/*
Copyright (C) 2014
Matthias P. Braendli, matthias.braendli@mpb.li
http://www.opendigitalradio.org
EDI output,
Protection, Fragmentation and Transport. (PFT)
Are supported:
Reed-Solomon and Fragmentation
This implements part of PFT as defined ETSI TS 102 821.
*/
/*
This file is part of ODR-DabMux.
ODR-DabMux is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMux is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMux. If not, see .
*/
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include "PFT.h"
#include "crc.h"
#include "ReedSolomon.h"
using namespace std;
// An integer division that rounds up, i.e. ceil(a/b)
#define CEIL_DIV(a, b) (a % b == 0 ? a / b : a / b + 1)
RSBlock PFT::Protect(AFPacket af_packet)
{
RSBlock rs_block;
// number of chunks is ceil(afpacketsize / m_k)
// TS 102 821 7.2.2: c = ceil(l / k_max)
m_num_chunks = CEIL_DIV(af_packet.size(), m_k);
if (m_verbose) {
fprintf(stderr, "Protect %zu chunks of size %zu\n",
m_num_chunks, af_packet.size());
}
// calculate size of chunk:
// TS 102 821 7.2.2: k = ceil(l / c)
// chunk_len does not include the 48 bytes of protection.
const size_t chunk_len = CEIL_DIV(af_packet.size(), m_num_chunks);
if (chunk_len > 207) {
std::stringstream ss;
ss << "Chunk length " << chunk_len << " too large (>207)";
throw std::runtime_error(ss.str());
}
// The last RS chunk is zero padded
// TS 102 821 7.2.2: z = c*k - l
const size_t zero_pad = m_num_chunks * chunk_len - af_packet.size();
// Create the RS(k+p,k) encoder
const int firstRoot = 1; // Discovered by analysing EDI dump
const int gfPoly = 0x11d;
const bool reverse = false;
// The encoding has to be 255, 207 always, because the chunk has to
// be padded at the end, and not at the beginning as libfec would
// do
ReedSolomon rs_encoder(255, 207, reverse, gfPoly, firstRoot);
// add zero padding to last chunk
for (size_t i = 0; i < zero_pad; i++) {
af_packet.push_back(0);
}
if (m_verbose) {
fprintf(stderr, " add %zu zero padding\n", zero_pad);
}
// Calculate RS for each chunk and assemble RS block
for (size_t i = 0; i < af_packet.size(); i+= chunk_len) {
vector chunk(207);
vector protection(ParityBytes);
// copy chunk_len bytes into new chunk
memcpy(&chunk.front(), &af_packet[i], chunk_len);
// calculate RS for chunk with padding
rs_encoder.encode(&chunk.front(), &protection.front(), 207);
// Drop the padding
chunk.resize(chunk_len);
// append new chunk and protection to the RS Packet
rs_block.insert(rs_block.end(), chunk.begin(), chunk.end());
rs_block.insert(rs_block.end(), protection.begin(), protection.end());
}
return rs_block;
}
vector< vector > PFT::ProtectAndFragment(AFPacket af_packet)
{
const bool enable_RS = (m_m > 0);
if (enable_RS) {
RSBlock rs_block = Protect(af_packet);
#if 0
fprintf(stderr, " af_packet (%zu):", af_packet.size());
for (size_t i = 0; i < af_packet.size(); i++) {
fprintf(stderr, "%02x ", af_packet[i]);
}
fprintf(stderr, "\n");
fprintf(stderr, " rs_block (%zu):", rs_block.size());
for (size_t i = 0; i < rs_block.size(); i++) {
fprintf(stderr, "%02x ", rs_block[i]);
}
fprintf(stderr, "\n");
#endif
// TS 102 821 7.2.2: s_max = MIN(floor(c*p/(m+1)), MTU - h))
const size_t max_payload_size = ( m_num_chunks * ParityBytes ) / (m_m + 1);
// Calculate fragment count and size
// TS 102 821 7.2.2: ceil((l + c*p + z) / s_max)
// l + c*p + z = length of RS block
const size_t num_fragments = CEIL_DIV(rs_block.size(), max_payload_size);
// TS 102 821 7.2.2: ceil((l + c*p + z) / f)
