/* Copyright (C) 2013,2014 Matthias P. Braendli http://mpb.li EDI output, Protection, Fragmentation and Transport. (PFT) Are supported: Reed-Solomon and Fragmentation This implements part of PFT as defined ETSI TS 102 821. */ /* This file is part of ODR-DabMux. ODR-DabMux is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMux is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMux. If not, see <http://www.gnu.org/licenses/>. */ #include "config.h" #include <vector> #include <list> #include <cstdio> #include <cstring> #include <stdint.h> #include <arpa/inet.h> #include "PFT.h" #include "crc.h" #include "ReedSolomon.h" using namespace std; typedef vector<uint8_t> Chunk; RSPacket PFT::Protect(AFPacket af_packet) { RSPacket rs_packet; // number of chunks is ceil(afpacketsize / m_k) if (af_packet.size() % m_k == 0) { m_num_chunks = af_packet.size() / m_k; } else { m_num_chunks = af_packet.size() / m_k + 1; } const size_t zero_pad = m_num_chunks * m_k - af_packet.size(); // add zero padding to last chunk for (size_t i = 0; i < zero_pad; i++) { af_packet.push_back(0); } for (size_t i = 1; i < af_packet.size(); i+= m_k) { Chunk c(m_k + ParityBytes); // copy m_k bytes into new chunk memcpy(&c.front(), &af_packet[i], m_k); // calculate RS for chunk m_encoder.encode(&c.front(), c.size()); // append new chunk to the RS Packet rs_packet.insert(rs_packet.end(), c.begin(), c.end()); } return rs_packet; } vector< vector<uint8_t> > PFT::ProtectAndFragment(AFPacket af_packet) { RSPacket rs_packet = Protect(af_packet); const size_t max_payload_size = ( m_num_chunks * ParityBytes ) / (m_m + 1); const size_t fragment_size = m_num_chunks * (m_k + ParityBytes) / max_payload_size; const size_t num_fragments = m_num_chunks * (m_k + ParityBytes) / fragment_size; if (m_verbose) fprintf(stderr, " PnF fragment_size %zu, num frag %zu\n", fragment_size, num_fragments); vector< vector<uint8_t> > fragments(num_fragments); for (size_t i = 0; i < num_fragments; i++) { fragments[i].resize(fragment_size); for (size_t j = 0; j < fragment_size; j++) { fragments[i][j] = rs_packet[j*num_fragments + i]; } } return fragments; } std::vector< PFTFragment > PFT::Assemble(AFPacket af_packet) { vector< vector<uint8_t> > fragments = ProtectAndFragment(af_packet); vector< vector<uint8_t> > pft_fragments; unsigned int findex = 0; unsigned fcount = fragments.size(); const size_t zero_pad = m_num_chunks * m_k - af_packet.size(); for (size_t i = 0; i < fragments.size(); i++) { const vector<uint8_t>& fragment = fragments[i]; std::string psync("PF"); // SYNC std::vector<uint8_t> packet(psync.begin(), psync.end()); packet.push_back(m_pseq >> 8); packet.push_back(m_pseq & 0xFF); packet.push_back(findex >> 16); packet.push_back(findex >> 8); packet.push_back(findex & 0xFF); findex++; packet.push_back(fcount >> 16); packet.push_back(fcount >> 8); packet.push_back(fcount & 0xFF); unsigned int plen = fragment.size(); plen |= 0x8000; // Set FEC bit packet.push_back(plen >> 8); // RSk packet.push_back(plen & 0xFF); // RSz packet.push_back(m_k); packet.push_back(zero_pad); // calculate CRC over AF Header and payload uint16_t crc = 0xffff; crc = crc16(crc, &(packet.front()), packet.size()); crc ^= 0xffff; packet.push_back((crc >> 8) & 0xFF); packet.push_back(crc & 0xFF); // insert payload, must have a length multiple of 8 bytes packet.insert(packet.end(), fragment.begin(), fragment.end()); pft_fragments.push_back(packet); if (m_verbose) fprintf(stderr, "* PFT pseq %d, findex %d, fcount %d, plen %d\n", m_pseq, findex, fcount, plen & ~0x8000); } m_pseq++; return pft_fragments; }