summaryrefslogtreecommitdiffstats
path: root/lib/edi/common.cpp
blob: 38eadf9497a7548150935cd4a8fcc0123d9f6913 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
   Copyright (C) 2020
   Matthias P. Braendli, matthias.braendli@mpb.li

   http://opendigitalradio.org

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include "common.hpp"
#include "buffer_unpack.hpp"
#include "Log.h"
#include "crc.h"
#include <algorithm>
#include <sstream>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cctype>

namespace EdiDecoder {

using namespace std;

bool frame_timestamp_t::is_valid() const
{
    return tsta != 0xFFFFFF and seconds != 0;
}

string frame_timestamp_t::to_string() const
{
    const time_t seconds_in_unix_epoch = to_unix_epoch();

    stringstream ss;
    if (is_valid()) {
        ss << "Timestamp: ";
    }
    else {
        ss << "Timestamp not valid: ";
    }

    char timestr[100];
    if (std::strftime(timestr, sizeof(timestr), "%Y-%m-%dZ%H:%M:%S", std::gmtime(&seconds_in_unix_epoch))) {
        ss << timestr << " + " << ((double)tsta / 16384000.0);
    }
    else {
        ss << "unknown";
    }
    return ss.str();
}

time_t frame_timestamp_t::to_unix_epoch() const
{
    // EDI epoch: 2000-01-01T00:00:00Z
    // Convert using
    // TZ=UTC python -c 'import datetime; print(datetime.datetime(2000,1,1,0,0,0,0).strftime("%s"))'
    return 946684800 + seconds - utco;
}

double frame_timestamp_t::diff_s(const frame_timestamp_t& other) const
{
    const double lhs = (double)seconds + (tsta / 16384000.0);
    const double rhs = (double)other.seconds + (other.tsta / 16384000.0);
    return lhs - rhs;
}

frame_timestamp_t& frame_timestamp_t::operator+=(const std::chrono::milliseconds& ms)
{
    tsta += (ms.count() % 1000) << 14; // Shift ms by 14 to Timestamp level 2
    if (tsta > 0xf9FFff) {
        tsta -= 0xfa0000; // Substract 16384000, corresponding to one second
        seconds += 1;
    }

    seconds += (ms.count() / 1000);

    return *this;
}

frame_timestamp_t frame_timestamp_t::from_unix_epoch(std::time_t time, uint32_t tai_utc_offset, uint32_t tsta)
{
    frame_timestamp_t ts;

    const std::time_t posix_timestamp_1_jan_2000 = 946684800;

    ts.utco = tai_utc_offset - 32;
    ts.seconds = time - posix_timestamp_1_jan_2000 + ts.utco;
    ts.tsta = tsta;
    return ts;
}

std::chrono::system_clock::time_point frame_timestamp_t::to_system_clock() const
{
    auto ts = chrono::system_clock::from_time_t(to_unix_epoch());

    // PPS offset in seconds = tsta / 16384000
    // We cannot use nanosecond resolution because not all platforms use a
    // system_clock that has nanosecond precision. It's not really important,
    // as this function is only used for debugging.
    ts += chrono::microseconds(std::lrint(tsta / 16.384));

    return ts;
}

std::string tag_name_to_human_readable(const tag_name_t& name)
{
    std::string s;
    for (const uint8_t c : name) {
        if (isprint(c)) {
            s += (char)c;
        }
        else {
            char escaped[5];
            snprintf(escaped, 5, "\\x%02x", c);
            s += escaped;
        }
    }
    return s;
}

TagDispatcher::TagDispatcher(std::function<void()>&& af_packet_completed) :
    m_af_packet_completed(std::move(af_packet_completed)),
    m_afpacket_handler([](std::vector<uint8_t>&& /*ignore*/){})
{
}

void TagDispatcher::set_verbose(bool verbose)
{
    m_pft.setVerbose(verbose);
}

void TagDispatcher::push_bytes(const vector<uint8_t> &buf)
{
    if (buf.empty()) {
        m_input_data.clear();
        m_last_sequences.seq_valid = false;
        return;
    }

    copy(buf.begin(), buf.end(), back_inserter(m_input_data));

    while (m_input_data.size() > 2) {
        if (m_input_data[0] == 'A' and m_input_data[1] == 'F') {
            const auto r = decode_afpacket(m_input_data);
            bool leave_loop = false;
            switch (r.st) {
                case decode_state_e::Ok:
                    m_last_sequences.pseq_valid = false;
                    m_af_packet_completed();
                    break;
                case decode_state_e::MissingData:
                    /* Continue filling buffer */
                    leave_loop = true;
                    break;
                case decode_state_e::Error:
                    m_last_sequences.pseq_valid = false;
                    leave_loop = true;
                    break;
            }

