; This is an example configuration file that illustrates
; the structure of the configuration.
; It doesn't show all possible options. A more detailed example
; is available in doc/advanced.mux
;
; It contains two services, one DAB and one DAB+, and also shows
; both the file input useful for offline processing, and the
; EDI input useful in a 24/7 scenario.

; More information about the usage of the tools is available
; in the guide, which can be found on the
; www.opendigitalradio.org website.
;
; As you can see, comments are defined by semicolons.
;
; It consists of six mandatory sections, whose relative order in this
; file are of no importance.

; The general section defines global multiplex parameters.
general {
    ; the DAB Transmission mode (values 1-4 accepted)
    dabmode 1

    ; the number of ETI frames to generate (set to 0 to get an unlimited number)
    nbframes 10

    ; boolean fields can accept either false or true as values:

    ; Set to true to enable logging to syslog
    syslog false

    ; Enable timestamp definition necessary for SFN
    ; This also enables time encoding using the MNSC.
    ;
    ; When TIST is enabled, and either EDI or a ZMQ output with metadata is used,
    ; ODR-DabMux will download leap-second information from the IETF website,
    ; and cache it locally in /var/tmp. It will refresh the data by itself
    ; before it expires.
    ;
    ; If it cannot load this information, ODR-DabMux cannot start up!
    ;
    ; If your system doesn't have access to internet, you have to take care
    ; to create the file before ODR-DabMux startup. Get it from
    ; http://www.ietf.org/timezones/data/leap-seconds.list
    ; and save it to
    ; /var/tmp/odr-dabmux-leap-seconds.cache
    ; Refresh the file before expiry otherwise ODR-DabMux will abort!
    ;
    ; Use the RC interface 'get clocktai expiry' command to check how long
    ; your file is still valid.
    tist false

    ; The URLs used to fetch the TAI bulletin can be overridden if needed.
    ; URLs are given as a pipe-separated list, and the default value is:
    ;tai_clock_bulletins "https://www.ietf.org/timezones/data/leap-seconds.list|https://raw.githubusercontent.com/eggert/tz/master/leap-seconds.list"
    ;
    ; You may also use a file:// URL if you take care of updating the file
    ; yourself and store it locally.

    ; The management server is a simple TCP server that can present
    ; statistics data (buffers, overruns, underruns, etc)
    ; which can then be graphed a tool like Munin
    ; The doc/stats_dabmux_multi.py tool is a suitable
    ; plugin for that. The data fields are documented in doc/STATS.md
    ; If the port is zero, or the line commented, the server
    ; is not started.
    managementport 12720

    ; At startup, run the command and abort if is it not returning 0.
    ; This may be a script. Useful for checking if the NTP client on your
    ; system has had time to setup the clock.
    ;startupcheck "chronyc waitsync 10 0.01"
    ;startupcheck "ntp-wait -fv"
}

remotecontrol {
    ; enable the telnet remote control server on the given port
    ; This server allows you to read and define parameters that
    ; some features export. It is only accessible from localhost.
    ; Set the port to 0 to disable the server
    telnetport 12721

    ; The remote control is also accessible through a ZMQ REQ/REP socket,
    ; and is useful for machine-triggered interactions. It supports the
    ; same commands as the telnet RC.
    ; The example code in doc/zmq_remote.py illustrates how to use this rc.
    ; To disable the zeromq endpoint, remove the zmqendpoint line.
    ; By specifying "lo" in the URL, we make the server only accessible
    ; from localhost. You can write tcp://*:12722 to make it accessible
    ; on all interfaces.
    zmqendpoint tcp://lo:12722

    ; the remote control server makes use of the unique identifiers
    ; for the subchannels, services and components. Make sure you
    ; chose them so that you can identify them.
}

; Some ensemble parameters
ensemble {
    ; A unique 16-bit id is allocated to the ensemble and allows unambiguous
    ; identification of the ensemble when associated with the ensemble ECC.
    ; The id normally starts with the coutry id. (See ETSI TS 101 756)

    ; Example for Switzerland, with country id=4 and ECC=E1
    id 0x4fff ; you can also use decimal if you want
    ecc 0xe1 ; Extended Country Code

    local-time-offset auto  ; autmatically calculate from system local time
                            ; or
    ;local-time-offset 1    ; in hours, supports half-hour offsets

    ; The presence of reconfig-counter enables FIG0/7, which specifies that
    ; the ensemble is compliant to EN 300 401 version 2.
    ; You can either set a number which will be used for the Count field in FIG0/7,
    ;reconfig-counter 23
    ; or set
    reconfig-counter hash
    ; to let ODR-DabMux calculate a hash that depends on your multiplex configuration,
    ; ensuring that when you change the configuration, the FIG 0/7 Count also changes
    ;
    ; Leave the option commented-out if you do not wish to transmit FIG 0/7.

