1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
|
/*
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Her Majesty
the Queen in Right of Canada (Communications Research Center Canada)
Copyright (C) 2024
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>.
*/
#include "OfdmGenerator.h"
#include "PcDebug.h"
#include <stdexcept>
#include <assert.h>
#include <string>
#include <numeric>
#include <vector>
#include <cstring>
#include <complex>
static const size_t MAX_CLIP_STATS = 10;
using FFTW_TYPE = fftwf_complex;
OfdmGeneratorCF32::OfdmGeneratorCF32(size_t nbSymbols,
size_t nbCarriers,
size_t spacing,
bool& enableCfr,
float& cfrClip,
float& cfrErrorClip,
bool inverse) :
ModCodec(), RemoteControllable("ofdm"),
myFftPlan(nullptr),
myFftIn(nullptr), myFftOut(nullptr),
myNbSymbols(nbSymbols),
myNbCarriers(nbCarriers),
mySpacing(spacing),
myCfr(enableCfr),
myCfrClip(cfrClip),
myCfrErrorClip(cfrErrorClip),
myCfrFft(nullptr),
// Initialise the PAPRStats to a few seconds worth of samples
myPaprBeforeCFR(nbSymbols * 50),
myPaprAfterCFR(nbSymbols * 50)
{
PDEBUG("OfdmGenerator::OfdmGenerator(%zu, %zu, %zu, %s) @ %p\n",
nbSymbols, nbCarriers, spacing, inverse ? "true" : "false", this);
if (nbCarriers > spacing) {
throw std::runtime_error("OfdmGenerator nbCarriers > spacing!");
}
/* register the parameters that can be remote controlled */
RC_ADD_PARAMETER(cfr, "Enable crest factor reduction");
RC_ADD_PARAMETER(clip, "CFR: Clip to amplitude");
RC_ADD_PARAMETER(errorclip, "CFR: Limit error");
RC_ADD_PARAMETER(clip_stats, "CFR: statistics (clip ratio, errorclip ratio)");
RC_ADD_PARAMETER(papr, "PAPR measurements (before CFR, after CFR)");
if (inverse) {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = 0;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = (nbCarriers + 1) / 2;
myNegSize = nbCarriers / 2;
}
else {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = nbCarriers / 2;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = 0;
myNegSize = nbCarriers / 2;
}
myZeroDst = myPosDst + myPosSize;
myZeroSize = myNegDst - myZeroDst;
PDEBUG(" myPosDst: %u\n", myPosDst);
PDEBUG(" myPosSrc: %u\n", myPosSrc);
PDEBUG(" myPosSize: %u\n", myPosSize);
PDEBUG(" myNegDst: %u\n", myNegDst);
PDEBUG(" myNegSrc: %u\n", myNegSrc);
PDEBUG(" myNegSize: %u\n", myNegSize);
PDEBUG(" myZeroDst: %u\n", myZeroDst);
PDEBUG(" myZeroSize: %u\n", myZeroSize);
const int N = mySpacing; // The size of the FFT
myFftIn = (FFTW_TYPE*)fftwf_malloc(sizeof(FFTW_TYPE) * N);
myFftOut = (FFTW_TYPE*)fftwf_malloc(sizeof(FFTW_TYPE) * N);
fftwf_set_timelimit(2);
myFftPlan = fftwf_plan_dft_1d(N,
myFftIn, myFftOut,
FFTW_BACKWARD, FFTW_MEASURE);
myCfrPostClip = (FFTW_TYPE*)fftwf_malloc(sizeof(FFTW_TYPE) * N);
myCfrPostFft = (FFTW_TYPE*)fftwf_malloc(sizeof(FFTW_TYPE) * N);
myCfrFft = fftwf_plan_dft_1d(N,
myCfrPostClip, myCfrPostFft,
FFTW_FORWARD, FFTW_MEASURE);
if (sizeof(complexf) != sizeof(FFTW_TYPE)) {
printf("sizeof(complexf) %zu\n", sizeof(complexf));
