1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/*
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Her Majesty
the Queen in Right of Canada (Communications Research Center Canada)
Copyright (C) 2017
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>.
*/
#include "OfdmGenerator.h"
#include "PcDebug.h"
#include <complex>
#include "fftw3.h"
#define FFT_TYPE fftwf_complex
#include <stdio.h>
#include <string.h>
#include <stdexcept>
#include <assert.h>
#include <string>
OfdmGenerator::OfdmGenerator(size_t nbSymbols,
size_t nbCarriers,
size_t spacing,
bool enableCfr,
float cfrClip,
float cfrErrorClip,
bool inverse) :
ModCodec(), RemoteControllable("ofdm"),
myFftPlan(nullptr),
myFftIn(nullptr), myFftOut(nullptr),
myNbSymbols(nbSymbols),
myNbCarriers(nbCarriers),
mySpacing(spacing),
myCfr(enableCfr),
myCfrClip(cfrClip),
myCfrErrorClip(cfrErrorClip),
myCfrFft(nullptr)
{
PDEBUG("OfdmGenerator::OfdmGenerator(%zu, %zu, %zu, %s) @ %p\n",
nbSymbols, nbCarriers, spacing, inverse ? "true" : "false", this);
if (nbCarriers > spacing) {
throw std::runtime_error(
"OfdmGenerator::OfdmGenerator nbCarriers > spacing!");
}
/* register the parameters that can be remote controlled */
RC_ADD_PARAMETER(cfr, "Enable crest factor reduction");
RC_ADD_PARAMETER(clip, "CFR: Clip to amplitude");
RC_ADD_PARAMETER(errorclip, "CFR: Limit error");
if (inverse) {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = 0;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = (nbCarriers + 1) / 2;
myNegSize = nbCarriers / 2;
}
else {
myPosDst = (nbCarriers & 1 ? 0 : 1);
myPosSrc = nbCarriers / 2;
myPosSize = (nbCarriers + 1) / 2;
myNegDst = spacing - (nbCarriers / 2);
myNegSrc = 0;
myNegSize = nbCarriers / 2;
}
myZeroDst = myPosDst + myPosSize;
myZeroSize = myNegDst - myZeroDst;
PDEBUG(" myPosDst: %u\n", myPosDst);
PDEBUG(" myPosSrc: %u\n", myPosSrc);
PDEBUG(" myPosSize: %u\n", myPosSize);
PDEBUG(" myNegDst: %u\n", myNegDst);
PDEBUG(" myNegSrc: %u\n", myNegSrc);
PDEBUG(" myNegSize: %u\n", myNegSize);
PDEBUG(" myZeroDst: %u\n", myZeroDst);
PDEBUG(" myZeroSize: %u\n", myZeroSize);
const int N = mySpacing; // The size of the FFT
myFftIn = (FFT_TYPE*)fftwf_malloc(sizeof(FFT_TYPE) * N);
myFftOut = (FFT_TYPE*)fftwf_malloc(sizeof(FFT_TYPE) * N);
myFftPlan = fftwf_plan_dft_1d(N,
myFftIn, myFftOut,
FFTW_BACKWARD, FFTW_MEASURE);
myCfrPostClip = (FFT_TYPE*)fftwf_malloc(sizeof(FFT_TYPE) * N);
myCfrPostFft = (FFT_TYPE*)fftwf_malloc(sizeof(FFT_TYPE) * N);
myCfrFft = fftwf_plan_dft_1d(N,
myCfrPostClip, myCfrPostFft,
FFTW_FORWARD, FFTW_MEASURE);
if (sizeof(complexf) != sizeof(FFT_TYPE)) {
printf("sizeof(complexf) %zu\n", sizeof(complexf));
printf("sizeof(FFT_TYPE) %zu\n", sizeof(FFT_TYPE));
throw std::runtime_error(
"OfdmGenerator::process complexf size is not FFT_TYPE size!");
}
}
OfdmGenerator::~OfdmGenerator()
{
PDEBUG("OfdmGenerator::~OfdmGenerator() @ %p\n", this);
if (myFftIn) {
fftwf_free(myFftIn);
}
if (myFftOut) {
fftwf_free(myFftOut);
}
if (myFftPlan) {
fftwf_destroy_plan(myFftPlan);
}
if (myCfrFft) {
fftwf_destroy_plan(myCfrFft);
}
}
int OfdmGenerator::process(Buffer* const dataIn, Buffer* dataOut)
{
PDEBUG("OfdmGenerator::process(dataIn: %p, dataOut: %p)\n",
dataIn, dataOut);
dataOut->setLength(myNbSymbols * mySpacing * sizeof(complexf));
FFT_TYPE* in = reinterpret_cast<FFT_TYPE*>(dataIn->getData());
FFT_TYPE* out = reinterpret_cast<FFT_TYPE*>(dataOut->getData());
size_t sizeIn = dataIn->getLength() / sizeof(complexf);
size_t sizeOut = dataOut->getLength() / sizeof(complexf);
if (sizeIn != myNbSymbols * myNbCarriers) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * myNbCarriers);
throw std::runtime_error(
"OfdmGenerator::process input size not valid!");
}
if (sizeOut != myNbSymbols * mySpacing) {
PDEBUG("Nb symbols: %zu\n", myNbSymbols);
PDEBUG("Nb carriers: %zu\n", myNbCarriers);
PDEBUG("Spacing: %zu\n", mySpacing);
PDEBUG("\n%zu != %zu\n", sizeIn, myNbSymbols * mySpacing);
throw std::runtime_error(
"OfdmGenerator::process output size not valid!");
}
myNumClip = 0;
myNumErrorClip = 0;
// It is not guaranteed that fftw keeps the FFT input vector intact.
