1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
/*
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Her Majesty the
Queen in Right of Canada (Communications Research Center Canada)
Copyright (C) 2024
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
DESCRIPTION:
It is an output driver using libiio targeting the PrecisionWave DEXTER board.
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>.
*/
#include "output/Dexter.h"
#ifdef HAVE_DEXTER
#include <chrono>
#include <limits>
#include <cstdio>
#include <iomanip>
#include "Log.h"
#include "Utils.h"
using namespace std;
namespace Output {
static constexpr uint64_t DSP_CLOCK = 2048000uLL * 80;
static constexpr uint64_t IIO_TIMEOUT_MS = 1000;
static constexpr size_t TRANSMISSION_FRAME_LEN_SAMPS = (2656 + 76 * 2552) * /* I+Q */ 2;
static constexpr size_t IIO_BUFFERS = 2;
static constexpr size_t IIO_BUFFER_LEN_SAMPS = TRANSMISSION_FRAME_LEN_SAMPS / IIO_BUFFERS;
static string get_iio_error(int err)
{
char dst[256];
iio_strerror(-err, dst, sizeof(dst));
return string(dst);
}
static void fill_time(struct timespec *t)
{
if (clock_gettime(CLOCK_REALTIME, t) != 0) {
throw std::runtime_error(string("Failed to retrieve CLOCK_REALTIME") + strerror(errno));
}
}
Dexter::Dexter(SDRDeviceConfig& config) :
SDRDevice(),
m_conf(config)
{
etiLog.level(info) << "Dexter:Creating the device";
m_ctx = iio_create_local_context();
if (not m_ctx) {
throw std::runtime_error("Dexter: Unable to create iio context");
}
int r;
if ((r = iio_context_set_timeout(m_ctx, IIO_TIMEOUT_MS)) != 0) {
etiLog.level(error) << "Failed to set IIO timeout " << get_iio_error(r);
}
m_dexter_dsp_tx = iio_context_find_device(m_ctx, "dexter_dsp_tx");
if (not m_dexter_dsp_tx) {
throw std::runtime_error("Dexter: Unable to find dexter_dsp_tx iio device");
}
m_ad9957 = iio_context_find_device(m_ctx, "ad9957");
if (not m_ad9957) {
throw std::runtime_error("Dexter: Unable to find ad9957 iio device");
}
m_ad9957_tx0 = iio_context_find_device(m_ctx, "ad9957_tx0");
if (not m_ad9957_tx0) {
throw std::runtime_error("Dexter: Unable to find ad9957_tx0 iio device");
}
// TODO make DC offset configurable and add to RC
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "dc0", 0)) != 0) {
throw std::runtime_error("Failed to set dexter_dsp_tx.dc0 = false: " + get_iio_error(r));
}
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "dc1", 0)) != 0) {
throw std::runtime_error("Failed to set dexter_dsp_tx.dc1 = false: " + get_iio_error(r));
}
if (m_conf.sampleRate != 2048000) {
throw std::runtime_error("Dexter: Only 2048000 samplerate supported");
}
tune(m_conf.lo_offset, m_conf.frequency);
const double actual_freq = get_tx_freq();
etiLog.level(info) << "Dexter:Actual frequency: " <<
std::fixed << std::setprecision(3) << actual_freq / 1000.0 << " kHz.";
const auto actual_freq_long = llrint(round(actual_freq));
const auto configured_freq_long = llrint(round(m_conf.frequency - m_conf.lo_offset));
if (actual_freq_long != configured_freq_long) {
etiLog.level(error) << "Frequency tune: should " <<
std::fixed << std::setprecision(3) <<
(m_conf.frequency - m_conf.lo_offset) << " (" << configured_freq_long << ") " <<
" read back " << actual_freq << " (" << actual_freq_long << ")";
throw std::runtime_error("Could not set frequency!");
}
// skip: Set bandwidth
// skip: antenna
// The FIFO should not contain data, but setting gain=0 before setting start_clks to zero is an additional security
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "gain0", 0)) != 0) {
throw std::runtime_error("Failed to set dexter_dsp_tx.gain0 = 0 : " + get_iio_error(r));