    ; If you want to run your machine in UTC time, but still take advantage of the
    ; automatic calculation of the local time offset, set the environment variable TZ
    ; to your timezone (e.g. TZ=Europe/Rome) before you launch ODR-DabMux

    ; FIG1 labels are given with the 'label' and 'shortlabel' keys.
    ;
    ; All labels are maximum 16 characters in length.
    ; Labels that are valid utf-8 will be converted to EBU Latin Character set
    ; as defined in ETSI TS 101 756, in Annex C. If it's not valid utf-8, the
    ; label is taken as-is, byte per byte. Characters that cannot be
    ; represented in EBU Latin will be replaced by a space character.
    label "OpenDigitalRadio"

    ; The short label is built from the label by erasing letters, and cannot
    ; be longer than 8 characters. If omitted, it will be truncated from the
    ; label
    shortlabel "ODR"

    ; The FIG2 label can be up to 16 characters long, and is in UTF-8.
    ;fig2_label "ÓpêñÐigıtålRadiō"

    ; FIG2 labels can either be sent with a character field (old spec)
    ; or with a text control (new draftETSI TS 103 176 v2.2.1).
    ; If unspecified, defaults to setting the text control with the values
    ; shown in the example below.
    ;
    ;fig2_label_character_flag "0xFF00"
    ;
    ;fig2_label_text_control {
    ; bidi false
    ; base_direction "LTR"
    ; contextual false
    ; combining false
    ;}
}

; Definition of DAB services
services {
    ; Each service has it's own unique identifier, that is
    ; used throughout the configuration file and for the RC.
    srv-fu {
        id 0x4daa
        label "Fünk"
        ; You can define a shortlabel and a fig2_label too.
    }
    srv-ri {
        ; If your ensemble contains a service from another country,
        ; specify its ECC here. Example is for Italy, country id=5, ECC=E0
        id 0x5dab
        ecc 0xe0
        label "Rick"
    }
}

subchannels {
    sub-fu {
        ; This is our DAB programme, using a file input
        type audio
        bitrate 128
        id 10
        protection 3

        inputfile "funk.mp2"
    }
    sub-bla {
        type audio
        bitrate 96
        id 1
        protection 1

        ; for audio and dabplus, EDI input is available. It supports TCP server and UDP
        inputproto edi
        ; Accepts connection to port 9001 from any interface
        inputuri "tcp://0.0.0.0:9001"

        ; Two buffer-management types are available: prebuffering and timestamped.
        ; prebuffering will accumulate a few frames before it starts streaming, and each
        ; time there is a buffer underrun (similar to how the ZMQ input works)
        ;
        ; timestamped takes into account the TIST inside EDI and inserts the encoded
        ; audio frame into the ETI frame with the same timestamp
        buffer-management prebuffering

        ; In an ideal scenario, where the input rate exactly corresponds
        ; to the rate at which the frames are consumed by dabmux, you
        ; see the buffer level staying around the prebuffering value.
        ; Network latency jitter can make it temporarily go lower or higher.
        ; Encoder clock drift will make the buffer either slowly fill or
        ; empty, which will create intermittent glitches.

        ; Maximum size of input buffer, in frames (24ms)
        ; when this buffer size is reached, some frames will be
        ; discarded to get the size again below this value.
        buffer 40

        ; At startup or after an underrun, the buffer is filled to this
        ; amount of frames before streaming starts.
        prebuffering 20
    }
    sub-ri {
        ; This is our DAB+ programme, using a ZeroMQ input
        type dabplus
        bitrate 96
        id 1
        protection 3

        ; Accepts connections to port 9000 from any interface.
        ; Use ODR-AudioEnc as encoder, accepts only connection
        ; from the local machine.
        inputproto edi
        inputuri "tcp://127.0.0.1:9000"

        buffer-management timestamped

        ; When using timestamped, the prebuffering is without effect.
        ; The buffer setting however still dictates the maximum buffer size, to
        ; avoid runaway memory usage in case of issues.
        buffer 500
        ; 500 * 24ms = 12 seconds

        ; Specify the additional delay in milliseconds to add to the TIST. Positive values
        ; mean the content will be inserted later.
        tist-delay 10
    }
}

; In our simple example, each component links one service to one subchannel
components {
    ; the component unique identifiers are used for the RC.
    comp-fu {
        ; According to specification, you should not define component labels if
        ; the service is only used in one component. The service label is sufficient
        ; in that case.
        service srv-fu
        subchannel sub-fu
    }

    comp-ri {
        service srv-ri
        subchannel sub-ri
    }
}

; A list of outputs
outputs {
    ; The unique-id can be used by the remote control or the statistics server
    ; to identify the output

    ; Output RAW ETI NI to standard output
    stdout "fifo:///dev/stdout?type=raw"

    edi {
        ; Example EDI-over-TCP output
        ; If TIST is enabled, requires leap-second information
        destinations {
            example_tcp {
                protocol tcp
                listenport 13000
            }
        }
    }

    ; Throttle output to real-time (one ETI frame every 24ms)
    throttle "simul://"

    ; Important! For real-time operation, you need to have exactly one
    ; output that applies back-pressure to ODR-DabMux, otherwise it will run
    ; at the highest possible rate on your system!
    ;
    ; For an output to a pipe, the data consumer at the other end of the pipe
    ; will dictate the multiplexing rate to ODR-DabMux.
    ;
    ; If you use the EDI output, you must also enable a simul:// output!

    ; More options are given in doc/advanced.mux
}