printf("sizeof(FFT_TYPE) %zu\n", sizeof(FFTW_TYPE));
throw std::runtime_error(
"OfdmGenerator::process complexf size is not FFT_TYPE size!");
}
}
OfdmGeneratorCF32::~OfdmGeneratorCF32()
{
PDEBUG("OfdmGenerator::~OfdmGenerator() @ %p\n", this);
if (myFftIn) {
fftwf_free(myFftIn);
}
if (myFftOut) {
fftwf_free(myFftOut);
}
if (myFftPlan) {
fftwf_destroy_plan(myFftPlan);
}
if (myCfrPostClip) {
fftwf_free(myCfrPostClip);
}
if (myCfrPostFft) {
fftwf_free(myCfrPostFft);
}
if (myCfrFft) {
fftwf_destroy_plan(myCfrFft);
}
}
int OfdmGeneratorCF32::process(Buffer* const dataIn, Buffer* dataOut)
{
PDEBUG("OfdmGenerator::process(dataIn: %p, dataOut: %p)\n",
dataIn, dataOut);
dataOut->setLength(myNbSymbols * mySpacing * sizeof(complexf));
FFTW_TYPE *in = reinterpret_cast<FFTW_TYPE*>(dataIn->getData());
FFTW_TYPE *out = reinterpret_cast<FFTW_TYPE*>(dataOut->getData());
size_t sizeIn = dataIn->getLength() / sizeof(complexf);
size_t sizeOut = dataOut->getLength() / sizeof(complexf);
if (sizeIn != myNbSymbols * myNbCarriers) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * myNbCarriers);
throw std::runtime_error(
"OfdmGenerator::process input size not valid!");
}
if (sizeOut != myNbSymbols * mySpacing) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * mySpacing);
throw std::runtime_error(
"OfdmGenerator::process output size not valid!");
}
// It is not guaranteed that fftw keeps the FFT input vector intact.
// That's why we copy it to the reference.
std::vector<complexf> reference;
// IFFT output before CFR applied, for MER calc
std::vector<complexf> before_cfr;
size_t num_clip = 0;
size_t num_error_clip = 0;
// For performance reasons, do not calculate MER for every symbol.
myMERCalcIndex = (myMERCalcIndex + 1) % myNbSymbols;
// The PAPRStats' clear() is not threadsafe, do not access it
// from the RC functions.
if (myPaprClearRequest.exchange(false)) {
myPaprBeforeCFR.clear();
myPaprAfterCFR.clear();
}
for (size_t i = 0; i < myNbSymbols; i++) {
myFftIn[0][0] = 0;
myFftIn[0][1] = 0;
/* For TM I this is:
* ZeroDst=769 ZeroSize=511
* PosSrc=0 PosDst=1 PosSize=768
* NegSrc=768 NegDst=1280 NegSize=768
*/
memset(&myFftIn[myZeroDst], 0, myZeroSize * sizeof(FFTW_TYPE));
memcpy(&myFftIn[myPosDst], &in[myPosSrc],
myPosSize * sizeof(FFTW_TYPE));
memcpy(&myFftIn[myNegDst], &in[myNegSrc],
myNegSize * sizeof(FFTW_TYPE));
if (myCfr) {
reference.resize(mySpacing);
memcpy(reinterpret_cast<fftwf_complex*>(reference.data()),
myFftIn, mySpacing * sizeof(FFTW_TYPE));
}
fftwf_execute(myFftPlan); // IFFT from myFftIn to myFftOut
if (myCfr) {
complexf *symbol = reinterpret_cast<complexf*>(myFftOut);
myPaprBeforeCFR.process_block(symbol, mySpacing);
if (myMERCalcIndex == i) {
before_cfr.resize(mySpacing);
memcpy(reinterpret_cast<fftwf_complex*>(before_cfr.data()),
myFftOut, mySpacing * sizeof(FFTW_TYPE));
}
/* cfr_one_iteration runs the myFftPlan again at the end, and
* therefore writes the output data to myFftOut.