}
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "stream0_flush_fifo_trigger", 1)) != 0) {
throw std::runtime_error("Failed to set dexter_dsp_tx.stream0_flush_fifo_trigger = 1 : " + get_iio_error(r));
}
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "stream0_start_clks", 0)) != 0) {
throw std::runtime_error("Failed to set dexter_dsp_tx.stream0_start_clks = 0 : " + get_iio_error(r));
}
constexpr int CHANNEL_INDEX = 0;
m_tx_channel = iio_device_get_channel(m_ad9957_tx0, CHANNEL_INDEX);
if (m_tx_channel == nullptr) {
throw std::runtime_error("Dexter: Cannot create IIO channel.");
}
iio_channel_enable(m_tx_channel);
m_buffer = iio_device_create_buffer(m_ad9957_tx0, IIO_BUFFER_LEN_SAMPS, 0);
if (not m_buffer) {
throw std::runtime_error("Dexter: Cannot create IIO buffer.");
}
// Flush the FPGA FIFO
{
constexpr size_t buflen_samps = TRANSMISSION_FRAME_LEN_SAMPS / IIO_BUFFERS;
constexpr size_t buflen = buflen_samps * sizeof(int16_t);
memset(iio_buffer_start(m_buffer), 0, buflen);
ssize_t pushed = iio_buffer_push(m_buffer);
if (pushed < 0) {
etiLog.level(error) << "Dexter: init push buffer " << get_iio_error(pushed);
}
this_thread::sleep_for(chrono::milliseconds(200));
}
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "gain0", m_conf.txgain)) != 0) {
etiLog.level(error) << "Failed to set dexter_dsp_tx.gain0 = " << m_conf.txgain <<
" : " << get_iio_error(r);
}
m_running = true;
m_underflow_read_thread = std::thread(&Dexter::underflow_read_process, this);
}
void Dexter::channel_up()
{
int r;
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "gain0", m_conf.txgain)) != 0) {
etiLog.level(error) << "Failed to set dexter_dsp_tx.gain0 = " << m_conf.txgain <<
" : " << get_iio_error(r);
}
m_channel_is_up = true;
etiLog.level(debug) << "DEXTER CHANNEL_UP";
}
void Dexter::channel_down()
{
int r;
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "gain0", 0)) != 0) {
etiLog.level(error) << "Failed to set dexter_dsp_tx.gain0 = 0: " << get_iio_error(r);
}
// Setting stream0_start_clocks to 0 will flush out the FIFO, but we need to wait a bit before
// we "up" the channel again
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "stream0_start_clks", 0)) != 0) {
etiLog.level(warn) << "Failed to set dexter_dsp_tx.stream0_start_clks = 0 : " << get_iio_error(r);
}
long long underflows_old = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "buffer_underflows0", &underflows_old)) != 0) {
etiLog.level(warn) << "Failed to read dexter_dsp_tx.buffer_underflows0 : " << get_iio_error(r);
}
long long underflows = underflows_old;
// Limiting to 10*96ms is just a safety to avoid running into an infinite loop
for (size_t i = 0; underflows == underflows_old && i < 10; i++) {
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "buffer_underflows0", &underflows)) != 0) {
etiLog.level(warn) << "Failed to read dexter_dsp_tx.buffer_underflows0 : " << get_iio_error(r);
}
this_thread::sleep_for(chrono::milliseconds(96));
}
if (underflows == underflows_old) {
etiLog.level(warn) << "DEXTER CHANNEL_DOWN, no underflow detected! " << underflows;
}
m_channel_is_up = false;
etiLog.level(debug) << "DEXTER CHANNEL_DOWN";
}
void Dexter::handle_hw_time()
{
/*
* On startup, wait until `gpsdo_locked==1` and `pps_loss_of_signal==0`,
* then do the clocks alignment and go to normal state.
*
* In normal state, if `pps_loss_of_signal==1`, go to holdover state.
*
* If we've been in holdover state for longer than the configured time, or
* if `pps_loss_of_signal==0` stop the mod and restart.
