCONST_DBL(0.15f),desiredPe) + desiredPe),
+ &redPeGlobal, processElements, elementOffset);
+
+ /* reduce pe by allowing additional spectral holes */
+ FDKaacEnc_allowMoreHoles(cm, qcElement, psyOutElement, AdjThrStateElement, pAhFlag,
+ desiredPe, redPeGlobal, processElements, elementOffset);
+ }
+
+}
+
+
+/* similar to FDKaacEnc_adaptThresholdsToPe(), for VBR-mode */
+void FDKaacEnc_AdaptThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
+ PSY_OUT_CHANNEL* psyOutChannel[(2)],
+ ATS_ELEMENT* AdjThrStateElement,
+ struct TOOLSINFO *toolsInfo,
+ PE_DATA *peData,
+ const INT nChannels)
+{
+ UCHAR pAhFlag[(2)][MAX_GROUPED_SFB];
+ FIXP_DBL pThrExp[(2)][MAX_GROUPED_SFB];
+
+ /* thresholds to the power of redExp */
+ FDKaacEnc_calcThreshExp(pThrExp, qcOutChannel, psyOutChannel, nChannels);
+
+ /* lower the minSnr requirements for low energies compared to the average
+ energy in this frame */
+ FDKaacEnc_adaptMinSnr(qcOutChannel, psyOutChannel, &AdjThrStateElement->minSnrAdaptParam, nChannels);
+
+ /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
+ FDKaacEnc_initAvoidHoleFlag(qcOutChannel, psyOutChannel, pAhFlag, toolsInfo,
+ nChannels, peData, &AdjThrStateElement->ahParam);
+
+ /* reduce thresholds */
+ FDKaacEnc_reduceThresholdsVBR(qcOutChannel, psyOutChannel, pAhFlag, pThrExp, nChannels,
+ AdjThrStateElement->vbrQualFactor,
+ &AdjThrStateElement->chaosMeasureOld);
+
+}
+
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_calcBitSave
+ description: Calculates percentage of bit save, see figure below
+ returns:
+ input: parameters and bitres-fullness
+ output: percentage of bit save
+
+*****************************************************************************/
+/*
+ bitsave
+ maxBitSave(%)| clipLow
+ |---\
+ | \
+ | \
+ | \
+ | \
+ |--------\--------------> bitres
+ | \
+ minBitSave(%)| \------------
+ clipHigh maxBitres
+*/
+static FIXP_DBL FDKaacEnc_calcBitSave(FIXP_DBL fillLevel,
+ const FIXP_DBL clipLow,
+ const FIXP_DBL clipHigh,
+ const FIXP_DBL minBitSave,
+ const FIXP_DBL maxBitSave,
+ const FIXP_DBL bitsave_slope)
+{
+ FIXP_DBL bitsave;
+
+ fillLevel = fixMax(fillLevel, clipLow);
+ fillLevel = fixMin(fillLevel, clipHigh);
+
+ bitsave = maxBitSave - fMult((fillLevel-clipLow), bitsave_slope);
+
+ return (bitsave);
+}
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_calcBitSpend
+ description: Calculates percentage of bit spend, see figure below
+ returns:
+ input: parameters and bitres-fullness
+ output: percentage of bit spend
+
+*****************************************************************************/
+/*
+ bitspend clipHigh
+ maxBitSpend(%)| /-----------maxBitres
+ | /
+ | /
+ | /
+ | /
+ | /
+ |----/-----------------> bitres
+ | /
+ minBitSpend(%)|--/
+ clipLow
+*/
+static FIXP_DBL FDKaacEnc_calcBitSpend(FIXP_DBL fillLevel,
+ const FIXP_DBL clipLow,
+ const FIXP_DBL clipHigh,
+ const FIXP_DBL minBitSpend,
