summaryrefslogtreecommitdiffstats
path: root/src/dabOutput/edi/PFT.cpp
blob: 5eaac09b6221722fbfc6cfbd9d71788271f8adcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
   Copyright (C) 2013,2014 Matthias P. Braendli
   http://mpb.li

   EDI output,
   Protection, Fragmentation and Transport. (PFT)

   Are supported:
    Reed-Solomon and Fragmentation

   This implements part of PFT as defined ETSI TS 102 821.

   */
/*
   This file is part of ODR-DabMux.

   ODR-DabMux is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as
   published by the Free Software Foundation, either version 3 of the
   License, or (at your option) any later version.

   ODR-DabMux is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with ODR-DabMux.  If not, see <http://www.gnu.org/licenses/>.
   */

#include "config.h"
#include <vector>
#include <list>
#include <cstdio>
#include <cstring>
#include <stdint.h>
#include <arpa/inet.h>
#include "PFT.h"
#include "crc.h"
#include "ReedSolomon.h"

using namespace std;

typedef vector<uint8_t> Chunk;


RSPacket PFT::Protect(AFPacket af_packet)
{
    RSPacket rs_packet;

    // number of chunks is ceil(afpacketsize / m_k)
    if (af_packet.size() % m_k == 0) {
        m_num_chunks = af_packet.size() / m_k;
    }
    else {
        m_num_chunks = af_packet.size() / m_k + 1;
    }

    const size_t zero_pad = m_num_chunks * m_k - af_packet.size();

    // add zero padding to last chunk
    for (size_t i = 0; i < zero_pad; i++) {
        af_packet.push_back(0);
    }

    for (size_t i = 1; i < af_packet.size(); i+= m_k) {
        Chunk c(m_k + ParityBytes);

        // copy m_k bytes into new chunk
        memcpy(&c.front(), &af_packet[i], m_k);

        // calculate RS for chunk
        m_encoder.encode(&c.front(), c.size());

        // append new chunk to the RS Packet
        rs_packet.insert(rs_packet.end(), c.begin(), c.end());
    }

    return rs_packet;
}

vector< vector<uint8_t> > PFT::ProtectAndFragment(AFPacket af_packet)
{
    RSPacket rs_packet = Protect(af_packet);

    const size_t max_payload_size = ( m_num_chunks * ParityBytes ) / (m_m + 1);

    const size_t fragment_size = m_num_chunks * (m_k + ParityBytes) / max_payload_size;
    const size_t num_fragments = m_num_chunks * (m_k + ParityBytes) / fragment_size;

    if (m_verbose)
        fprintf(stderr, "  PnF fragment_size %zu, num frag %zu\n",
                fragment_size, num_fragments);

    vector< vector<uint8_t> > fragments(num_fragments);

    for (size_t i = 0; i < num_fragments; i++) {
        fragments[i].resize(fragment_size);
        for (size_t j = 0; j < fragment_size; j++) {
            fragments[i][j] = rs_packet[j*num_fragments + i];
        }
    }

    return fragments;
}

std::vector< PFTFragment > PFT::Assemble(AFPacket af_packet)
{
    vector< vector<uint8_t> > fragments = ProtectAndFragment(af_packet);
    vector< vector<uint8_t> > pft_fragments;

    unsigned int findex = 0;

    unsigned fcount = fragments.size();

    const size_t zero_pad = m_num_chunks * m_k - af_packet.size();

    for (size_t i = 0; i < fragments.size(); i++) {
        const vector<uint8_t>& fragment = fragments[i];

        std::string psync("PF"); // SYNC
        std::vector<uint8_t> packet(psync.begin(), psync.end());

        packet.push_back(m_pseq >> 8);
        packet.push_back(m_pseq & 0xFF);

        packet.push_back(findex >> 16);
        packet.push_back(findex >> 8);
        packet.push_back(findex & 0xFF);
        findex++;

        packet.push_back(fcount >> 16);
        packet.push_back(fcount >> 8);
        packet.push_back(fcount & 0xFF);

        unsigned int plen = fragment.size();
        plen |= 0x8000; // Set FEC bit

        packet.push_back(plen >> 8);   // RSk
        packet.push_back(plen & 0xFF); // RSz

        packet.push_back(m_k);
        packet.push_back(zero_pad);

        // calculate CRC over AF Header and payload
        uint16_t crc = 0xffff;
        crc = crc16(crc, &(packet.front()), packet.size());
        crc ^= 0xffff;

        packet.push_back((crc >> 8) & 0xFF);
        packet.push_back(crc & 0xFF);

        // insert payload, must have a length multiple of 8 bytes
        packet.insert(packet.end(), fragment.begin(), fragment.end());

        pft_fragments.push_back(packet);

        if (m_verbose)
            fprintf(stderr, "* PFT pseq %d, findex %d, fcount %d, plen %d\n",
                    m_pseq, findex, fcount, plen & ~0x8000);
    }

    m_pseq++;

    return pft_fragments;
}