summaryrefslogtreecommitdiffstats
path: root/src/dabOutput/edi/PFT.cpp
blob: eba8ac0a3c804d4a3ded14e5c50110d49f4b00a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
   Copyright (C) 2013 Matthias P. Braendli
   http://mpb.li

   EDI output,
   Protection, Fragmentation and Transport. (PFT)

   Are supported:
    Reed-Solomon and Fragmentation

   This implements part of PFT as defined ETSI TS 102 821.

   */
/*
   This file is part of CRC-DabMux.

   CRC-DabMux is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as
   published by the Free Software Foundation, either version 3 of the
   License, or (at your option) any later version.

   CRC-DabMux is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with CRC-DabMux.  If not, see <http://www.gnu.org/licenses/>.
   */

#include "config.h"
#include <vector>
#include <list>
#include <cstdio>
#include <cstring>
#include <stdint.h>
#include "PFT.h"
#include "ReedSolomon.h"

using namespace std;

typedef vector<uint8_t> Chunk;


RSPacket PFT::Protect(AFPacket af_packet)
{
    RSPacket rs_packet;

    // number of chunks is ceil(afpacketsize / m_k)
    if (af_packet.size() % m_k == 0) {
        m_num_chunks = af_packet.size() / m_k;
    }
    else {
        m_num_chunks = af_packet.size() / m_k + 1;
    }

    const size_t zero_pad = m_num_chunks * m_k - af_packet.size();

    // add zero padding to last chunk
    for (size_t i = 0; i < zero_pad; i++) {
        af_packet.push_back(0);
    }

    for (size_t i = 1; i < af_packet.size(); i+= m_k) {
        Chunk c(m_k + ParityBytes);

        // copy m_k bytes into new chunk
        memcpy(&c.front(), &af_packet[i], m_k);

        // calculate RS for chunk
        m_encoder.encode(&c.front(), c.size());

        // append new chunk to the RS Packet
        rs_packet.insert(rs_packet.end(), c.begin(), c.end());
    }

    return rs_packet;
}

vector< vector<uint8_t> > PFT::ProtectAndFragment(AFPacket af_packet)
{
    RSPacket rs_packet = Protect(af_packet);

    const size_t max_payload_size = ( m_num_chunks * ParityBytes ) / (m_m + 1);

    const size_t fragment_size = m_num_chunks * (m_k + ParityBytes) / max_payload_size;
    const size_t num_fragments = m_num_chunks * (m_k + ParityBytes) / fragment_size;

    vector< vector<uint8_t> > fragments(num_fragments);

    for (size_t i = 0; i < num_fragments; i++) {
        fragments[i].resize(fragment_size);
        for (size_t j = 0; j < fragment_size; j++) {
            fragments[i][j] = rs_packet[j*num_fragments + i];
        }
    }

    return fragments;
}