+ const FIXP_DBL maxBitSpend,
+ const FIXP_DBL bitspend_slope)
+{
+ FIXP_DBL bitspend;
+
+ fillLevel = fixMax(fillLevel, clipLow);
+ fillLevel = fixMin(fillLevel, clipHigh);
+
+ bitspend = minBitSpend + fMult(fillLevel-clipLow, bitspend_slope);
+
+ return (bitspend);
+}
+
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_adjustPeMinMax()
+ description: adjusts peMin and peMax parameters over time
+ returns:
+ input: current pe, peMin, peMax, bitres size
+ output: adjusted peMin/peMax
+
+*****************************************************************************/
+static void FDKaacEnc_adjustPeMinMax(const INT currPe,
+ INT *peMin,
+ INT *peMax)
+{
+ FIXP_DBL minFacHi = FL2FXCONST_DBL(0.3f), maxFacHi = (FIXP_DBL)MAXVAL_DBL, minFacLo = FL2FXCONST_DBL(0.14f), maxFacLo = FL2FXCONST_DBL(0.07f);
+ INT diff;
+
+ INT minDiff_fix = fMultI(FL2FXCONST_DBL(0.1666666667f), currPe);
+
+ if (currPe > *peMax)
+ {
+ diff = (currPe-*peMax) ;
+ *peMin += fMultI(minFacHi,diff);
+ *peMax += fMultI(maxFacHi,diff);
+ }
+ else if (currPe < *peMin)
+ {
+ diff = (*peMin-currPe) ;
+ *peMin -= fMultI(minFacLo,diff);
+ *peMax -= fMultI(maxFacLo,diff);
+ }
+ else
+ {
+ *peMin += fMultI(minFacHi, (currPe - *peMin));
+ *peMax -= fMultI(maxFacLo, (*peMax - currPe));
+ }
+
+ if ((*peMax - *peMin) < minDiff_fix)
+ {
+ INT peMax_fix = *peMax, peMin_fix = *peMin;
+ FIXP_DBL partLo_fix, partHi_fix;
+
+ partLo_fix = (FIXP_DBL)fixMax(0, currPe - peMin_fix);
+ partHi_fix = (FIXP_DBL)fixMax(0, peMax_fix - currPe);
+
+ peMax_fix = (INT)(currPe + fMultI(fDivNorm(partHi_fix, (partLo_fix+partHi_fix)), minDiff_fix));
+ peMin_fix = (INT)(currPe - fMultI(fDivNorm(partLo_fix, (partLo_fix+partHi_fix)), minDiff_fix));
+ peMin_fix = fixMax(0, peMin_fix);
+
+ *peMax = peMax_fix;
+ *peMin = peMin_fix;
+ }
+}
+
+
+
+/*****************************************************************************
+
+ functionname: BitresCalcBitFac
+ description: calculates factor of spending bits for one frame
+ 1.0 : take all frame dynpart bits
+ >1.0 : take all frame dynpart bits + bitres
+ <1.0 : put bits in bitreservoir
+ returns: BitFac
+ input: bitres-fullness, pe, blockType, parameter-settings
+ output:
+
+*****************************************************************************/
+/*
+ bitfac(%) pemax
+ bitspend(%) | /-----------maxBitres
+ | /
+ | /
+ | /
+ | /
+ | /
+ |----/-----------------> pe
+ | /
+ bitsave(%) |--/
+ pemin
+*/
+
+static FIXP_DBL FDKaacEnc_bitresCalcBitFac(const INT bitresBits,
+ const INT maxBitresBits,
+ const INT pe,
+ const INT lastWindowSequence,
+ const INT avgBits,
+ const FIXP_DBL maxBitFac,
+ ADJ_THR_STATE *AdjThr,
+ ATS_ELEMENT *adjThrChan)
+{
+ BRES_PARAM *bresParam;
+ INT pex;
+
+ INT qmin, qbr, qbres, qmbr;
+ FIXP_DBL bitSave, bitSpend;
+
+ FIXP_DBL bitresFac_fix, tmp_cst, tmp_fix;
+ FIXP_DBL pe_pers, bits_ratio, maxBrVal;
+ FIXP_DBL bitsave_slope, bitspend_slope, maxBitFac_tmp;