// That's why we copy it to the reference.
std::vector<complexf> reference;
for (size_t i = 0; i < myNbSymbols; ++i) {
myFftIn[0][0] = 0;
myFftIn[0][1] = 0;
bzero(&myFftIn[myZeroDst], myZeroSize * sizeof(FFT_TYPE));
memcpy(&myFftIn[myPosDst], &in[myPosSrc],
myPosSize * sizeof(FFT_TYPE));
memcpy(&myFftIn[myNegDst], &in[myNegSrc],
myNegSize * sizeof(FFT_TYPE));
if (myCfr) {
reference.resize(mySpacing);
memcpy(reference.data(), myFftIn, mySpacing * sizeof(FFT_TYPE));
}
fftwf_execute(myFftPlan); // IFFT from myFftIn to myFftOut
if (myCfr) {
complexf *symbol = reinterpret_cast<complexf*>(myFftOut);
cfr_one_iteration(symbol, reference.data());
}
memcpy(out, myFftOut, mySpacing * sizeof(FFT_TYPE));
in += myNbCarriers;
out += mySpacing;
}
if (myCfr) {
etiLog.level(debug) << "CFR: " << myNumClip << " clipped, " <<
myNumErrorClip << " err clipped";
}
return sizeOut;
}
void OfdmGenerator::cfr_one_iteration(complexf *symbol, const complexf *reference)
{
// use std::norm instead of std::abs to avoid calculating the
// square roots
const float clip_squared = myCfrClip * myCfrClip;
// Clip
for (size_t i = 0; i < mySpacing; i++) {
const float mag_squared = std::norm(symbol[i]);
if (mag_squared > clip_squared) {
// normalise absolute value to myCfrClip:
// x_clipped = x * clip / |x|
// = x * sqrt(clip_squared) / sqrt(mag_squared)
// = x * sqrt(clip_squared / mag_squared)
symbol[i] *= std::sqrt(clip_squared / mag_squared);
myNumClip++;
}
}
// Take FFT of our clipped signal
memcpy(myCfrPostClip, symbol, mySpacing * sizeof(FFT_TYPE));
fftwf_execute(myCfrFft); // FFT from myCfrPostClip to myCfrPostFft
// Calculate the error in frequency domain by subtracting our reference
// and clip it to myCfrErrorClip. By adding this clipped error signal
// to our FFT output, we compensate the introduced error to some
// extent.
const float err_clip_squared = myCfrErrorClip * myCfrErrorClip;
std::vector<float> error_norm(mySpacing);
for (size_t i = 0; i < mySpacing; i++) {
// FFTW computes an unnormalised trasform, i.e. a FFT-IFFT pair
// or vice-versa give back the original vector scaled by a factor
// FFT-size. Because we're comparing our constellation point
// (calculated with IFFT-clip-FFT) against reference (input to
// the IFFT), we need to divide by our FFT size.
const complexf constellation_point =
reinterpret_cast<complexf*>(myCfrPostFft)[i] / (float)mySpacing;
complexf error = reference[i] - constellation_point;
const float mag_squared = std::norm(error);
error_norm[i] = mag_squared;
if (mag_squared > err_clip_squared) {
error *= std::sqrt(err_clip_squared / mag_squared);
myNumErrorClip++;
}
// Update the input to the FFT directly to avoid another copy for the
// subsequence IFFT
complexf *fft_in = reinterpret_cast<complexf*>(myFftIn);
fft_in[i] = constellation_point + error;
}
auto minmax = std::minmax_element(error_norm.begin(), error_norm.end());
etiLog.level(debug) << "err min: " << std::sqrt(*minmax.first)
<< " max: " << std::sqrt(*minmax.second);
// Run our error-compensated symbol through the IFFT again
fftwf_execute(myFftPlan); // IFFT from myFftIn to myFftOut
}
void OfdmGenerator::set_parameter(const std::string& parameter,
const std::string& value)
{
using namespace std;
stringstream ss(value);
ss.exceptions ( stringstream::failbit | stringstream::badbit );
if (parameter == "cfr") {
ss >> myCfr;
}
else if (parameter == "clip") {
ss >> myCfrClip;
}
else if (parameter == "errorclip") {
ss >> myCfrErrorClip;
}
else {
stringstream ss;
ss << "Parameter '" << parameter
<< "' is not exported by controllable " << get_rc_name();
throw ParameterError(ss.str());
}
}
const std::string OfdmGenerator::get_parameter(const std::string& parameter) const
{
using namespace std;
stringstream ss;
if (parameter == "cfr") {
ss << myCfr;
}
else if (parameter == "clip") {
ss << std::fixed << myCfrClip;
}
else if (parameter == "errorclip") {
ss << std::fixed << myCfrErrorClip;
}
else {
ss << "Parameter '" << parameter <<
"' is not exported by controllable " << get_rc_name();
throw ParameterError(ss.str());
}
return ss.str();
}
|