summaryrefslogtreecommitdiffstats
path: root/src/Resampler.cpp
blob: 773b9cce213b118be8d4189d6a2c97772c463264 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Her Majesty
   the Queen in Right of Canada (Communications Research Center Canada)
 */
/*
   This file is part of ODR-DabMod.

   ODR-DabMod is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as
   published by the Free Software Foundation, either version 3 of the
   License, or (at your option) any later version.

   ODR-DabMod is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with ODR-DabMod.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "Resampler.h"
#include "PcDebug.h"


#ifdef __ppc__
#   define memalign(a, b)   malloc(b)
#else // !__ppc__
#   include <mm_malloc.h>
#endif
#include <sys/types.h>
#include <string.h>
#include <stdexcept>
#include <assert.h>


unsigned gcd(unsigned a, unsigned b)
{
    if (b == 0) {
        return a;
    }

    return gcd(b, a % b);
}


Resampler::Resampler(size_t inputRate, size_t outputRate, size_t resolution) :
    ModCodec(ModFormat(inputRate * sizeof(complexf)),
            ModFormat(outputRate * sizeof(complexf))),
    myFftPlan1(NULL),
    myFftPlan2(NULL),
    myFftIn(NULL),
    myFftOut(NULL),
    myBufferIn(NULL),
    myBufferOut(NULL),
    myFront(NULL),
    myBack(NULL),
    myWindow(NULL)
{
    PDEBUG("Resampler::Resampler(%zu, %zu) @ %p\n", inputRate, outputRate, this);

    fprintf(stderr, "This software uses KISS FFT.\n\n");
    fprintf(stderr, "Copyright (c) 2003-2004 Mark Borgerding\n"
            "\n"
            "All rights reserved.\n"
            "\n"
            "Redistribution and use in source and binary forms, with or "
            "without modification, are permitted provided that the following "
            "conditions are met:\n"
            "\n"
            "    * Redistributions of source code must retain the above "
            "copyright notice, this list of conditions and the following "
            "disclaimer.\n"
            "    * Redistributions in binary form must reproduce the above "
            "copyright notice, this list of conditions and the following "
            "disclaimer in the documentation and/or other materials provided "
            "with the distribution.\n"
            "    * Neither the author nor the names of any contributors may be "
            "used to endorse or promote products derived from this software "
            "without specific prior written permission.\n"
            "\n"
            "THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND "
            "CONTRIBUTORS \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, "
            "INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF "
            "MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE "
            "DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS "
            "BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, "
            "EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED "
            "TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, "
            "DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON "
            "ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, "
            "OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY "
            "OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE "
            "POSSIBILITY OF SUCH DAMAGE.\n");

    size_t divisor = gcd(inputRate, outputRate);
    L = outputRate / divisor;
    M = inputRate / divisor;
    PDEBUG(" gcd: %zu, L: %zu, M: %zu\n", divisor, L, M);
    {
        unsigned factor = resolution * 2 / M;
        if (factor & 1) {
            ++factor;
        }
        myFftSizeIn = factor * M;
        myFftSizeOut = factor * L;
    }
    PDEBUG(" FFT size in: %zu, FFT size out: %zu\n", myFftSizeIn, myFftSizeOut);

    if (myFftSizeIn > myFftSizeOut) {
        myFactor = 1.0f / myFftSizeIn;
    } else {
        myFactor = 1.0f / myFftSizeOut;
    }

    myWindow = (float*)memalign(16, myFftSizeIn * sizeof(float));
    for (size_t i = 0; i < myFftSizeIn; ++i) {
        myWindow[i] = 0.5f * (1.0f - cosf(2.0f * M_PI * i / (myFftSizeIn - 1)));
        PDEBUG("Window[%zu] = %f\n", i, myWindow[i]);
    }

    myFftIn = (FFT_TYPE*)memalign(16, myFftSizeIn * sizeof(FFT_TYPE));
    myFftOut = (FFT_TYPE*)memalign(16, myFftSizeOut * sizeof(FFT_TYPE));
    myBufferIn = (complexf*)memalign(16, myFftSizeIn / 2 * sizeof(FFT_TYPE));
    myBufferOut = (complexf*)memalign(16, myFftSizeOut / 2 * sizeof(FFT_TYPE));
    myFront = (FFT_TYPE*)memalign(16, myFftSizeIn * sizeof(FFT_TYPE));
    myBack = (FFT_TYPE*)memalign(16, myFftSizeOut * sizeof(FFT_TYPE));
    myFftPlan1 = kiss_fft_alloc(myFftSizeIn, 0, NULL, NULL);
    myFftPlan2 = kiss_fft_alloc(myFftSizeOut, 1, NULL, NULL);

    memset(myBufferIn, 0, myFftSizeIn / 2 * sizeof(FFT_TYPE));
    memset(myBufferOut, 0, myFftSizeOut / 2 * sizeof(FFT_TYPE));
}