+ FIXP_DBL fillLevel_fix = (FIXP_DBL)0x7fffffff;
+ FIXP_DBL UNITY = (FIXP_DBL)0x7fffffff;
+ FIXP_DBL POINT7 = (FIXP_DBL)0x5999999A;
+
+ if (maxBitresBits > bitresBits) {
+ fillLevel_fix = fDivNorm(bitresBits, maxBitresBits);
+ }
+
+ if (lastWindowSequence != SHORT_WINDOW)
+ {
+ bresParam = &(AdjThr->bresParamLong);
+ bitsave_slope = (FIXP_DBL)0x3BBBBBBC;
+ bitspend_slope = (FIXP_DBL)0x55555555;
+ }
+ else
+ {
+ bresParam = &(AdjThr->bresParamShort);
+ bitsave_slope = (FIXP_DBL)0x2E8BA2E9;
+ bitspend_slope = (FIXP_DBL)0x7fffffff;
+ }
+
+ pex = fixMax(pe, adjThrChan->peMin);
+ pex = fixMin(pex, adjThrChan->peMax);
+
+ bitSave = FDKaacEnc_calcBitSave(fillLevel_fix,
+ bresParam->clipSaveLow, bresParam->clipSaveHigh,
+ bresParam->minBitSave, bresParam->maxBitSave, bitsave_slope);
+
+ bitSpend = FDKaacEnc_calcBitSpend(fillLevel_fix,
+ bresParam->clipSpendLow, bresParam->clipSpendHigh,
+ bresParam->minBitSpend, bresParam->maxBitSpend, bitspend_slope);
+
+ pe_pers = fDivNorm(pex - adjThrChan->peMin, adjThrChan->peMax - adjThrChan->peMin);
+ tmp_fix = fMult(((FIXP_DBL)bitSpend + (FIXP_DBL)bitSave), pe_pers);
+ bitresFac_fix = (UNITY>>1) - ((FIXP_DBL)bitSave>>1) + (tmp_fix>>1); qbres = (DFRACT_BITS-2);
+
+ /* (float)bitresBits/(float)avgBits */
+ bits_ratio = fDivNorm(bitresBits, avgBits, &qbr);
+ qbr = DFRACT_BITS-1-qbr;
+
+ /* Add 0.7 in q31 to bits_ratio in qbr */
+ /* 0.7f + (float)bitresBits/(float)avgBits */
+ qmin = fixMin(qbr, (DFRACT_BITS-1));
+ bits_ratio = bits_ratio >> (qbr - qmin);
+ tmp_cst = POINT7 >> ((DFRACT_BITS-1) - qmin);
+ maxBrVal = (bits_ratio>>1) + (tmp_cst>>1); qmbr = qmin - 1;
+
+ /* bitresFac_fix = fixMin(bitresFac_fix, 0.7 + bitresBits/avgBits); */
+ bitresFac_fix = bitresFac_fix >> (qbres - qmbr); qbres = qmbr;
+ bitresFac_fix = fixMin(bitresFac_fix, maxBrVal);
+
+ /* Compare with maxBitFac */
+ qmin = fixMin(Q_BITFAC, qbres);
+ bitresFac_fix = bitresFac_fix >> (qbres - qmin);
+ maxBitFac_tmp = maxBitFac >> (Q_BITFAC - qmin);
+ if(maxBitFac_tmp < bitresFac_fix)
+ {
+ bitresFac_fix = maxBitFac;
+ }
+ else
+ {
+ if(qmin < Q_BITFAC)
+ {
+ bitresFac_fix = bitresFac_fix << (Q_BITFAC-qmin);
+ }
+ else
+ {
+ bitresFac_fix = bitresFac_fix >> (qmin-Q_BITFAC);
+ }
+ }
+
+ FDKaacEnc_adjustPeMinMax(pe, &adjThrChan->peMin, &adjThrChan->peMax);
+
+ return bitresFac_fix;
+}
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_AdjThrNew
+description: allocate ADJ_THR_STATE
+*****************************************************************************/
+INT FDKaacEnc_AdjThrNew(ADJ_THR_STATE** phAdjThr,
+ INT nElements)
+{
+ INT err = 0;
+ INT i;
+ ADJ_THR_STATE* hAdjThr = GetRam_aacEnc_AdjustThreshold();
+ if (hAdjThr==NULL) {
+ err = 1;
+ goto bail;
+ }
+
+ for (i=0; i<nElements; i++) {
+ hAdjThr->adjThrStateElem[i] = GetRam_aacEnc_AdjThrStateElement(i);
+ if (hAdjThr->adjThrStateElem[i]==NULL) {
