/* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Copyright (C) 2019 Matthias P. Braendli, matthias.braendli@mpb.li http://www.opendigitalradio.org */ /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. */ #include "Socket.h" #include <iostream> #include <cstdio> #include <cstring> #include <cerrno> #include <fcntl.h> #include <poll.h> namespace Socket { using namespace std; void InetAddress::resolveUdpDestination(const std::string& destination, int port) { char service[NI_MAXSERV]; snprintf(service, NI_MAXSERV-1, "%d", port); struct addrinfo hints; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */ hints.ai_flags = 0; hints.ai_protocol = 0; struct addrinfo *result, *rp; int s = getaddrinfo(destination.c_str(), service, &hints, &result); if (s != 0) { throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s)); } for (rp = result; rp != nullptr; rp = rp->ai_next) { // Take the first result memcpy(&addr, rp->ai_addr, rp->ai_addrlen); break; } freeaddrinfo(result); if (rp == nullptr) { throw runtime_error("Could not resolve"); } } UDPPacket::UDPPacket() { } UDPPacket::UDPPacket(size_t initSize) : buffer(initSize) { } UDPSocket::UDPSocket() : m_sock(INVALID_SOCKET) { reinit(0, ""); } UDPSocket::UDPSocket(int port) : m_sock(INVALID_SOCKET) { reinit(port, ""); } UDPSocket::UDPSocket(int port, const std::string& name) : m_sock(INVALID_SOCKET) { reinit(port, name); } void UDPSocket::setBlocking(bool block) { int res = fcntl(m_sock, F_SETFL, block ? 0 : O_NONBLOCK); if (res == -1) { throw runtime_error(string("Can't change blocking state of socket: ") + strerror(errno)); } } void UDPSocket::reinit(int port) { return reinit(port, ""); } void UDPSocket::reinit(int port, const std::string& name) { if (m_sock != INVALID_SOCKET) { ::close(m_sock); } if (port == 0) { // No need to bind to a given port, creating the // socket is enough m_sock = ::socket(AF_INET, SOCK_DGRAM, 0); return; } char service[NI_MAXSERV]; snprintf(service, NI_MAXSERV-1, "%d", port); struct addrinfo hints; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */ hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */ hints.ai_protocol = 0; /* Any protocol */ hints.ai_canonname = nullptr; hints.ai_addr = nullptr; hints.ai_next = nullptr; struct addrinfo *result, *rp; int s = getaddrinfo(name.empty() ? nullptr : name.c_str(), port == 0 ? nullptr : service, &hints, &result); if (s != 0) { throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s)); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully bind(2). If socket(2) (or bind(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != nullptr; rp = rp->ai_next) { int sfd = ::socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) { continue; } if (::bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) { m_sock = sfd; break; } ::close(sfd); } freeaddrinfo(result); if (rp == nullptr) { throw runtime_error("Could not bind"); } } void UDPSocket::close() { if (m_sock != INVALID_SOCKET) { ::close(m_sock); } m_sock = INVALID_SOCKET; } UDPSocket::~UDPSocket() { if (m_sock != INVALID_SOCKET) { ::close(m_sock); } } UDPPacket UDPSocket::receive(size_t max_size) { UDPPacket packet(max_size); socklen_t addrSize; addrSize = sizeof(*packet.address.as_sockaddr()); ssize_t ret = recvfrom(m_sock, packet.buffer.data(), packet.buffer.size(), 0, packet.address.as_sockaddr(), &addrSize); if (ret == SOCKET_ERROR) { packet.buffer.resize(0); // This suppresses the -Wlogical-op warning #if EAGAIN == EWOULDBLOCK if (errno == EAGAIN) { #else if (errno == EAGAIN or errno == EWOULDBLOCK) { #endif return 0; } throw runtime_error(string("Can't receive data: ") + strerror(errno)); } packet.buffer.resize(ret); return packet; } void UDPSocket::send(UDPPacket& packet) { const