*/
const auto stat = cfr_one_iteration(symbol, reference.data());
// i == 0 always zero power, so the MER ends up being NaN
if (i > 0) {
myPaprAfterCFR.process_block(symbol, mySpacing);
}
if (i > 0 and myMERCalcIndex == i) {
/* MER definition, ETSI ETR 290, Annex C
*
* \sum I^2 + Q^2
* MER[dB] = 10 log_10( ---------------- )
* \sum dI^2 + dQ^2
* Where I and Q are the ideal coordinates, and dI and dQ are
* the errors in the received datapoints.
*
* In our case, we consider the constellation points given to the
* OfdmGenerator as "ideal", and we compare the CFR output to it.
*/
double sum_iq = 0;
double sum_delta = 0;
for (size_t j = 0; j < mySpacing; j++) {
sum_iq += (double)std::norm(before_cfr[j]);
sum_delta += (double)std::norm(symbol[j] - before_cfr[j]);
}
// Clamp to 90dB, otherwise the MER average is going to be inf
const double mer = sum_delta > 0 ?
10.0 * std::log10(sum_iq / sum_delta) : 90;
myMERs.push_back(mer);
}
num_clip += stat.clip_count;
num_error_clip += stat.errclip_count;
}
memcpy(out, myFftOut, mySpacing * sizeof(FFTW_TYPE));
in += myNbCarriers;
out += mySpacing;
}
if (myCfr) {
std::lock_guard<std::mutex> lock(myCfrRcMutex);
const double num_samps = myNbSymbols * mySpacing;
const double clip_ratio = (double)num_clip / num_samps;
myClipRatios.push_back(clip_ratio);
while (myClipRatios.size() > MAX_CLIP_STATS) {
myClipRatios.pop_front();
}
const double errclip_ratio = (double)num_error_clip / num_samps;
myErrorClipRatios.push_back(errclip_ratio);
while (myErrorClipRatios.size() > MAX_CLIP_STATS) {
myErrorClipRatios.pop_front();
}
while (myMERs.size() > MAX_CLIP_STATS) {
myMERs.pop_front();
}
}
return sizeOut;
}
OfdmGeneratorCF32::cfr_iter_stat_t OfdmGeneratorCF32::cfr_one_iteration(
complexf *symbol, const complexf *reference)
{
// use std::norm instead of std::abs to avoid calculating the
// square roots
const float clip_squared = myCfrClip * myCfrClip;
OfdmGeneratorCF32::cfr_iter_stat_t ret;
// Clip
for (size_t i = 0; i < mySpacing; i++) {
const float mag_squared = std::norm(symbol[i]);
if (mag_squared > clip_squared) {
// normalise absolute value to myCfrClip:
// x_clipped = x * clip / |x|
// = x * sqrt(clip_squared) / sqrt(mag_squared)
// = x * sqrt(clip_squared / mag_squared)
symbol[i] *= std::sqrt(clip_squared / mag_squared);
ret.clip_count++;
}
}
// Take FFT of our clipped signal
memcpy(myCfrPostClip, symbol, mySpacing * sizeof(FFTW_TYPE));
fftwf_execute(myCfrFft); // FFT from myCfrPostClip to myCfrPostFft
// Calculate the error in frequency domain by subtracting our reference
// and clip it to myCfrErrorClip. By adding this clipped error signal
// to our FFT output, we compensate the introduced error to some
// extent.
const float err_clip_squared = myCfrErrorClip * myCfrErrorClip;
std::vector<float> error_norm(mySpacing);
for (size_t i = 0; i < mySpacing; i++) {
// FFTW computes an unnormalised transform, i.e. a FFT-IFFT pair
// or vice-versa gives back the original vector scaled by a factor
// FFT-size. Because we're comparing our constellation point
// (calculated with IFFT-clip-FFT) against reference (input to
// the IFFT), we need to divide by our FFT size.