+ err = 1;
+ goto bail;
+ }
+ }
+
+bail:
+ *phAdjThr = hAdjThr;
+ return err;
+}
+
+
+/*****************************************************************************
+functionname: FDKaacEnc_AdjThrInit
+description: initialize ADJ_THR_STATE
+*****************************************************************************/
+void FDKaacEnc_AdjThrInit(ADJ_THR_STATE *hAdjThr,
+ const INT meanPe,
+ ELEMENT_BITS *elBits[(6)],
+ INT nElements,
+ FIXP_DBL vbrQualFactor)
+{
+ INT i;
+
+ FIXP_DBL POINT8 = FL2FXCONST_DBL(0.8f);
+ FIXP_DBL POINT6 = FL2FXCONST_DBL(0.6f);
+
+ /* common for all elements: */
+ /* parameters for bitres control */
+ hAdjThr->bresParamLong.clipSaveLow = (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamLong.clipSaveHigh = (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
+ hAdjThr->bresParamLong.minBitSave = (FIXP_DBL)0xf999999a; /* FL2FXCONST_DBL(-0.05f); */
+ hAdjThr->bresParamLong.maxBitSave = (FIXP_DBL)0x26666666; /* FL2FXCONST_DBL(0.3f); */
+ hAdjThr->bresParamLong.clipSpendLow = (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamLong.clipSpendHigh = (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
+ hAdjThr->bresParamLong.minBitSpend = (FIXP_DBL)0xf3333333; /* FL2FXCONST_DBL(-0.10f); */
+ hAdjThr->bresParamLong.maxBitSpend = (FIXP_DBL)0x33333333; /* FL2FXCONST_DBL(0.4f); */
+
+ hAdjThr->bresParamShort.clipSaveLow = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamShort.clipSaveHigh = (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
+ hAdjThr->bresParamShort.minBitSave = (FIXP_DBL)0x00000000; /* FL2FXCONST_DBL(0.0f); */
+ hAdjThr->bresParamShort.maxBitSave = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamShort.clipSpendLow = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamShort.clipSpendHigh = (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
+ hAdjThr->bresParamShort.minBitSpend = (FIXP_DBL)0xf9999998; /* FL2FXCONST_DBL(-0.05f); */
+ hAdjThr->bresParamShort.maxBitSpend = (FIXP_DBL)0x40000000; /* FL2FXCONST_DBL(0.5f); */
+
+ /* specific for each element: */
+ for (i=0; i<nElements; i++) {
+ ATS_ELEMENT* atsElem = hAdjThr->adjThrStateElem[i];
+ MINSNR_ADAPT_PARAM *msaParam = &atsElem->minSnrAdaptParam;
+ INT chBitrate = elBits[i]->chBitrateEl;
+
+ /* parameters for bitres control */
+ atsElem->peMin = fMultI(POINT8, meanPe) >> 1;
+ atsElem->peMax = fMultI(POINT6, meanPe);
+
+ /* for use in FDKaacEnc_reduceThresholdsVBR */
+ atsElem->chaosMeasureOld = FL2FXCONST_DBL(0.3f);
+
+ /* additional pe offset to correct pe2bits for low bitrates */
+ atsElem->peOffset = 0;
+
+ /* vbr initialisation */
+ atsElem->vbrQualFactor = vbrQualFactor;
+ if (chBitrate < 32000)
+ {
+ atsElem->peOffset = fixMax(50, 100-fMultI((FIXP_DBL)0x666667, chBitrate));
+ }
+
+ /* avoid hole parameters */
+ if (chBitrate > 20000) {
+ atsElem->ahParam.modifyMinSnr = TRUE;
+ atsElem->ahParam.startSfbL = 15;
