summaryrefslogtreecommitdiffstats
path: root/doc/advanced.mux
diff options
context:
space:
mode:
Diffstat (limited to 'doc/advanced.mux')
-rw-r--r--doc/advanced.mux44
1 files changed, 14 insertions, 30 deletions
diff --git a/doc/advanced.mux b/doc/advanced.mux
index b9cec05..24a6333 100644
--- a/doc/advanced.mux
+++ b/doc/advanced.mux
@@ -162,10 +162,6 @@ services {
subchannels {
sub-fu {
type audio
- ; example file input
- inputproto zmq
- inputuri "funk.mp2"
- nonblock false
bitrate 128
id 10
@@ -182,21 +178,29 @@ subchannels {
; on the protection profile:
; UEP profile: 1 to 5; EEP profiles: 1 to 4
protection 4
+
+ ; example file input
+ inputproto zmq
+ inputuri "funk.mp2"
+ nonblock false
}
sub-lu {
type dabplus
+ bitrate 96
+ id 3
+ protection 3
; EXPERIMENTAL!
; Receive STI-D(LI) carried in STI(PI, X) inside RTP using UDP.
; This is intended to be compatible with AVT audio encoders.
; EXPERIMENTAL!
inputproto sti
inputuri "rtp://127.0.0.1:32010"
- bitrate 96
- id 3
- protection 3
}
sub-ri {
type dabplus
+ bitrate 96
+ id 1
+ protection 1
; example file input
;inputuri "rick.dabp"
; example zmq input:
@@ -204,9 +208,6 @@ subchannels {
; Use ODR-AudioEnc as encoder
inputproto zmq
inputuri "tcp://*:9000"
- bitrate 96
- id 1
- protection 1
; ZMQ specific options, mandatory:
@@ -254,27 +255,14 @@ subchannels {
; key pairs can be generated using the zmqinput-keygen tool.
}
- sub-ri2 {
- type audio
- ; for audio types, you can use the ZeroMQ input (if compiled in)
- ; with the following configuration in combination with
- ; Toolame-DAB
- inputproto zmq
- inputuri "tcp://*:9001"
- bitrate 96
- id 1
- protection 1
-
- ; The options are the same as for dabplus
- zmq-buffer 40
- zmq-prebuffering 20
- }
-
; 'prbs' will generate a pseudorandom bit sequence according to
; ETS 300 799 Clause G.2.1. This is useful for testing purposes and
; measurement of bit error rate.
sub-prbs {
type data
+ bitrate 16
+ id 5
+ protection 3
; Use the default PRBS polynomial.
inputproto prbs
@@ -284,10 +272,6 @@ subchannels {
; The default polynomial is G(x) = x^20 + x^17 + 1, represented as
; (1 << 20) + (1 << 17) + (1 << 0) = 0x120001
;inputuri "prbs://:0x120001
-
- bitrate 16
- id 5
- protection 3
}
}