const complexf constellation_point =
reinterpret_cast<complexf*>(myCfrPostFft)[i] / (float)mySpacing;
complexf error = reference[i] - constellation_point;
const float mag_squared = std::norm(error);
error_norm[i] = mag_squared;
if (mag_squared > err_clip_squared) {
error *= std::sqrt(err_clip_squared / mag_squared);
ret.errclip_count++;
}
// Update the input to the FFT directly to avoid another copy for the
// subsequence IFFT
complexf *fft_in = reinterpret_cast<complexf*>(myFftIn);
fft_in[i] = constellation_point + error;
}
// Run our error-compensated symbol through the IFFT again
fftwf_execute(myFftPlan); // IFFT from myFftIn to myFftOut
return ret;
}
void OfdmGeneratorCF32::set_parameter(const std::string& parameter,
const std::string& value)
{
using namespace std;
stringstream ss(value);
ss.exceptions ( stringstream::failbit | stringstream::badbit );
if (parameter == "cfr") {
ss >> myCfr;
myPaprClearRequest.store(true);
}
else if (parameter == "clip") {
ss >> myCfrClip;
myPaprClearRequest.store(true);
}
else if (parameter == "errorclip") {
ss >> myCfrErrorClip;
myPaprClearRequest.store(true);
}
else if (parameter == "clip_stats" or parameter == "papr") {
throw ParameterError("Parameter '" + parameter + "' is read-only");
}
else {
stringstream ss_err;
ss_err << "Parameter '" << parameter
<< "' is not exported by controllable " << get_rc_name();
throw ParameterError(ss_err.str());
}
}
const std::string OfdmGeneratorCF32::get_parameter(const std::string& parameter) const
{
using namespace std;
stringstream ss;
if (parameter == "cfr") {
ss << myCfr;
}
else if (parameter == "clip") {
ss << std::fixed << myCfrClip;
}
else if (parameter == "errorclip") {
ss << std::fixed << myCfrErrorClip;
}
else if (parameter == "clip_stats") {
std::lock_guard<std::mutex> lock(myCfrRcMutex);
if (myClipRatios.empty() or myErrorClipRatios.empty() or myMERs.empty()) {
ss << "No stats available";
}
else {
const double avg_clip_ratio =
std::accumulate(myClipRatios.begin(), myClipRatios.end(), 0.0) /
myClipRatios.size();
const double avg_errclip_ratio =
std::accumulate(myErrorClipRatios.begin(), myErrorClipRatios.end(), 0.0) /
myErrorClipRatios.size();
const double avg_mer =
std::accumulate(myMERs.begin(), myMERs.end(), 0.0) /
myMERs.size();
ss << "Statistics : " << std::fixed <<
avg_clip_ratio * 100 << "%"" samples clipped, " <<
avg_errclip_ratio * 100 << "%"" errors clipped. " <<
"MER after CFR: " << avg_mer << " dB";
}
}
else if (parameter == "papr") {
const double papr_before = myPaprBeforeCFR.calculate_papr();
const double papr_after = myPaprAfterCFR.calculate_papr();
ss << "PAPR [dB]: " << std::fixed <<
(papr_before == 0 ? string("N/A") : to_string(papr_before)) <<
", " <<
(papr_after == 0 ? string("N/A") : to_string(papr_after));
}
else {
ss << "Parameter '" << parameter <<
"' is not exported by controllable " << get_rc_name();
throw ParameterError(ss.str());
}
return ss.str();
}
const json::map_t OfdmGeneratorCF32::get_all_values() const
{
json::map_t map;
// TODO needs rework of the values
return map;
}