+ atsElem->ahParam.startSfbS = 3;
+ }
+ else {
+ atsElem->ahParam.modifyMinSnr = FALSE;
+ atsElem->ahParam.startSfbL = 0;
+ atsElem->ahParam.startSfbS = 0;
+ }
+
+ /* minSnr adaptation */
+ msaParam->maxRed = FL2FXCONST_DBL(0.00390625f); /* 0.25f/64.0f */
+ /* start adaptation of minSnr for avgEn/sfbEn > startRatio */
+ msaParam->startRatio = FL2FXCONST_DBL(0.05190512648f); /* ld64(10.0f) */
+ /* maximum minSnr reduction to minSnr^maxRed is reached for
+ avgEn/sfbEn >= maxRatio */
+ /* msaParam->maxRatio = 1000.0f; */
+ /*msaParam->redRatioFac = ((float)1.0f - msaParam->maxRed) / ((float)10.0f*log10(msaParam->startRatio/msaParam->maxRatio)/log10(2.0f)*(float)0.3010299956f);*/
+ msaParam->redRatioFac = FL2FXCONST_DBL(-0.375f); /* -0.0375f * 10.0f */
+ /*msaParam->redOffs = (float)1.0f - msaParam->redRatioFac * (float)10.0f * log10(msaParam->startRatio)/log10(2.0f) * (float)0.3010299956f;*/
+ msaParam->redOffs = FL2FXCONST_DBL(0.021484375); /* 1.375f/64.0f */
+
+ /* init pe correction */
+ atsElem->peCorrectionFactor_m = FL2FXCONST_DBL(0.5f); /* 1.0 */
+ atsElem->peCorrectionFactor_e = 1;
+
+ atsElem->dynBitsLast = -1;
+ atsElem->peLast = 0;
+
+ /* init bits to pe factor */
+ atsElem->bits2PeFactor_m = FL2FXCONST_DBL(1.18f/(1<<(1)));
+ atsElem->bits2PeFactor_e = 1;
+ }
+}
+
+
+/*****************************************************************************
+ functionname: FDKaacEnc_FDKaacEnc_calcPeCorrection
+ description: calc desired pe
+*****************************************************************************/
+static void FDKaacEnc_FDKaacEnc_calcPeCorrection(
+ FIXP_DBL *const correctionFac_m,
+ INT *const correctionFac_e,
+ const INT peAct,
+ const INT peLast,
+ const INT bitsLast,
+ const FIXP_DBL bits2PeFactor_m,
+ const INT bits2PeFactor_e
+ )
+{
+ if ( (bitsLast > 0) && (peAct < 1.5f*peLast) && (peAct > 0.7f*peLast) &&
+ (FDKaacEnc_bits2pe2(bitsLast, fMult(FL2FXCONST_DBL(1.2f/2.f), bits2PeFactor_m), bits2PeFactor_e+1) > peLast) &&
+ (FDKaacEnc_bits2pe2(bitsLast, fMult(FL2FXCONST_DBL(0.65f), bits2PeFactor_m), bits2PeFactor_e ) < peLast) )
+ {
+ FIXP_DBL corrFac = *correctionFac_m;
+
+ int scaling = 0;
+ FIXP_DBL denum = (FIXP_DBL)FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, bits2PeFactor_e);
+ FIXP_DBL newFac = fDivNorm((FIXP_DBL)peLast, denum, &scaling);
+
+ /* dead zone, newFac and corrFac are scaled by 0.5 */
+ if ((FIXP_DBL)peLast <= denum) { /* ratio <= 1.f */
+ newFac = fixMax(scaleValue(fixMin( fMult(FL2FXCONST_DBL(1.1f/2.f), newFac), scaleValue(FL2FXCONST_DBL( 1.f/2.f), -scaling)), scaling), FL2FXCONST_DBL(0.85f/2.f) );
+ }
+ else { /* ratio < 1.f */
+ newFac = fixMax( fixMin( scaleValue(fMult(FL2FXCONST_DBL(0.9f/2.f), newFac), scaling), FL2FXCONST_DBL(1.15f/2.f) ), FL2FXCONST_DBL( 1.f/2.f) );
+ }
+
+ if ( ((newFac > FL2FXCONST_DBL(1.f/2.f)) && (corrFac < FL2FXCONST_DBL(1.f/2.f)))