*/
int r;
switch (m_clock_state) {
case DexterClockState::Startup:
{
long long gpsdo_locked = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "gpsdo_locked", &gpsdo_locked)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.gpsdo_locked: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
long long pps_loss_of_signal = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "pps_loss_of_signal", &pps_loss_of_signal)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.pps_loss_of_signal: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
if (gpsdo_locked == 1 and pps_loss_of_signal == 0) {
/* Procedure:
* Wait 200ms after second change, fetch pps_clks attribute
* idem at the next second, and check that pps_clks incremented by DSP_CLOCK
* If ok, store the correspondence between current second change (measured in UTC clock time)
* and the counter value at pps rising edge. */
etiLog.level(info) << "Dexter: Waiting for second change...";
struct timespec time_at_startup;
fill_time(&time_at_startup);
time_at_startup.tv_nsec = 0;
struct timespec time_now;
do {
fill_time(&time_now);
this_thread::sleep_for(chrono::milliseconds(1));
} while (time_at_startup.tv_sec == time_now.tv_sec);
this_thread::sleep_for(chrono::milliseconds(200));
long long pps_clks = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "pps_clks", &pps_clks)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.pps_clks: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
time_t tnow = time_now.tv_sec;
etiLog.level(info) << "Dexter: pps_clks " << pps_clks << " at UTC " <<
put_time(std::gmtime(&tnow), "%Y-%m-%d %H:%M:%S");
time_at_startup.tv_sec = time_now.tv_sec;
do {
fill_time(&time_now);
this_thread::sleep_for(chrono::milliseconds(1));
} while (time_at_startup.tv_sec == time_now.tv_sec);
this_thread::sleep_for(chrono::milliseconds(200));
long long pps_clks2 = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "pps_clks", &pps_clks2)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.pps_clks: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
tnow = time_now.tv_sec;
etiLog.level(info) << "Dexter: pps_clks increased by " << pps_clks2 - pps_clks << " at UTC " <<
put_time(std::gmtime(&tnow), "%Y-%m-%d %H:%M:%S");
if ((uint64_t)pps_clks + DSP_CLOCK != (uint64_t)pps_clks2) {
throw std::runtime_error("Dexter: Wrong increase of pps_clks, expected " + to_string(DSP_CLOCK));
}
m_utc_seconds_at_startup = time_now.tv_sec;
m_clock_count_at_startup = pps_clks2;
m_holdover_since = chrono::steady_clock::time_point::min();
m_holdover_since_t = 0;
m_clock_state = DexterClockState::Normal;
etiLog.level(debug) << "Dexter: switch clock state Startup -> Normal";
}
}
break;
case DexterClockState::Normal:
{
long long pps_loss_of_signal = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "pps_loss_of_signal", &pps_loss_of_signal)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.pps_loss_of_signal: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
if (pps_loss_of_signal == 1) {
m_holdover_since = chrono::steady_clock::now();
m_holdover_since_t = chrono::system_clock::to_time_t(chrono::system_clock::now());
m_clock_state = DexterClockState::Holdover;
etiLog.level(debug) << "Dexter: switch clock state Normal -> Holdover";
}
}
break;
case DexterClockState::Holdover:
{
using namespace chrono;
long long pps_loss_of_signal = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "pps_loss_of_signal", &pps_loss_of_signal)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.pps_loss_of_signal: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
const duration<double> d = steady_clock::now() - m_holdover_since;
const auto max_holdover_duration = seconds(m_conf.maxGPSHoldoverTime);
if (d > max_holdover_duration or pps_loss_of_signal == 0) {
m_clock_state = DexterClockState::Startup;
m_utc_seconds_at_startup = 0;
m_clock_count_at_startup = 0;
m_holdover_since = chrono::steady_clock::time_point::min();
m_holdover_since_t = 0;
etiLog.level(debug) << "Dexter: switch clock state Holdover -> Startup";
}
}
break;
}
}
void Dexter::tune(double lo_offset, double frequency)
{
// lo_offset is applied to the DSP, and frequency is given to the ad9957, this gives lower spurs
int r = 0;
const long long freq = frequency - lo_offset;
if ((r = iio_device_attr_write_longlong(m_ad9957, "center_frequency", freq)) != 0) {