const size_t fragment_size = CEIL_DIV(rs_block.size(), num_fragments);
if (m_verbose)
fprintf(stderr, " PnF fragment_size %zu, num frag %zu\n",
fragment_size, num_fragments);
vector< vector > fragments(num_fragments);
for (size_t i = 0; i < num_fragments; i++) {
fragments[i].resize(fragment_size);
for (size_t j = 0; j < fragment_size; j++) {
if (j*num_fragments + i > rs_block.size()) {
fragments[i][j] = 0;
}
else {
fragments[i][j] = rs_block[j*num_fragments + i];
}
}
}
return fragments;
}
else { // No RS, only fragmentation
// TS 102 821 7.2.2: s_max = MTU - h
const size_t max_payload_size = 1000; // TODO define properly
// Calculate fragment count and size
// TS 102 821 7.2.2: ceil((l + c*p + z) / s_max)
// l + c*p + z = length of AF packet
const size_t num_fragments = CEIL_DIV(af_packet.size(), max_payload_size);
// TS 102 821 7.2.2: ceil((l + c*p + z) / f)
const size_t fragment_size = CEIL_DIV(af_packet.size(), num_fragments);
vector< vector > fragments(num_fragments);
for (size_t i = 0; i < num_fragments; i++) {
//fragments[i].reserve(fragment_size);
for (size_t j = 0; j < fragment_size; j++) {
if (i*fragment_size + j > af_packet.size()) {
break;
}
else {
fragments[i].push_back(af_packet[i*fragment_size + j]);
}
}
}
return fragments;
}
}
std::vector< PFTFragment > PFT::Assemble(AFPacket af_packet)
{
vector< vector > fragments = ProtectAndFragment(af_packet);
vector< vector > pft_fragments; // These contain PF headers
const bool enable_RS = (m_m > 0);
const bool enable_transport = true;
unsigned int findex = 0;
unsigned fcount = fragments.size();
// calculate size of chunk:
// TS 102 821 7.2.2: k = ceil(l / c)
// chunk_len does not include the 48 bytes of protection.
const size_t chunk_len = enable_RS ?
CEIL_DIV(af_packet.size(), m_num_chunks) : 0;
// The last RS chunk is zero padded
// TS 102 821 7.2.2: z = c*k - l
const size_t zero_pad = enable_RS ?
m_num_chunks * chunk_len - af_packet.size() : 0;
for (const auto &fragment : fragments) {
// Psync
std::string psync("PF");
std::vector packet(psync.begin(), psync.end());
// Pseq
packet.push_back(m_pseq >> 8);
packet.push_back(m_pseq & 0xFF);
// Findex
packet.push_back(findex >> 16);
packet.push_back(findex >> 8);
packet.push_back(findex & 0xFF);
findex++;
// Fcount
packet.push_back(fcount >> 16);
packet.push_back(fcount >> 8);
packet.push_back(fcount & 0xFF);
// RS (1 bit), transport (1 bit) and Plen (14 bits)
unsigned int plen = fragment.size();
if (enable_RS) {
plen |= 0x8000; // Set FEC bit
}
if (enable_transport) {
plen |= 0x4000; // Set ADDR bit
}
packet.push_back(plen >> 8);
packet.push_back(plen & 0xFF);
if (enable_RS) {
packet.push_back(chunk_len); // RSk
packet.push_back(zero_pad); // RSz
}
if (enable_transport) {
// Source (16 bits)
uint16_t addr_source = 0;
packet.push_back(addr_source >> 8);
packet.push_back(addr_source & 0xFF);
// Dest (16 bits)
packet.push_back(m_dest_port >> 8);
packet.push_back(m_dest_port & 0xFF);
}
// calculate CRC over AF Header and payload
uint16_t crc = 0xffff;
crc = crc16(crc, &(packet.front()), packet.size());
crc ^= 0xffff;
packet.push_back((crc >> 8) & 0xFF);
packet.push_back(crc & 0xFF);
// insert payload, must have a length multiple of 8 bytes
packet.insert(packet.end(), fragment.begin(), fragment.end());
pft_fragments.push_back(packet);
#if 0
fprintf(stderr, "* PFT pseq %d, findex %d, fcount %d, plen %d\n",
m_pseq, findex, fcount, plen & ~0x8000);
#endif
}
m_pseq++;
return pft_fragments;
}