+ || ((newFac < FL2FXCONST_DBL(1.f/2.f)) && (corrFac > FL2FXCONST_DBL(1.f/2.f))))
+ {
+ corrFac = FL2FXCONST_DBL(1.f/2.f);
+ }
+
+ /* faster adaptation towards 1.0, slower in the other direction */
+ if ( (corrFac < FL2FXCONST_DBL(1.f/2.f) && newFac < corrFac)
+ || (corrFac > FL2FXCONST_DBL(1.f/2.f) && newFac > corrFac) )
+ {
+ corrFac = fMult(FL2FXCONST_DBL(0.85f), corrFac) + fMult(FL2FXCONST_DBL(0.15f), newFac);
+ }
+ else {
+ corrFac = fMult(FL2FXCONST_DBL(0.7f), corrFac) + fMult(FL2FXCONST_DBL(0.3f), newFac);
+ }
+
+ corrFac = fixMax( fixMin( corrFac, FL2FXCONST_DBL(1.15f/2.f) ), FL2FXCONST_DBL(0.85/2.f) );
+
+ *correctionFac_m = corrFac;
+ *correctionFac_e = 1;
+ }
+ else {
+ *correctionFac_m = FL2FXCONST_DBL(1.f/2.f);
+ *correctionFac_e = 1;
+ }
+}
+
+
+void FDKaacEnc_DistributeBits(ADJ_THR_STATE *adjThrState,
+ ATS_ELEMENT *AdjThrStateElement,
+ PSY_OUT_CHANNEL *psyOutChannel[(2)],
+ PE_DATA *peData,
+ INT *grantedPe,
+ INT *grantedPeCorr,
+ const INT nChannels,
+ const INT commonWindow,
+ const INT grantedDynBits,
+ const INT bitresBits,
+ const INT maxBitresBits,
+ const FIXP_DBL maxBitFac,
+ const INT bitDistributenMode)
+{
+ FIXP_DBL bitFactor;
+ INT noRedPe = peData->pe;
+
+ /* prefer short windows for calculation of bitFactor */
+ INT curWindowSequence = LONG_WINDOW;
+ if (nChannels==2) {
+ if ((psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) ||
+ (psyOutChannel[1]->lastWindowSequence == SHORT_WINDOW)) {
+ curWindowSequence = SHORT_WINDOW;
+ }
+ }
+ else {
+ curWindowSequence = psyOutChannel[0]->lastWindowSequence;
+ }
+
+ if (grantedDynBits >= 1) {
+ if (bitDistributenMode!=0) {
+ *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits, AdjThrStateElement->bits2PeFactor_m, AdjThrStateElement->bits2PeFactor_e);
+ }
+ else
+ {
+ /* factor dependend on current fill level and pe */
+ bitFactor = FDKaacEnc_bitresCalcBitFac(bitresBits, maxBitresBits, noRedPe,
+ curWindowSequence, grantedDynBits, maxBitFac,
+ adjThrState,
+ AdjThrStateElement
+ );
+
+ /* desired pe for actual frame */
+ /* Worst case max of grantedDynBits is = 1024 * 5.27 * 2 */
+ *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits,
+ fMult(bitFactor, AdjThrStateElement->bits2PeFactor_m), AdjThrStateElement->bits2PeFactor_e+(DFRACT_BITS-1-Q_BITFAC)
+ );
+ }
+ }
+ else {
+ *grantedPe = 0; /* prevent divsion by 0 */
+ }
+
+ /* correction of pe value */
+ {
+ FDKaacEnc_FDKaacEnc_calcPeCorrection(
+ &AdjThrStateElement->peCorrectionFactor_m,
+ &AdjThrStateElement->peCorrectionFactor_e,
+ fixMin(*grantedPe, noRedPe),
+ AdjThrStateElement->peLast,
+ AdjThrStateElement->dynBitsLast,
+ AdjThrStateElement->bits2PeFactor_m,
+ AdjThrStateElement->bits2PeFactor_e
+ );
+ }
+
+ *grantedPeCorr = (INT)(fMult((FIXP_DBL)(*grantedPe<<Q_AVGBITS), AdjThrStateElement->peCorrectionFactor_m) >> (Q_AVGBITS-AdjThrStateElement->peCorrectionFactor_e));
+
+ /* update last pe */