etiLog.level(warn) << "Failed to set ad9957.center_frequency = " << freq << " : " << get_iio_error(r);
}
long long lo_offs = std::round(lo_offset);
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "frequency0", lo_offs)) != 0) {
etiLog.level(warn) << "Failed to set dexter_dsp_tx.frequency0 = " << lo_offs << " : " << get_iio_error(r);
}
m_conf.frequency = get_tx_freq();
}
double Dexter::get_tx_freq(void) const
{
int r = 0;
long long lo_offset = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "frequency0", &lo_offset)) != 0) {
etiLog.level(warn) << "Failed to read dexter_dsp_tx.frequency0: " << get_iio_error(r);
return 0;
}
double frequency = 0;
if ((r = iio_device_attr_read_double(m_ad9957, "center_frequency", &frequency)) != 0) {
etiLog.level(warn) << "Failed to read ad9957.center_frequency: " << get_iio_error(r);
return 0;
}
return frequency + lo_offset;
}
void Dexter::set_txgain(double txgain)
{
int r = 0;
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "gain0", txgain)) != 0) {
etiLog.level(warn) << "Failed to set dexter_dsp_tx.gain0 = " << txgain << ": " << get_iio_error(r);
}
long long txgain_readback = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "gain0", &txgain_readback)) != 0) {
etiLog.level(warn) << "Failed to read dexter_dsp_tx.gain0: " << get_iio_error(r);
}
else {
m_conf.txgain = txgain_readback;
}
}
double Dexter::get_txgain(void) const
{
long long txgain_readback = 0;
int r = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "gain0", &txgain_readback)) != 0) {
etiLog.level(warn) << "Failed to read dexter_dsp_tx.gain0: " << get_iio_error(r);
}
return txgain_readback;
}
void Dexter::set_bandwidth(double bandwidth)
{
return;
}
double Dexter::get_bandwidth(void) const
{
return 0;
}
SDRDevice::run_statistics_t Dexter::get_run_statistics(void) const
{
run_statistics_t rs;
{
std::unique_lock<std::mutex> lock(m_attr_thread_mutex);
rs["underruns"].v = underflows;
}
rs["latepackets"].v = num_late;
rs["frames"].v = num_frames_modulated;
rs["in_holdover_since"].v = 0;
rs["remaining_holdover_s"].v = nullopt;
switch (m_clock_state) {
case DexterClockState::Startup:
rs["clock_state"].v = "startup"; break;
case DexterClockState::Normal:
rs["clock_state"].v = "normal"; break;
case DexterClockState::Holdover:
rs["clock_state"].v = "holdover";
rs["in_holdover_since"].v = m_holdover_since_t;
{
using namespace std::chrono;
const auto max_holdover_duration = seconds(m_conf.maxGPSHoldoverTime);
const duration<double> remaining = max_holdover_duration - (steady_clock::now() - m_holdover_since);
rs["remaining_holdover_s"].v = (ssize_t)duration_cast<seconds>(remaining).count();
}
break;
}
return rs;
}
double Dexter::get_real_secs(void) const
{
long long clks = 0;
int r = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "clks", &clks)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.clks: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
switch (m_clock_state) {
case DexterClockState::Startup:
return 0;
case DexterClockState::Normal:
case DexterClockState::Holdover:
return (double)m_utc_seconds_at_startup + (double)(clks - m_clock_count_at_startup) / (double)DSP_CLOCK;
}
throw std::logic_error("Unhandled switch");
}
void Dexter::set_rxgain(double rxgain)
{
// TODO
}
double Dexter::get_rxgain(void) const
{
// TODO
return 0;
}
size_t Dexter::receive_frame(
complexf *buf,
size_t num_samples,
frame_timestamp& ts,
double timeout_secs)
{
// TODO
return 0;
}
bool Dexter::is_clk_source_ok()
{
if (m_conf.enableSync) {
handle_hw_time();
return m_clock_state != DexterClockState::Startup;
}
else {
return true;
}
}
const char* Dexter::device_name(void) const
{
return "Dexter";
}
std::optional<double> Dexter::get_temperature(void) const
{
std::ifstream in("/sys/bus/i2c/devices/1-002f/hwmon/hwmon0/temp1_input", std::ios::in | std::ios::binary);
if (in) {
double tbaseboard;
in >> tbaseboard;
return tbaseboard / 1000.0;
}
else {
return {};
}
}
void Dexter::transmit_frame(struct FrameData&& frame)
{
constexpr size_t frame_len_bytes = TRANSMISSION_FRAME_LEN_SAMPS * sizeof(int16_t);
if (frame.buf.size() != frame_len_bytes) {
etiLog.level(debug) << "Dexter::transmit_frame Expected " <<
frame_len_bytes << " got " << frame.buf.size();
throw std::runtime_error("Dexter: invalid buffer size");
}
const bool require_timestamped_tx = (m_conf.enableSync and frame.ts.timestamp_valid);