OfdmGeneratorFixed::OfdmGeneratorFixed(size_t nbSymbols,
size_t nbCarriers,
size_t spacing,
bool inverse) :
ModCodec(),
myNbSymbols(nbSymbols),
myNbCarriers(nbCarriers),
mySpacing(spacing)
{
PDEBUG("OfdmGenerator::OfdmGenerator(%zu, %zu, %zu, %s) @ %p\n",
nbSymbols, nbCarriers, spacing, inverse ? "true" : "false", this);
etiLog.level(info) << "Using KISS FFT by Mark Borgerding for fixed-point transform";
if (nbCarriers > spacing) {
throw std::runtime_error("OfdmGenerator nbCarriers > spacing!");
}
if (inverse) {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = 0;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = (nbCarriers + 1) / 2;
myNegSize = nbCarriers / 2;
}
else {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = nbCarriers / 2;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = 0;
myNegSize = nbCarriers / 2;
}
myZeroDst = myPosDst + myPosSize;
myZeroSize = myNegDst - myZeroDst;
PDEBUG(" myPosDst: %u\n", myPosDst);
PDEBUG(" myPosSrc: %u\n", myPosSrc);
PDEBUG(" myPosSize: %u\n", myPosSize);
PDEBUG(" myNegDst: %u\n", myNegDst);
PDEBUG(" myNegSrc: %u\n", myNegSrc);
PDEBUG(" myNegSize: %u\n", myNegSize);
PDEBUG(" myZeroDst: %u\n", myZeroDst);
PDEBUG(" myZeroSize: %u\n", myZeroSize);
const int N = mySpacing; // The size of the FFT
const size_t nbytes = N * sizeof(kiss_fft_cpx);
myFftIn = (kiss_fft_cpx*)KISS_FFT_MALLOC(nbytes);
myFftOut = (kiss_fft_cpx*)KISS_FFT_MALLOC(nbytes);
memset(myFftIn, 0, nbytes);
myKissCfg = kiss_fft_alloc(N, inverse, nullptr, nullptr);
}
OfdmGeneratorFixed::~OfdmGeneratorFixed()
{
if (myKissCfg) KISS_FFT_FREE(myKissCfg);
if (myFftIn) KISS_FFT_FREE(myFftIn);
if (myFftOut) KISS_FFT_FREE(myFftOut);
}
int OfdmGeneratorFixed::process(Buffer* const dataIn, Buffer* dataOut)
{
dataOut->setLength(myNbSymbols * mySpacing * sizeof(kiss_fft_cpx));
kiss_fft_cpx *in = reinterpret_cast<kiss_fft_cpx*>(dataIn->getData());
kiss_fft_cpx *out = reinterpret_cast<kiss_fft_cpx*>(dataOut->getData());
size_t sizeIn = dataIn->getLength() / sizeof(kiss_fft_cpx);
size_t sizeOut = dataOut->getLength() / sizeof(kiss_fft_cpx);
if (sizeIn != myNbSymbols * myNbCarriers) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * myNbCarriers);
throw std::runtime_error(
"OfdmGenerator::process input size not valid!");
}
if (sizeOut != myNbSymbols * mySpacing) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * mySpacing);
throw std::runtime_error(
"OfdmGenerator::process output size not valid!");
}
for (size_t i = 0; i < myNbSymbols; i++) {
myFftIn[0].r = 0;
myFftIn[0].i = 0;
/* For TM I this is:
* ZeroDst=769 ZeroSize=511
* PosSrc=0 PosDst=1 PosSize=768
* NegSrc=768 NegDst=1280 NegSize=768
*/
memset(&myFftIn[myZeroDst], 0, myZeroSize * sizeof(kiss_fft_cpx));
memcpy(&myFftIn[myPosDst], &in[myPosSrc], myPosSize * sizeof(kiss_fft_cpx));
memcpy(&myFftIn[myNegDst], &in[myNegSrc], myNegSize * sizeof(kiss_fft_cpx));
kiss_fft(myKissCfg, myFftIn, myFftOut);
memcpy(out, myFftOut, mySpacing * sizeof(kiss_fft_cpx));
in += myNbCarriers;
out += mySpacing;
}
return sizeOut;
}
#ifdef HAVE_DEXTER
#include <gpiod.h>
#define CHIP_PATH "/dev/gpiochip0"