+ AdjThrStateElement->peLast = *grantedPe;
+ AdjThrStateElement->dynBitsLast = -1;
+
+}
+
+/*****************************************************************************
+functionname: FDKaacEnc_AdjustThresholds
+description: adjust thresholds
+*****************************************************************************/
+void FDKaacEnc_AdjustThresholds(ATS_ELEMENT* AdjThrStateElement[(6)],
+ QC_OUT_ELEMENT* qcElement[(6)],
+ QC_OUT* qcOut,
+ PSY_OUT_ELEMENT* psyOutElement[(6)],
+ INT CBRbitrateMode,
+ CHANNEL_MAPPING* cm)
+{
+ int i;
+ if (CBRbitrateMode)
+ {
+ /* In case, no bits must be shifted between different elements, */
+ /* an element-wise execution of the pe-dependent threshold- */
+ /* adaption becomes necessary... */
+ for (i=0; i<cm->nElements; i++)
+ {
+ ELEMENT_INFO elInfo = cm->elInfo[i];
+
+ if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
+ (elInfo.elType == ID_LFE))
+ {
+ /* qcElement[i]->grantedPe = 2000; */ /* Use this only for debugging */
+ //if (totalGrantedPeCorr < totalNoRedPe) {
+ if (qcElement[i]->grantedPe < qcElement[i]->peData.pe)
+ {
+ /* calc threshold necessary for desired pe */
+ FDKaacEnc_adaptThresholdsToPe(cm,
+ AdjThrStateElement,
+ qcElement,
+ psyOutElement,
+ qcElement[i]->grantedPeCorr,
+ 1, /* Process only 1 element */
+ i); /* Process exactly THIS element */
+
+ }
+
+ } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
+
+ } /* -end- element loop */
+ }
+ else {
+ for (i=0; i<cm->nElements; i++)
+ {
+ ELEMENT_INFO elInfo = cm->elInfo[i];
+
+ if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
+ (elInfo.elType == ID_LFE))
+ {
+ /* for VBR-mode */
+ FDKaacEnc_AdaptThresholdsVBR(qcElement[i]->qcOutChannel,
+ psyOutElement[i]->psyOutChannel,
+ AdjThrStateElement[i],
+ &psyOutElement[i]->toolsInfo,
+ &qcElement[i]->peData,
+ cm->elInfo[i].nChannelsInEl);
+ } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
+
+ } /* -end- element loop */
+
+ }
+ for (i=0; i<cm->nElements; i++) {
+ int ch,sfb,sfbGrp;
+ /* no weighting of threholds and energies for mlout */
+ /* weight energies and thresholds */
+ for (ch=0; ch<cm->elInfo[i].nChannelsInEl; ch++) {
+ QC_OUT_CHANNEL* pQcOutCh = qcElement[i]->qcOutChannel[ch];
+ for (sfbGrp = 0;sfbGrp < psyOutElement[i]->psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutElement[i]->psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb=0; sfb<psyOutElement[i]->psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ pQcOutCh->sfbThresholdLdData[sfb+sfbGrp] += pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
+ }
+ }
+ }
+ }
+
+}
+
+void FDKaacEnc_AdjThrClose(ADJ_THR_STATE** phAdjThr)
+{
+ INT i;
+ ADJ_THR_STATE* hAdjThr = *phAdjThr;
+
+ if (hAdjThr!=NULL) {
+ for (i=0; i<(6); i++) {
+ if (hAdjThr->adjThrStateElem[i]!=NULL) {
+ FreeRam_aacEnc_AdjThrStateElement(&hAdjThr->adjThrStateElem[i]);
+ }
+ }
+ FreeRam_aacEnc_AdjustThreshold(phAdjThr);
+ }
+}
+