Resampler::~Resampler()
{
    PDEBUG("Resampler::~Resampler() @ %p\n", this);

    if (myFftPlan1 != NULL) {
        free(myFftPlan1);
    }
    if (myFftPlan2 != NULL) {
        free(myFftPlan2);
    }
    if (myFftIn != NULL) {
        free(myFftIn);
    }
    if (myFftOut != NULL) {
        free(myFftOut);
    }
    if (myBufferIn != NULL) {
        free(myBufferIn);
    }
    if (myBufferOut != NULL) {
        free(myBufferOut);
    }
    if (myFront != NULL) {
        free(myFront);
    }
    if (myBack != NULL) {
        free(myBack);
    }
    if (myWindow != NULL) {
        free(myWindow);
    }
    kiss_fft_cleanup();
}


int Resampler::process(Buffer* const dataIn, Buffer* dataOut)
{
    PDEBUG("Resampler::process(dataIn: %p, dataOut: %p)\n",
            dataIn, dataOut);

    dataOut->setLength(dataIn->getLength() * L / M);

    FFT_TYPE* in = reinterpret_cast<FFT_TYPE*>(dataIn->getData());
    FFT_TYPE* out = reinterpret_cast<FFT_TYPE*>(dataOut->getData());
    size_t sizeIn = dataIn->getLength() / sizeof(complexf);

#ifdef USE_SIMD
    size_t sizeOut = dataOut->getLength() / sizeof(complexf);

    typedef struct {
        float r[4];
        float i[4];
    } fft_data;
    assert(sizeof(FFT_TYPE) == sizeof(fft_data));
    fft_data *fftDataIn = (fft_data*)myFftIn;
    fft_data *fftDataOut = (fft_data*)myFftOut;
    complexf *cplxIn = (complexf*)in;
    complexf *cplxOut = (complexf*)out;
    for (size_t i = 0, j = 0; i < sizeIn; ) {
        for (int k = 0; k < 4; ++k) {
            if (i < sizeIn) {
                for (size_t l = 0; l < myFftSizeIn / 2; ++l) {
                    fftDataIn[l].r[k] = myBufferIn[l].real();
                    fftDataIn[l].i[k] = myBufferIn[l].imag();
                    fftDataIn[myFftSizeIn / 2 + l].r[k] = cplxIn[i + l].real();
                    fftDataIn[myFftSizeIn / 2 + l].i[k] = cplxIn[i + l].imag();
                }
                memcpy(myBufferIn, cplxIn + i, myFftSizeIn / 2 * sizeof(complexf));
                i += myFftSizeIn / 2;
            } else {
                for (size_t l = 0; l < myFftSizeIn; ++l) {
                    fftDataIn[l].r[k] = 0.0f;
                    fftDataIn[l].i[k] = 0.0f;
                }
            }
        }
        for (size_t k = 0; k < myFftSizeIn; ++ k) {
            FFT_REAL(myFftIn[k]) = _mm_mul_ps(FFT_REAL(myFftIn[k]), _mm_set_ps1(myWindow[k]));
            FFT_IMAG(myFftIn[k]) = _mm_mul_ps(FFT_IMAG(myFftIn[k]), _mm_set_ps1(myWindow[k]));
        }

        kiss_fft(myFftPlan1, myFftIn, myFront);

        if (myFftSizeOut > myFftSizeIn) {
            memset(myBack, 0, myFftSizeOut * sizeof(FFT_TYPE));
            memcpy(myBack, myFront, myFftSizeIn / 2 * sizeof(FFT_TYPE));
            memcpy(&myBack[myFftSizeOut - (myFftSizeIn / 2)],
                    &myFront[myFftSizeIn / 2],
                    myFftSizeIn / 2 * sizeof(FFT_TYPE));
            // Copy input Fs
            FFT_REAL(myBack[myFftSizeIn / 2]) =
                FFT_REAL(myFront[myFftSizeIn / 2]);
            FFT_IMAG(myBack[myFftSizeIn / 2]) =
                FFT_IMAG(myFront[myFftSizeIn / 2]);
        } else {
            memcpy(myBack, myFront, myFftSizeOut / 2 * sizeof(FFT_TYPE));
            memcpy(&myBack[myFftSizeOut / 2],
                    &myFront[myFftSizeIn - (myFftSizeOut / 2)],
                    myFftSizeOut / 2 * sizeof(FFT_TYPE));
            // Average output Fs from input
            FFT_REAL(myBack[myFftSizeOut / 2]) =
                _mm_add_ps(FFT_REAL(myBack[myFftSizeOut / 2]),
                        FFT_REAL(myFront[myFftSizeOut / 2]));
            FFT_IMAG(myBack[myFftSizeOut / 2]) =
                _mm_add_ps(FFT_IMAG(myBack[myFftSizeOut / 2]),
                        FFT_IMAG(myFront[myFftSizeOut / 2]));
            FFT_REAL(myBack[myFftSizeOut / 2]) =
                _mm_mul_ps(FFT_REAL(myBack[myFftSizeOut / 2]), _mm_set_ps1(0.5f));
            FFT_IMAG(myBack[myFftSizeOut / 2]) =
                _mm_mul_ps(FFT_IMAG(myBack[myFftSizeOut / 2]), _mm_set_ps1(0.5f));
        }
        for (size_t k = 0; k < myFftSizeOut; ++k) {
            FFT_REAL(myBack[k]) = _mm_mul_ps(FFT_REAL(myBack[k]), _mm_set_ps1(myFactor));
            FFT_IMAG(myBack[k]) = _mm_mul_ps(FFT_IMAG(myBack[k]), _mm_set_ps1(myFactor));
        }

        kiss_fft(myFftPlan2, myBack, myFftOut);

        for (size_t k = 0; k < 4; ++k) {
            if (j < sizeOut) {
                for (size_t l = 0; l < myFftSizeOut / 2; ++l) {
                    cplxOut[j + l].real() = myBufferOut[l].real() + fftDataOut[l].r[k];
                    cplxOut[j + l].imag() = myBufferOut[l].imag() + fftDataOut[l].i[k];
                    myBufferOut[l].real() = fftDataOut[myFftSizeOut / 2 + l].r[k];
                    myBufferOut[l].imag() = fftDataOut[myFftSizeOut / 2 + l].i[k];
                }
            }
            j += myFftSizeOut / 2;
        }
    }
#else
    for (size_t i = 0, j = 0; i < sizeIn; i += myFftSizeIn / 2, j += myFftSizeOut / 2) {
        memcpy(myFftIn, myBufferIn, myFftSizeIn / 2 * sizeof(FFT_TYPE));
        memcpy(myFftIn + (myFftSizeIn / 2), in + i, myFftSizeIn / 2 * sizeof(FFT_TYPE));
        memcpy(myBufferIn, in + i, myFftSizeIn / 2 * sizeof(FFT_TYPE));
        for (size_t k = 0; k < myFftSizeIn; ++k) {
            FFT_REAL(myFftIn[k]) *= myWindow[k];
            FFT_IMAG(myFftIn[k]) *= myWindow[k];
        }

        kiss_fft(myFftPlan1, myFftIn, myFront);

        if (myFftSizeOut > myFftSizeIn) {
            memset(myBack, 0, myFftSizeOut * sizeof(FFT_TYPE));
            memcpy(myBack, myFront, myFftSizeIn / 2 * sizeof(FFT_TYPE));
            memcpy(&myBack[myFftSizeOut - (myFftSizeIn / 2)],
                    &myFront[myFftSizeIn / 2],
                    myFftSizeIn / 2 * sizeof(FFT_TYPE));
            // Copy input Fs
            FFT_REAL(myBack[myFftSizeIn / 2]) =
                FFT_REAL(myFront[myFftSizeIn / 2]);
            FFT_IMAG(myBack[myFftSizeIn / 2]) =
                FFT_IMAG(myFront[myFftSizeIn / 2]);
        } else {
            memcpy(myBack, myFront, myFftSizeOut / 2 * sizeof(FFT_TYPE));
            memcpy(&myBack[myFftSizeOut / 2],
                    &myFront[myFftSizeIn - (myFftSizeOut / 2)],
                    myFftSizeOut / 2 * sizeof(FFT_TYPE));
            // Average output Fs from input
            FFT_REAL(myBack[myFftSizeOut / 2]) +=
                FFT_REAL(myFront[myFftSizeOut / 2]);
            FFT_IMAG(myBack[myFftSizeOut / 2]) +=
                FFT_IMAG(myFront[myFftSizeOut / 2]);
            FFT_REAL(myBack[myFftSizeOut / 2]) *= 0.5f;
            FFT_IMAG(myBack[myFftSizeOut / 2]) *= 0.5f;
        }
        for (size_t k = 0; k < myFftSizeOut; ++k) {
            FFT_REAL(myBack[k]) *= myFactor;
            FFT_IMAG(myBack[k]) *= myFactor;
        }

        kiss_fft(myFftPlan2, myBack, myFftOut);

        for (size_t k = 0; k < myFftSizeOut / 2; ++k) {
            FFT_REAL(out[j + k]) = myBufferOut[k].real() + FFT_REAL(myFftOut[k]);
            FFT_IMAG(out[j + k]) = myBufferOut[k].imag() + FFT_IMAG(myFftOut[k]);
        }
        memcpy(myBufferOut, myFftOut + (myFftSizeOut / 2), (myFftSizeOut / 2) * sizeof(FFT_TYPE));
    }
#endif

    return 1;
}