#define LINE_FWD_INV 0
#define LINE_CONFIG_TDATA_VALID 31
// GPIO mapping on write:
// bit 31 config_tdata_tvalid
// bit 30 resets the latches in the xfft_wrapper
// bits 15..0 are 1:1 xfft `config_tdata`
// `GPIO[0] = FWD_INV` according to Vivado
static struct gpiod_line_request *
request_output_lines(const char *chip_path, const unsigned int *offsets,
enum gpiod_line_value *values, unsigned int num_lines,
const char *consumer)
{
struct gpiod_request_config *rconfig = NULL;
struct gpiod_line_request *request = NULL;
struct gpiod_line_settings *settings;
struct gpiod_line_config *lconfig;
struct gpiod_chip *chip;
unsigned int i;
int ret;
chip = gpiod_chip_open(chip_path);
if (!chip)
return NULL;
settings = gpiod_line_settings_new();
if (!settings)
goto close_chip;
gpiod_line_settings_set_direction(settings,
GPIOD_LINE_DIRECTION_OUTPUT);
lconfig = gpiod_line_config_new();
if (!lconfig)
goto free_settings;
for (i = 0; i < num_lines; i++) {
ret = gpiod_line_config_add_line_settings(lconfig, &offsets[i],
1, settings);
if (ret)
goto free_line_config;
}
gpiod_line_config_set_output_values(lconfig, values, num_lines);
if (consumer) {
rconfig = gpiod_request_config_new();
if (!rconfig)
goto free_line_config;
gpiod_request_config_set_consumer(rconfig, consumer);
}
request = gpiod_chip_request_lines(chip, rconfig, lconfig);
gpiod_request_config_free(rconfig);
free_line_config:
gpiod_line_config_free(lconfig);
free_settings:
gpiod_line_settings_free(settings);
close_chip:
gpiod_chip_close(chip);
return request;
}
// The GPIO is connected to the config AXI bus of the xfft block.
// 15..0 is the config data; 31 is tvalid
void set_fft_accelerator_config(bool inverse)
{
constexpr size_t NUM_LINES = 2;
unsigned int line_offsets[NUM_LINES];
enum gpiod_line_value values[NUM_LINES];
line_offsets[0] = LINE_CONFIG_TDATA_VALID;
values[0] = GPIOD_LINE_VALUE_INACTIVE;
line_offsets[1] = LINE_FWD_INV;
values[1] = inverse ? GPIOD_LINE_VALUE_INACTIVE : GPIOD_LINE_VALUE_ACTIVE;
struct gpiod_line_request *request;
request = request_output_lines(CHIP_PATH, line_offsets, values, NUM_LINES, "fft-config");
if (!request) {
fprintf(stderr, "failed to request line: %s\n", strerror(errno));
throw std::runtime_error("Request GPIO lines error");
}
usleep(100000);
values[0] = GPIOD_LINE_VALUE_ACTIVE;
gpiod_line_request_set_values(request, values);
usleep(100000);
values[0] = GPIOD_LINE_VALUE_INACTIVE;
gpiod_line_request_set_values(request, values);
gpiod_line_request_release(request);
}
OfdmGeneratorDEXTER::OfdmGeneratorDEXTER(size_t nbSymbols,
size_t nbCarriers,
size_t spacing,
bool inverse) :
ModCodec(),
myNbSymbols(nbSymbols),
myNbCarriers(nbCarriers),
mySpacing(spacing)
{
PDEBUG("OfdmGeneratorDEXTER::OfdmGeneratorDEXTER(%zu, %zu, %zu, %s) @ %p\n",
nbSymbols, nbCarriers, spacing, inverse ? "true" : "false", this);
etiLog.level(info) << "Using DEXTER FFT Accelerator for fixed-point transform";
set_fft_accelerator_config(inverse);
if (nbCarriers > spacing) {
throw std::runtime_error("OfdmGenerator nbCarriers > spacing!");
}