            if (r.num_bytes_consumed) {
                vector<uint8_t> remaining_data;
                copy(m_input_data.begin() + r.num_bytes_consumed,
                        m_input_data.end(),
                        back_inserter(remaining_data));
                m_input_data = remaining_data;
            }

            if (leave_loop) {
                break;
            }
        }
        else if (m_input_data[0] == 'P' and m_input_data[1] == 'F') {
            PFT::Fragment fragment;
            const size_t fragment_bytes = fragment.loadData(m_input_data);

            if (fragment_bytes == 0) {
                // We need to refill our buffer
                break;
            }

            vector<uint8_t> remaining_data;
            copy(m_input_data.begin() + fragment_bytes,
                    m_input_data.end(),
                    back_inserter(remaining_data));
            m_input_data = remaining_data;

            if (fragment.isValid()) {
                m_pft.pushPFTFrag(fragment);
            }

            auto af = m_pft.getNextAFPacket();
            if (not af.af_packet.empty()) {
                const auto r = decode_afpacket(af.af_packet);

                switch (r.st) {
                    case decode_state_e::Ok:
                        m_last_sequences.pseq = af.pseq;
                        m_last_sequences.pseq_valid = true;
                        m_af_packet_completed();
                        break;
                    case decode_state_e::MissingData:
                        etiLog.level(error) << "ETI MissingData on PFT push_bytes";
                        m_last_sequences.pseq_valid = false;
                        break;
                    case decode_state_e::Error:
                        m_last_sequences.pseq_valid = false;
                        break;
                }
            }
        }
        else {
            etiLog.log(warn, "Unknown 0x%02x!", *m_input_data.data());
            m_input_data.erase(m_input_data.begin());
        }
    }
}

void TagDispatcher::push_packet(const Packet &packet)
{
    auto& buf = packet.buf;

    if (buf.size() < 2) {
        throw std::invalid_argument("Not enough bytes to read EDI packet header");
    }

    if (buf[0] == 'A' and buf[1] == 'F') {
        const auto r = decode_afpacket(buf);
        m_last_sequences.pseq_valid = false;

        if (r.st == decode_state_e::Ok) {
            m_af_packet_completed();
        }

    }
    else if (buf[0] == 'P' and buf[1] == 'F') {
        PFT::Fragment fragment;
        fragment.loadData(buf, packet.received_on_port);

        if (fragment.isValid()) {
            m_pft.pushPFTFrag(fragment);
        }

        auto af = m_pft.getNextAFPacket();
        if (not af.af_packet.empty()) {
            const auto r = decode_afpacket(af.af_packet);

            if (r.st == decode_state_e::Ok) {
                m_last_sequences.pseq = af.pseq;
                m_last_sequences.pseq_valid = true;
                m_af_packet_completed();
            }
        }
    }
    else {
        std::stringstream ss;
        ss << "Unknown EDI packet " << std::hex << (int)buf[0] << " " << (int)buf[1];
        m_ignored_tags.clear();
        throw invalid_argument(ss.str());
    }
}

void TagDispatcher::setMaxDelay(int num_af_packets)
{
    m_pft.setMaxDelay(num_af_packets);
}


TagDispatcher::decode_result_t TagDispatcher::decode_afpacket(
        const std::vector<uint8_t> &input_data)
{
    if (input_data.size() < AFPACKET_HEADER_LEN) {
        return {decode_state_e::MissingData, 0};
    }

    // read length from packet
    uint32_t taglength = read_32b(input_data.begin() + 2);
    uint16_t seq = read_16b(input_data.begin() + 6);

    const size_t crclength = 2;
    if (input_data.size() < AFPACKET_HEADER_LEN + taglength + crclength) {
        return {decode_state_e::MissingData, 0};
    }

    // SEQ wraps at 0xFFFF, unsigned integer overflow is intentional
    if (m_last_sequences.seq_valid) {
        const uint16_t expected_seq = m_last_sequences.seq + 1;
        if (expected_seq != seq) {
            etiLog.level(warn) << "EDI AF Packet sequence error, " << seq;
            m_ignored_tags.clear();
        }
    }
    else {
        etiLog.level(info) << "EDI AF Packet initial sequence number: " << seq;
        m_last_sequences.seq_valid = true;
    }
    m_last_sequences.seq = seq;

    const size_t crclen = 2;
    bool has_crc = (input_data[8] & 0x80) ? true : false;
    uint8_t major_revision = (input_data[8] & 0x70) >> 4;
    uint8_t minor_revision = input_data[8] & 0x0F;
    if (major_revision != 1 or minor_revision != 0) {
        etiLog.level(warn) << "EDI AF Packet has wrong revision " <<
                (int)major_revision << "." << (int)minor_revision;
    }

