diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-02-09 10:06:34 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-02-09 10:06:34 +0100 |
commit | d10839ab23b4ac4dea5ba183c451b650dd07331a (patch) | |
tree | 5f78e10a89134a2a167315a42bc21c5cc3a3cdbb /src/fec/decode_rs.h | |
parent | d1b74c21d8c6f816179cd700dd5859f51bf01d88 (diff) | |
download | dabmux-d10839ab23b4ac4dea5ba183c451b650dd07331a.tar.gz dabmux-d10839ab23b4ac4dea5ba183c451b650dd07331a.tar.bz2 dabmux-d10839ab23b4ac4dea5ba183c451b650dd07331a.zip |
Move external code to lib and stop using SUBDIRS
Diffstat (limited to 'src/fec/decode_rs.h')
-rw-r--r-- | src/fec/decode_rs.h | 298 |
1 files changed, 0 insertions, 298 deletions
diff --git a/src/fec/decode_rs.h b/src/fec/decode_rs.h deleted file mode 100644 index c165cf3..0000000 --- a/src/fec/decode_rs.h +++ /dev/null @@ -1,298 +0,0 @@ -/* The guts of the Reed-Solomon decoder, meant to be #included - * into a function body with the following typedefs, macros and variables supplied - * according to the code parameters: - - * data_t - a typedef for the data symbol - * data_t data[] - array of NN data and parity symbols to be corrected in place - * retval - an integer lvalue into which the decoder's return code is written - * NROOTS - the number of roots in the RS code generator polynomial, - * which is the same as the number of parity symbols in a block. - Integer variable or literal. - * NN - the total number of symbols in a RS block. Integer variable or literal. - * PAD - the number of pad symbols in a block. Integer variable or literal. - * ALPHA_TO - The address of an array of NN elements to convert Galois field - * elements in index (log) form to polynomial form. Read only. - * INDEX_OF - The address of an array of NN elements to convert Galois field - * elements in polynomial form to index (log) form. Read only. - * MODNN - a function to reduce its argument modulo NN. May be inline or a macro. - * FCR - An integer literal or variable specifying the first consecutive root of the - * Reed-Solomon generator polynomial. Integer variable or literal. - * PRIM - The primitive root of the generator poly. Integer variable or literal. - * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this - * undefined for production code - - * The memset(), memmove(), and memcpy() functions are used. The appropriate header - * file declaring these functions (usually <string.h>) must be included by the calling - * program. - */ - - -#if !defined(NROOTS) -#error "NROOTS not defined" -#endif - -#if !defined(NN) -#error "NN not defined" -#endif - -#if !defined(PAD) -#error "PAD not defined" -#endif - -#if !defined(ALPHA_TO) -#error "ALPHA_TO not defined" -#endif - -#if !defined(INDEX_OF) -#error "INDEX_OF not defined" -#endif - -#if !defined(MODNN) -#error "MODNN not defined" -#endif - -#if !defined(FCR) -#error "FCR not defined" -#endif - -#if !defined(PRIM) -#error "PRIM not defined" -#endif - -#if !defined(NULL) -#define NULL ((void *)0) -#endif - -#undef MIN -#define MIN(a,b) ((a) < (b) ? (a) : (b)) -#undef A0 -#define A0 (NN) - -{ - int deg_lambda, el, deg_omega; - int i, j, r,k; - data_t u,q,tmp,num1,num2,den,discr_r; - data_t lambda[NROOTS+1], s[NROOTS]; /* Err+Eras Locator poly - * and syndrome poly */ - data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1]; - data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS]; - int syn_error, count; - - /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ - for(i=0;i<NROOTS;i++) - s[i] = data[0]; - - for(j=1;j<NN-PAD;j++){ - for(i=0;i<NROOTS;i++){ - if(s[i] == 0){ - s[i] = data[j]; - } else { - s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)]; - } - } - } - - /* Convert syndromes to index form, checking for nonzero condition */ - syn_error = 0; - for(i=0;i<NROOTS;i++){ - syn_error |= s[i]; - s[i] = INDEX_OF[s[i]]; - } - - if (!syn_error) { - /* if syndrome is zero, data[] is a codeword and there are no - * errors to correct. So return data[] unmodified - */ - count = 0; - goto finish; - } - memset(&lambda[1],0,NROOTS*sizeof(lambda[0])); - lambda[0] = 1; - - if (no_eras > 0) { - /* Init lambda to be the erasure locator polynomial */ - lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))]; - for (i = 1; i < no_eras; i++) { - u = MODNN(PRIM*(NN-1-eras_pos[i])); - for (j = i+1; j > 0; j--) { - tmp = INDEX_OF[lambda[j - 1]]; - if(tmp != A0) - lambda[j] ^= ALPHA_TO[MODNN(u + tmp)]; - } - } - -#if DEBUG >= 1 - /* Test code