if (inverse) {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = 0;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = (nbCarriers + 1) / 2;
myNegSize = nbCarriers / 2;
}
else {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = nbCarriers / 2;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = 0;
myNegSize = nbCarriers / 2;
}
myZeroDst = myPosDst + myPosSize;
myZeroSize = myNegDst - myZeroDst;
PDEBUG(" myPosDst: %u\n", myPosDst);
PDEBUG(" myPosSrc: %u\n", myPosSrc);
PDEBUG(" myPosSize: %u\n", myPosSize);
PDEBUG(" myNegDst: %u\n", myNegDst);
PDEBUG(" myNegSrc: %u\n", myNegSrc);
PDEBUG(" myNegSize: %u\n", myNegSize);
PDEBUG(" myZeroDst: %u\n", myZeroDst);
PDEBUG(" myZeroSize: %u\n", myZeroSize);
const size_t nbytes_in = mySpacing * sizeof(complexfix);
const size_t nbytes_out = mySpacing * sizeof(complexfix_wide);
#define IIO_ENSURE(expr, err) { \
if (!(expr)) { \
etiLog.log(error, "%s (%s:%d)\n", err, __FILE__, __LINE__); \
throw std::runtime_error("Failed to set FFT for OfdmGeneratorDEXTER"); \
} \
}
IIO_ENSURE((m_ctx = iio_create_default_context()), "No context");
IIO_ENSURE(m_dev_in = iio_context_find_device(m_ctx, "fft-accelerator-in"), "no dev");
IIO_ENSURE(m_dev_out = iio_context_find_device(m_ctx, "fft-accelerator-out"), "no dev");
IIO_ENSURE(m_channel_in = iio_device_find_channel(m_dev_in, "voltage0", true), "no channel");
IIO_ENSURE(m_channel_out = iio_device_find_channel(m_dev_out, "voltage0", false), "no channel");
iio_channel_enable(m_channel_in);
iio_channel_enable(m_channel_out);
m_buf_in = iio_device_create_buffer(m_dev_in, nbytes_in, false);
if (!m_buf_in) {
throw std::runtime_error("OfdmGeneratorDEXTER could not create in buffer");
}
m_buf_out = iio_device_create_buffer(m_dev_out, nbytes_out, false);
if (!m_buf_out) {
throw std::runtime_error("OfdmGeneratorDEXTER could not create out buffer");
}
}
OfdmGeneratorDEXTER::~OfdmGeneratorDEXTER()
{
if (m_buf_in) {
iio_buffer_destroy(m_buf_in);
m_buf_in = nullptr;
}
if (m_buf_out) {
iio_buffer_destroy(m_buf_out);
m_buf_out = nullptr;
}
if (m_channel_in) {
iio_channel_disable(m_channel_in);
m_channel_in = nullptr;
}
if (m_channel_out) {
iio_channel_disable(m_channel_out);
m_channel_out = nullptr;
}
if (m_ctx) {
iio_context_destroy(m_ctx);
m_ctx = nullptr;
}
}
int OfdmGeneratorDEXTER::process(Buffer* const dataIn, Buffer* dataOut)
{
dataOut->setLength(myNbSymbols * mySpacing * sizeof(complexfix_wide));
complexfix *in = reinterpret_cast<complexfix*>(dataIn->getData());
complexfix_wide *out = reinterpret_cast<complexfix_wide*>(dataOut->getData());
size_t sizeIn = dataIn->getLength() / sizeof(complexfix);
size_t sizeOut = dataOut->getLength() / sizeof(complexfix_wide);
if (sizeIn != myNbSymbols * myNbCarriers) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * myNbCarriers);
throw std::runtime_error(
"OfdmGenerator::process input size not valid!");
}
if (sizeOut != myNbSymbols * mySpacing) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * mySpacing);
throw std::runtime_error("OfdmGenerator::process output size not valid!");
}
ptrdiff_t iio_buf_size = (uint8_t*)iio_buffer_end(m_buf_in) - (uint8_t*)iio_buffer_start(m_buf_in);
if (iio_buf_size != (ssize_t)(mySpacing * sizeof(complexfix))) {
throw std::runtime_error("OfdmGenerator::process incorrect iio buffer size!");
}
for (size_t i = 0; i < myNbSymbols; i++) {
complexfix *fft_in = reinterpret_cast<complexfix*>(iio_buffer_start(m_buf_in));
/* For TM I this is:
* ZeroDst=769 ZeroSize=511
* PosSrc=0 PosDst=1 PosSize=768
* NegSrc=768 NegDst=1280 NegSize=768
*/
fft_in[0] = static_cast<complexfix::value_type>(0);
for (size_t i = 0; i < myZeroSize; i++) {
fft_in[myZeroDst + i] = static_cast<complexfix::value_type>(0);
}
memcpy(&fft_in[myPosDst], &in[myPosSrc], myPosSize * sizeof(complexfix));
memcpy(&fft_in[myNegDst], &in[myNegSrc], myNegSize * sizeof(complexfix));
ssize_t nbytes_tx = iio_buffer_push(m_buf_in);
if (nbytes_tx < 0) {
throw std::runtime_error("OfdmGenerator::process error pushing IIO buffer!");
}
in += myNbCarriers;
// Keep one buffer in flight while we're doing shuffling data around here,
// this improves performance.
// I believe that, by default, IIO allocates four buffers in total.
if (i > 0) {
ssize_t nbytes_rx = iio_buffer_refill(m_buf_out);
if (nbytes_rx < 0) {
throw std::runtime_error("OfdmGenerator::process error refilling IIO buffer!");
}
ptrdiff_t p_inc = iio_buffer_step(m_buf_out);
if (p_inc != 1) {
throw std::runtime_error("OfdmGenerator::process Wrong p_inc");
}
// The FFT Accelerator takes 16-bit I + 16-bit Q, and outputs 32-bit I and 32-bit Q.
// The formatconvert will take care of this
const uint8_t *fft_out = (const uint8_t*)iio_buffer_first(m_buf_out, m_channel_out);
const uint8_t *fft_out_end = (const uint8_t*)iio_buffer_end(m_buf_out);
constexpr size_t sizeof_out_iq = sizeof(complexfix_wide);
if ((fft_out_end - fft_out) != (ssize_t)(mySpacing * sizeof_out_iq)) {
fprintf(stderr, "FFT_OUT: %p %p %zu %zu\n",
fft_out, fft_out_end, (fft_out_end - fft_out),
mySpacing * sizeof_out_iq);
throw std::runtime_error("OfdmGenerator::process fft_out length invalid!");
}
memcpy(out, fft_out, mySpacing * sizeof_out_iq);
out += mySpacing;
}
}
ssize_t nbytes_rx = iio_buffer_refill(m_buf_out);
if (nbytes_rx < 0) {
throw std::runtime_error("OfdmGenerator::process error refilling IIO buffer!");
}
ptrdiff_t p_inc = iio_buffer_step(m_buf_out);
if (p_inc != 1) {
throw std::runtime_error("OfdmGenerator::process Wrong p_inc");
}
// The FFT Accelerator takes 16-bit I + 16-bit Q, and outputs 32-bit I and 32-bit Q.
// The formatconvert will take care of this
const uint8_t *fft_out = (const uint8_t*)iio_buffer_first(m_buf_out, m_channel_out);
const uint8_t *fft_out_end = (const uint8_t*)iio_buffer_end(m_buf_out);
constexpr size_t sizeof_out_iq = sizeof(complexfix_wide);
if ((fft_out_end - fft_out) != (ssize_t)(mySpacing * sizeof_out_iq)) {
fprintf(stderr, "FFT_OUT: %p %p %zu %zu\n",
fft_out, fft_out_end, (fft_out_end - fft_out),
mySpacing * sizeof_out_iq);
throw std::runtime_error("OfdmGenerator::process fft_out length invalid!");
}
memcpy(out, fft_out, mySpacing * sizeof_out_iq);
return sizeOut;
}
#endif // HAVE_DEXTER
|