aboutsummaryrefslogtreecommitdiffstats
path: root/src/MemlessPoly.cpp
blob: 1e19071159c8fcd031f9c4c80946af34204063af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
   Copyright (C) 2007, 2008, 2009, 2010, 2011 Her Majesty the Queen in
   Right of Canada (Communications Research Center Canada)

   Copyright (C) 2017
   Matthias P. