summaryrefslogtreecommitdiffstats
path: root/src/PAPRStats.cpp
blob: 2e8bca9014148c5dcc0f846e651d72a30cca97b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Her Majesty
   the Queen in Right of Canada (Communications Research Center Canada)

   Copyright (C) 2017
   Matthias P. Braendli, matthias.braendli@mpb.li

    http://opendigitalradio.org
 */
/*
   This file is part of ODR-DabMod.

   ODR-DabMod is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as
   published by the Free Software Foundation, either version 3 of the
   License, or (at your option) any later version.

   ODR-DabMod is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with ODR-DabMod.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "PAPRStats.h"
#include <numeric>
#include <cmath>
#if defined(TEST)
/* compile with g++ -std=c++11 -Wall -DTEST PAPRStats.cpp -o paprtest */
#  include <iostream>
#endif


PAPRStats::PAPRStats(size_t num_blocks_to_accumulate) :
    m_num_blocks_to_accumulate(num_blocks_to_accumulate)
{
}

void PAPRStats::process_block(const complexf* data, size_t data_len)
{
    double norm_peak = 0;
    double rms2 = 0;

    for (size_t i = 0; i < data_len; i++) {
        const double x_norm = std::norm(data[i]);

        if (x_norm > norm_peak) {
            norm_peak = x_norm;
        }

        rms2 += x_norm;
    }

    rms2 /= data_len;

#if defined(TEST)
    std::cerr << "Accumulating peak " << norm_peak <<
        " rms2 " << rms2 << std::endl;
#endif

    m_squared_peaks.push_back(norm_peak);
    m_squared_mean.push_back(rms2);

    if (m_squared_mean.size() > m_num_blocks_to_accumulate) {
        m_squared_mean.pop_front();
        m_squared_peaks.pop_front();
    }
}

double PAPRStats::calculate_papr() const
{
    if (m_squared_mean.size() < m_num_blocks_to_accumulate) {
        return 0;
    }

    if (m_squared_mean.size() != m_squared_peaks.size()) {
        throw std::logic_error("Invalid PAPR measurement sizes");
    }

    double peak = 0;
    double rms2 = 0;
    for (size_t i = 0; i < m_squared_peaks.size(); i++) {
        if (m_squared_peaks[i] > peak) {
            peak = m_squared_peaks[i];
        }

        rms2 += m_squared_mean[i];
    }

    // This assumes all blocks given to process have the same length
    rms2 /= m_squared_peaks.size();

#if defined(TEST)
    std::cerr << "Calculate peak " << peak <<
        " rms2 " << rms2 << std::endl;
#endif

    return 10.0 * std::log10(peak / rms2);
}

#if defined(TEST)
/* Test python code:
import numpy as np
vec = 0.5 * np.exp(np.complex(0, 0.3) * np.arange(40))
vec[26] = 10.0 * vec[26]
rms = np.mean(vec * np.conj(vec)).real
peak = np.amax(vec * np.conj(vec)).real
print("rms {}".format(rms))
print("peak {}".format(peak))
print(10. * np.log10(peak / rms))
*/
int main(int argc, char **argv)
{
    using namespace std;
    vector<complexf> vec(40);

    for (size_t i = 0; i < vec.size(); i++) {
        vec[i] = polar(0.5, 0.3 * i);
        if (i == 26) {
            vec[i] *= 10;
        }
        cout << " " << vec[i];
    }
    cout << endl;

    PAPRStats stats(4);

    for (size_t i = 0; i < 3; i++) {
        stats.process_block(vec.data(), vec.size());
    }

    const auto papr0 = stats.calculate_papr();
    if (papr0 != 0) {
        cerr << "Expected 0, got " << papr0 << endl;
    }

    stats.process_block(vec.data(), vec.size());

    const auto papr1 = stats.calculate_papr();
    cout << "PAPR = " << papr1 << " dB" << endl;

}

#endif