int ret = sendto(m_sock, packet.buffer.data(), packet.buffer.size(), 0, packet.address.as_sockaddr(), sizeof(*packet.address.as_sockaddr())); if (ret == SOCKET_ERROR && errno != ECONNREFUSED) { throw runtime_error(string("Can't send UDP packet: ") + strerror(errno)); } } void UDPSocket::send(const std::vector<uint8_t>& data, InetAddress destination) { const int ret = sendto(m_sock, data.data(), data.size(), 0, destination.as_sockaddr(), sizeof(*destination.as_sockaddr())); if (ret == SOCKET_ERROR && errno != ECONNREFUSED) { throw runtime_error(string("Can't send UDP packet: ") + strerror(errno)); } } void UDPSocket::joinGroup(const char* groupname, const char* if_addr) { ip_mreqn group; if ((group.imr_multiaddr.s_addr = inet_addr(groupname)) == INADDR_NONE) { throw runtime_error("Cannot convert multicast group name"); } if (!IN_MULTICAST(ntohl(group.imr_multiaddr.s_addr))) { throw runtime_error("Group name is not a multicast address"); } if (if_addr) { group.imr_address.s_addr = inet_addr(if_addr); } else { group.imr_address.s_addr = htons(INADDR_ANY); } group.imr_ifindex = 0; if (setsockopt(m_sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &group, sizeof(group)) == SOCKET_ERROR) { throw runtime_error(string("Can't join multicast group") + strerror(errno)); } } void UDPSocket::setMulticastSource(const char* source_addr) { struct in_addr addr; if (inet_aton(source_addr, &addr) == 0) { throw runtime_error(string("Can't parse source address") + strerror(errno)); } if (setsockopt(m_sock, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr)) == SOCKET_ERROR) { throw runtime_error(string("Can't set source address") + strerror(errno)); } } void UDPSocket::setMulticastTTL(int ttl) { if (setsockopt(m_sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)) == SOCKET_ERROR) { throw runtime_error(string("Can't set multicast ttl") + strerror(errno)); } } UDPReceiver::UDPReceiver() { } UDPReceiver::~UDPReceiver() { m_stop = true; m_sock.close(); if (m_thread.joinable()) { m_thread.join(); } } void UDPReceiver::start(int port, const string& bindto, const string& mcastaddr, size_t max_packets_queued) { m_port = port; m_bindto = bindto; m_mcastaddr = mcastaddr; m_max_packets_queued = max_packets_queued; m_thread = std::thread(&UDPReceiver::m_run, this); } std::vector<uint8_t> UDPReceiver::get_packet_buffer() { if (m_stop) { throw runtime_error("UDP Receiver not running"); } UDPPacket p; m_packets.wait_and_pop(p); return p.buffer; } void UDPReceiver::m_run() { // Ensure that stop is set to true in case of exception or return struct SetStopOnDestruct { SetStopOnDestruct(atomic<bool>& stop) : m_stop(stop) {} ~SetStopOnDestruct() { m_stop = true; } private: atomic<bool>& m_stop; } autoSetStop(m_stop); if (IN_MULTICAST(ntohl(inet_addr(m_mcastaddr.c_str())))) { m_sock.reinit(m_port, m_mcastaddr); m_sock.setMulticastSource(m_bindto.c_str()); m_sock.joinGroup(m_mcastaddr.c_str(), m_bindto.c_str()); } else { m_sock.reinit(m_port, m_bindto); } while (not m_stop) { constexpr size_t packsize = 8192; try { auto packet = m_sock.receive(packsize); if (packet.buffer.size() == packsize) { // TODO replace fprintf fprintf(stderr, "Warning, possible UDP truncation\n"); } // If this blocks, the UDP socket will lose incoming packets m_packets.push_wait_if_full(packet, m_max_packets_queued); } catch (const std::runtime_error& e) { // TODO replace fprintf // TODO handle intr fprintf(stderr, "Socket error: %s\n", e.what()); m_stop = true; } } } TCPSocket::TCPSocket() { } TCPSocket::~TCPSocket() { if (m_sock != -1) { ::close(m_sock); } } TCPSocket::TCPSocket(TCPSocket&& other) : m_sock(other.m_sock), m_remote_address(move(other.m_remote_address)) { if (other.m_sock != -1) { other.m_sock = -1; } } TCPSocket& TCPSocket::operator=(TCPSocket&& other) { swap(m_remote_address, other.m_remote_address); m_sock = other.m_sock; if (other.m_sock != -1) { other.m_sock = -1; } return *this; } bool TCPSocket::valid() const { return m_sock != -1; } void TCPSocket::connect(const std::string& hostname, int port, bool nonblock) { if (m_sock != INVALID_SOCKET) { throw std::logic_error("You may only connect an invalid TCPSocket"); } char service[NI_MAXSERV]; snprintf(service, NI_MAXSERV-1, "%d", port); /* Obtain address(es) matching host/port */ struct addrinfo hints; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = 0; hints.ai_protocol = 0; struct addrinfo *result, *rp; int s = getaddrinfo(hostname.c_str(), service, &hints, &result); if (s != 0) { throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s)); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully connect(2). If socket(2) (or connect(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != nullptr; rp = rp->ai_next) { int sfd = ::socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) continue; if (nonblock) { int flags = fcntl(sfd, F_GETFL); if (flags == -1) { std::string errstr(strerror(errno)); throw std::runtime_error("TCP: Could not get socket flags: " + errstr); } if (fcntl(sfd, F_SETFL, flags | O_NONBLOCK) == -1) { std::string errstr(strerror(errno)); throw std::runtime_error("TCP: Could not set O_NONBLOCK: " + errstr); } } int ret = ::connect(sfd, rp->ai_addr, rp->ai_addrlen); if (ret != -1 or (ret == -1 and errno == EINPROGRESS)) { m_sock = sfd; break; } ::close(sfd); } if (m_sock != INVALID_SOCKET) { #if defined(HAVE_SO_NOSIGPIPE) int val = 1; if (setsockopt(m_sock, SOL_SOCKET, SO_NOSIGPIPE, &val, sizeof(val)) == SOCKET_ERROR) { throw std::runtime_error("Can't set SO_NOSIGPIPE"); } #endif } freeaddrinfo(result); /* No longer needed */ if (rp == nullptr) { throw runtime_error("Could not connect"); } } void TCPSocket::listen(int port, const string& name) { if (m_sock != INVALID_SOCKET) { throw std::logic_error("You may only listen with an invalid TCPSocket"); } char service[NI_MAXSERV]; snprintf(service, NI_MAXSERV-1, "%d", port); struct addrinfo hints; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */ hints.ai_protocol = 0; hints.ai_canonname = nullptr; hints.ai_addr = nullptr; hints.ai_next = nullptr; struct addrinfo *result, *rp; int s = getaddrinfo(name.empty() ? nullptr : name.c_str(), service, &hints, &result); if (s != 0) { throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s)); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully bind(2). If socket(2) (or bind(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != nullptr; rp = rp->ai_next) { int sfd = ::socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) { continue; } if (::bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) { m_sock = sfd; break; } ::close(sfd); } freeaddrinfo(result); if (m_sock != INVALID_SOCKET) { #if defined(HAVE_SO_NOSIGPIPE) int val = 1; if (setsockopt(m_sock, SOL_SOCKET, SO_NOSIGPIPE, &val, sizeof(val)) < 0) { throw std::runtime_error("Can't set SO_NOSIGPIPE"); } #endif int ret = ::listen(m_sock, 0); if (ret == -1) { throw std::runtime_error(string("Could not listen: ") + strerror(errno)); } } if (rp == nullptr) { throw runtime_error("Could not bind"); } } void TCPSocket::close() { ::close(m_sock); m_sock = -1; } TCPSocket TCPSocket::accept(int timeout_ms) { if (timeout_ms == 0) { InetAddress remote_addr; socklen_t client_len = sizeof(remote_addr.addr); int sockfd = ::accept(m_sock, remote_addr.as_sockaddr(), &client_len); TCPSocket s(sockfd, remote_addr); return s; } else { struct pollfd fds[1]; fds[0].fd = m_sock; fds[0].events = POLLIN; int retval = poll(fds, 1, timeout_ms); if (retval == -1) { std::string errstr(strerror(errno)); throw std::runtime_error("TCP Socket accept error: " + errstr); } else if (retval > 0) { InetAddress remote_addr; socklen_t client_len = sizeof(remote_addr.addr); int sockfd = ::accept(m_sock, remote_addr.as_sockaddr(), &client_len); TCPSocket s(sockfd, remote_addr); return s; } else { TCPSocket s(-1); return s; } } } ssize_t TCPSocket::sendall(const void *buffer, size_t buflen) { uint8_t *buf = (uint8_t*)buffer; while (buflen > 0) { /* On Linux, the MSG_NOSIGNAL flag ensures that the process * would not receive a SIGPIPE and die. * Other systems have SO_NOSIGPIPE set on the socket for the * same effect. */ #if defined(HAVE_MSG_NOSIGNAL) const int flags = MSG_NOSIGNAL; #else const int flags = 0; #endif ssize_t sent = ::send(m_sock, buf, buflen, flags); if (sent < 0) { return -1; } else { buf += sent; buflen -= sent; } } return buflen; } ssize_t TCPSocket::send(const void* data, size_t size, int timeout_ms) { if (timeout_ms) { struct pollfd fds[1]; fds[0].fd = m_sock; fds[0].events = POLLOUT; const int retval = poll(fds, 1, timeout_ms); if (retval == -1) { throw std::runtime_error(string("TCP Socket send error on poll(): ") + strerror(errno)); } else if (retval == 0) { // Timed out return 0; } } /* On Linux, the MSG_NOSIGNAL flag ensures that the process would not * receive a SIGPIPE and die. * Other systems have SO_NOSIGPIPE set on the socket for the same effect. */ #if defined(HAVE_MSG_NOSIGNAL) const int flags = MSG_NOSIGNAL; #else const int flags = 0; #endif const ssize_t ret = ::send(m_sock, (const char*)data, size, flags); if (ret == SOCKET_ERROR) { throw std::runtime_error(string("TCP Socket send error: ") + strerror(errno)); } return ret; } ssize_t TCPSocket::recv(void *buffer, size_t length, int flags) { ssize_t ret = ::recv(m_sock, buffer, length, flags); if (ret == -1) { std::string errstr(strerror(errno)); throw std::runtime_error("TCP receive error: " + errstr); } return ret; } ssize_t TCPSocket::recv(void *buffer, size_t length, int flags, int timeout_ms) { struct pollfd fds[1]; fds[0].fd = m_sock; fds[0].events = POLLIN; int retval = poll(fds, 1, timeout_ms); if (retval == -1 and errno == EINTR) { throw Interrupted(); } else if (retval == -1) { std::string errstr(strerror(errno)); throw std::runtime_error("TCP receive with poll() error: " + errstr); } else if (retval > 0 and (fds[0].revents | POLLIN)) { ssize_t ret = ::recv(m_sock, buffer, length, flags); if (ret == -1) { if (errno == ECONNREFUSED) { return 0; } std::string errstr(strerror(errno)); throw std::runtime_error("TCP receive after poll() error: " + errstr); } return ret; } else { throw Timeout(); } } TCPSocket::TCPSocket(int sockfd) : m_sock(sockfd), m_remote_address() { } TCPSocket::TCPSocket(int sockfd, InetAddress remote_address) : m_sock(sockfd), m_remote_address(remote_address) { } void TCPClient::connect(const std::string& hostname, int port) { m_hostname = hostname; m_port = port; reconnect(); } ssize_t TCPClient::recv(void *buffer, size_t length, int flags, int timeout_ms) { try { ssize_t ret = m_sock.recv(buffer, length, flags, timeout_ms); if (ret == 0) { m_sock.close(); reconnect(); } return ret; } catch (const TCPSocket::Interrupted&) { return -1; } catch (const TCPSocket::Timeout&) { return 0; } return 0; } void TCPClient::reconnect() { TCPSocket newsock; m_sock = std::move(newsock); m_sock.connect(m_hostname, m_port, true); } TCPConnection::TCPConnection(TCPSocket&& sock) : queue(), m_running(true), m_sender_thread(), m_sock(move(sock)) { #if MISSING_OWN_ADDR auto own_addr = m_sock.getOwnAddress(); auto addr = m_sock.getRemoteAddress(); etiLog.level(debug) << "New TCP Connection on port " << own_addr.getPort() << " from " << addr.getHostAddress() << ":" << addr.getPort(); #endif m_sender_thread = std::thread(&TCPConnection::process, this); } TCPConnection::~TCPConnection() { m_running = false; vector<uint8_t> termination_marker; queue.push(termination_marker); m_sender_thread.join(); } void TCPConnection::process() { while (m_running) { vector<uint8_t> data; queue.wait_and_pop(data); if (data.empty()) { // empty vector is the termination marker m_running = false; break; } try { ssize_t remaining = data.size(); const uint8_t *buf = reinterpret_cast<const uint8_t*>(data.data()); const int timeout_ms = 10; // Less than one ETI frame while (m_running and remaining > 0) { const ssize_t sent = m_sock.send(buf, remaining, timeout_ms); if (sent < 0 or sent > remaining) { throw std::logic_error("Invalid TCPSocket::send() return value"); } remaining -= sent; buf += sent; } } catch (const std::runtime_error& e) { m_running = false; } } #if MISSING_OWN_ADDR auto own_addr = m_sock.getOwnAddress(); auto addr = m_sock.getRemoteAddress(); etiLog.level(debug) << "Dropping TCP Connection on port " << own_addr.getPort() << " from " << addr.getHostAddress() << ":" << addr.getPort(); #endif } TCPDataDispatcher::TCPDataDispatcher(size_t max_queue_size) : m_max_queue_size(max_queue_size) { } TCPDataDispatcher::~TCPDataDispatcher() { m_running = false; m_connections.clear(); m_listener_socket.close(); if (m_listener_thread.joinable()) { m_listener_thread.join(); } } void TCPDataDispatcher::start(int port, const string& address) { m_listener_socket.listen(port, address); m_running = true; m_listener_thread = std::thread(&TCPDataDispatcher::process, this); } void TCPDataDispatcher::write(const vector<uint8_t>& data) { if (not m_running) { throw runtime_error(m_exception_data); } for (auto& connection : m_connections) { connection.queue.push(data); } m_connections.remove_if( [&](const TCPConnection& conn){ return conn.queue.size() > m_max_queue_size; }); } void TCPDataDispatcher::process() { try { const int timeout_ms = 1000; while (m_running) { // Add a new TCPConnection to the list, constructing it from the client socket auto sock = m_listener_socket.accept(timeout_ms); if (sock.valid()) { m_connections.emplace(m_connections.begin(), move(sock)); } } } catch (const std::runtime_error& e) { m_exception_data = string("TCPDataDispatcher error: ") + e.what(); m_running = false; } } TCPReceiveServer::TCPReceiveServer(size_t blocksize) : m_blocksize(blocksize) { } void TCPReceiveServer::start(int listen_port, const std::string& address) { m_listener_socket.listen(listen_port, address); m_running = true; m_listener_thread = std::thread(&TCPReceiveServer::process, this); } TCPReceiveServer::~TCPReceiveServer() { m_running = false; if (m_listener_thread.joinable()) { m_listener_thread.join(); } } vector<uint8_t> TCPReceiveServer::receive() { vector<uint8_t> buffer; m_queue.try_pop(buffer); // we can ignore try_pop()'s return value, because // if it is unsuccessful the buffer is not touched. return buffer; } void TCPReceiveServer::process() { constexpr int timeout_ms = 1000; constexpr int disconnect_timeout_ms = 10000; constexpr int max_num_timeouts = disconnect_timeout_ms / timeout_ms; while (m_running) { auto sock = m_listener_socket.accept(timeout_ms); int num_timeouts = 0; while (m_running and sock.valid()) { try { vector<uint8_t> buf(m_blocksize); ssize_t r = sock.recv(buf.data(), buf.size(), 0, timeout_ms); if (r < 0) { throw logic_error("Invalid recv return value"); } else if (r == 0) { sock.close(); break; } else { buf.resize(r); m_queue.push(move(buf)); } } catch (const TCPSocket::Interrupted&) { break; } catch (const TCPSocket::Timeout&) { num_timeouts++; } if (num_timeouts > max_num_timeouts) { sock.close(); } } } } }