    if (not has_crc) {
        etiLog.level(warn) << "AF packet not supported, has no CRC";
        return {decode_state_e::Error, AFPACKET_HEADER_LEN + taglength};
    }
    uint8_t pt = input_data[9];
    if (pt != 'T') {
        // only support Tag
        return {decode_state_e::Error, AFPACKET_HEADER_LEN + taglength + crclen};
    }

    uint16_t crc = 0xffff;
    for (size_t i = 0; i < AFPACKET_HEADER_LEN + taglength; i++) {
        crc = crc16(crc, &input_data[i], 1);
    }
    crc ^= 0xffff;

    uint16_t packet_crc = read_16b(input_data.begin() + AFPACKET_HEADER_LEN + taglength);

    if (packet_crc != crc) {
        etiLog.level(warn) << "AF Packet crc wrong";
        return {decode_state_e::Error, AFPACKET_HEADER_LEN + taglength + crclen};
    }
    else {
        vector<uint8_t> afpacket(AFPACKET_HEADER_LEN + taglength + crclen);
        copy(input_data.begin(),
                input_data.begin() + AFPACKET_HEADER_LEN + taglength + crclen,
                afpacket.begin());
        m_afpacket_handler(std::move(afpacket));

        vector<uint8_t> payload(taglength);
        copy(input_data.begin() + AFPACKET_HEADER_LEN,
                input_data.begin() + AFPACKET_HEADER_LEN + taglength,
                payload.begin());

        auto result = decode_tagpacket(payload) ? decode_state_e::Ok : decode_state_e::Error;
        return {result, AFPACKET_HEADER_LEN + taglength + crclen};
    }
}

void TagDispatcher::register_tag(const std::string& tag, tag_handler&& h)
{
    m_handlers[tag] = std::move(h);
}

void TagDispatcher::register_afpacket_handler(afpacket_handler&& h)
{
    m_afpacket_handler = std::move(h);
}


bool TagDispatcher::decode_tagpacket(const vector<uint8_t> &payload)
{
    size_t length = 0;

    bool success = true;

    for (size_t i = 0; i + 8 < payload.size(); i += 8 + length) {
        char tag_sz[5];
        tag_sz[4] = '\0';
        copy(payload.begin() + i, payload.begin() + i + 4, tag_sz);

        string tag(tag_sz);

        uint32_t taglength = read_32b(payload.begin() + i + 4);

        if (taglength % 8 != 0) {
            etiLog.log(warn, "Invalid EDI tag length, not multiple of 8!");
            break;
        }
        taglength /= 8;

        length = taglength;

        const size_t calculated_length = i + 8 + taglength;
        if (calculated_length > payload.size()) {
            etiLog.log(warn, "Invalid EDI tag length: tag larger %zu than tagpacket %zu!",
                    calculated_length, payload.size());
            break;
        }

        const array<uint8_t, 4> tag_name({
               (uint8_t)tag_sz[0], (uint8_t)tag_sz[1], (uint8_t)tag_sz[2], (uint8_t)tag_sz[3]
               });
        vector<uint8_t> tag_value(taglength);
        copy(   payload.begin() + i+8,
                payload.begin() + i+8+taglength,
                tag_value.begin());

        bool tagsuccess = true;
        bool found = false;
        for (auto tag_handler : m_handlers) {
            if (    (tag_handler.first.size() == 4 and tag == tag_handler.first) or
                    (tag_handler.first.size() == 3 and tag.substr(0, 3) == tag_handler.first) or
                    (tag_handler.first.size() == 2 and tag.substr(0, 2) == tag_handler.first) or
                    (tag_handler.first.size() == 1 and tag.substr(0, 1) == tag_handler.first)) {
                found = true;
                tagsuccess &= tag_handler.second(tag_value, tag_name);
            }
        }

        if (not found) {
            if (std::find(m_ignored_tags.begin(), m_ignored_tags.end(), tag) == m_ignored_tags.end()) {
                etiLog.log(warn, "Ignoring unknown TAG %s", tag.c_str());
                m_ignored_tags.push_back(tag);
            }
            break;
        }

        if (not tagsuccess) {
            etiLog.log(warn, "Error decoding TAG %s", tag.c_str());
            success = tagsuccess;
            break;
        }
    }

    return success;
}

odr_version_data parse_odr_version_data(const std::vector<uint8_t>& data)
{
    if (data.size() < sizeof(uint32_t)) {
        return {};
    }

    const size_t versionstr_length = data.size() - sizeof(uint32_t);
    string version(data.begin(), data.begin() + versionstr_length);
    uint32_t uptime_s = read_32b(data.begin() + versionstr_length);

    return {version, uptime_s};
}

}