that verifies the erasure locator polynomial just constructed - Needed only for decoder debugging. */ - - /* find roots of the erasure location polynomial */ - for(i=1;i<=no_eras;i++) - reg[i] = INDEX_OF[lambda[i]]; - - count = 0; - for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { - q = 1; - for (j = 1; j <= no_eras; j++) - if (reg[j] != A0) { - reg[j] = MODNN(reg[j] + j); - q ^= ALPHA_TO[reg[j]]; - } - if (q != 0) - continue; - /* store root and error location number indices */ - root[count] = i; - loc[count] = k; - count++; - } - if (count != no_eras) { - printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras); - count = -1; - goto finish; - } -#if DEBUG >= 2 - printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); - for (i = 0; i < count; i++) - printf("%d ", loc[i]); - printf("\n"); -#endif -#endif - } - for(i=0;i<NROOTS+1;i++) - b[i] = INDEX_OF[lambda[i]]; - - /* - * Begin Berlekamp-Massey algorithm to determine error+erasure - * locator polynomial - */ - r = no_eras; - el = no_eras; - while (++r <= NROOTS) { /* r is the step number */ - /* Compute discrepancy at the r-th step in poly-form */ - discr_r = 0; - for (i = 0; i < r; i++){ - if ((lambda[i] != 0) && (s[r-i-1] != A0)) { - discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])]; - } - } - discr_r = INDEX_OF[discr_r]; /* Index form */ - if (discr_r == A0) { - /* 2 lines below: B(x) <-- x*B(x) */ - memmove(&b[1],b,NROOTS*sizeof(b[0])); - b[0] = A0; - } else { - /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ - t[0] = lambda[0]; - for (i = 0 ; i < NROOTS; i++) { - if(b[i] != A0) - t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])]; - else - t[i+1] = lambda[i+1]; - } - if (2 * el <= r + no_eras - 1) { - el = r + no_eras - el; - /* - * 2 lines below: B(x) <-- inv(discr_r) * - * lambda(x) - */ - for (i = 0; i <= NROOTS; i++) - b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN); - } else { - /* 2 lines below: B(x) <-- x*B(x) */ - memmove(&b[1],b,NROOTS*sizeof(b[0])); - b[0] = A0; - } - memcpy(lambda,t,(NROOTS+1)*sizeof(t[0])); - } - } - - /* Convert lambda to index form and compute deg(lambda(x)) */ - deg_lambda = 0; - for(i=0;i<NROOTS+1;i++){ - lambda[i] = INDEX_OF[lambda[i]]; - if(lambda[i] != A0) - deg_lambda = i; - } - /* Find roots of the error+erasure locator polynomial by Chien search */ - memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0])); - count = 0; /* Number of roots of lambda(x) */ - for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { - q = 1; /* lambda[0] is always 0 */ - for (j = deg_lambda; j > 0; j--){ - if (reg[j] != A0) { - reg[j] = MODNN(reg[j] + j); - q ^= ALPHA_TO[reg[j]]; - } - } - if (q != 0) - continue; /* Not a root */ - /* store root (index-form) and error location number */ -#if DEBUG>=2 - printf("count %d root %d loc %d\n",count,i,k); -#endif - root[count] = i; - loc[count] = k; - /* If we've already found max possible roots, - * abort the search to save time - */ - if(++count == deg_lambda) - break; - } - if (deg_lambda != count) { - /* - * deg(lambda) unequal to number of roots => uncorrectable - * error detected - */ - count = -1; - goto finish; - } - /* - * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo - * x**NROOTS). in index form. Also find deg(omega). - */ - deg_omega = deg_lambda-1; - for (i = 0; i <= deg_omega;i++){ - tmp = 0; - for(j=i;j >= 0; j--){ - if ((s[i - j] != A0) && (lambda[j] != A0)) - tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])]; - } - omega[i] = INDEX_OF[tmp]; - } - - /* - * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = - * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form - */ - for (j = count-1; j >=0; j--) { - num1 = 0; - for (i = deg_omega; i >= 0; i--) { - if (omega[i] != A0) - num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])]; - } - num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)]; - den = 0; - - /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ - for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) { - if(lambda[i+1] != A0) - den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])]; - } -#if DEBUG >= 1 - if (den == 0) { - printf("\n ERROR: denominator = 0\n"); - count = -1; - goto finish; - } -#endif - /* Apply error to data */ - if (num1 != 0 && loc[j] >= PAD) { - data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])]; - } - } - finish: - if(eras_pos != NULL){ - for(i=0;i<count;i++) - eras_pos[i] = loc[i]; - } - retval = count; -} |