if (not m_channel_is_up) {
if (require_timestamped_tx) {
if (m_clock_state == DexterClockState::Startup) {
return; // not ready
}
else {
constexpr uint64_t TIMESTAMP_PPS_PER_DSP_CLOCKS = DSP_CLOCK / 16384000;
// TIMESTAMP_PPS_PER_DSP_CLOCKS=10 because timestamp_pps is represented in 16.384 MHz clocks
uint64_t frame_start_clocks =
// at second level
((int64_t)frame.ts.timestamp_sec - (int64_t)m_utc_seconds_at_startup) * DSP_CLOCK + m_clock_count_at_startup +
// at subsecond level
(uint64_t)frame.ts.timestamp_pps * TIMESTAMP_PPS_PER_DSP_CLOCKS;
const double margin_s = frame.ts.offset_to_system_time();
long long clks = 0;
int r = 0;
if ((r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "clks", &clks)) != 0) {
etiLog.level(error) << "Failed to get dexter_dsp_tx.clks: " << get_iio_error(r);
throw std::runtime_error("Dexter: Cannot read IIO attribute");
}
const double margin_device_s = (double)(frame_start_clocks - clks) / DSP_CLOCK;
etiLog.level(debug) << "DEXTER FCT " << frame.ts.fct << " TS CLK " <<
((int64_t)frame.ts.timestamp_sec - (int64_t)m_utc_seconds_at_startup) * DSP_CLOCK << " + " <<
m_clock_count_at_startup << " + " <<
(uint64_t)frame.ts.timestamp_pps * TIMESTAMP_PPS_PER_DSP_CLOCKS << " = " <<
frame_start_clocks << " DELTA " << margin_s << " " << margin_device_s;
// Ensure we hand the frame over to HW with a bit of margin
if (margin_s < 0.2) {
etiLog.level(warn) << "Skip frame short margin " << margin_s;
num_late++;
return;
}
if ((r = iio_device_attr_write_longlong(m_dexter_dsp_tx, "stream0_start_clks", frame_start_clocks)) != 0) {
etiLog.level(warn) << "Skip frame, failed to set dexter_dsp_tx.stream0_start_clks = " << frame_start_clocks << " : " << get_iio_error(r);
num_late++;
return;
}
m_require_timestamp_refresh = false;
}
}
channel_up();
}
if (m_require_timestamp_refresh) {
etiLog.level(debug) << "DEXTER REQUIRE REFRESH";
channel_down();
m_require_timestamp_refresh = false;
}
// DabMod::launch_modulator ensures we get int16_t IQ here
//const size_t num_samples = frame.buf.size() / (2*sizeof(int16_t));
//const int16_t *buf = reinterpret_cast<const int16_t*>(frame.buf.data());
if (m_channel_is_up) {
for (size_t i = 0; i < IIO_BUFFERS; i++) {
constexpr size_t buflen_samps = TRANSMISSION_FRAME_LEN_SAMPS / IIO_BUFFERS;
constexpr size_t buflen = buflen_samps * sizeof(int16_t);
memcpy(iio_buffer_start(m_buffer), frame.buf.data() + (i * buflen), buflen);
ssize_t pushed = iio_buffer_push(m_buffer);
if (pushed < 0) {
etiLog.level(error) << "Dexter: failed to push buffer " << get_iio_error(pushed) <<
" after " << num_buffers_pushed << " bufs";
num_buffers_pushed = 0;
channel_down();
break;
}
num_buffers_pushed++;
}
num_frames_modulated++;
}
{
std::unique_lock<std::mutex> lock(m_attr_thread_mutex);
size_t u = underflows;
lock.unlock();
if (u != 0 and u != prev_underflows) {
etiLog.level(warn) << "Dexter: underflow! " << prev_underflows << " -> " << u;
}
prev_underflows = u;
}
}
void Dexter::underflow_read_process()
{
m_underflow_ctx = iio_create_local_context();
if (not m_underflow_ctx) {
throw std::runtime_error("Dexter: Unable to create iio context for underflow");
}
auto dexter_dsp_tx = iio_context_find_device(m_ctx, "dexter_dsp_tx");
if (not dexter_dsp_tx) {
throw std::runtime_error("Dexter: Unable to find dexter_dsp_tx iio device");
}
set_thread_name("dexter_underflow");
while (m_running) {
this_thread::sleep_for(chrono::seconds(1));
long long underflows_attr = 0;
int r = iio_device_attr_read_longlong(m_dexter_dsp_tx, "buffer_underflows0", &underflows_attr);
if (r == 0) {
size_t underflows_new = underflows_attr;
std::unique_lock<std::mutex> lock(m_attr_thread_mutex);
if (underflows_new != underflows and underflows_attr != 0) {
underflows = underflows_new;
}
}
}
m_running = false;
}
Dexter::~Dexter()
{
m_running = false;
if (m_underflow_read_thread.joinable()) {
m_underflow_read_thread.join();
}
if (m_ctx) {
if (m_dexter_dsp_tx) {
iio_device_attr_write_longlong(m_dexter_dsp_tx, "gain0", 0);
}
if (m_buffer) {
iio_buffer_destroy(m_buffer);
m_buffer = nullptr;
}
if (m_tx_channel) {
iio_channel_disable(m_tx_channel);
}
iio_context_destroy(m_ctx);
m_ctx = nullptr;
}
if (m_underflow_ctx) {
iio_context_destroy(m_underflow_ctx);
m_underflow_ctx = nullptr;
}
}
} // namespace Output
#endif // HAVE_DEXTER
|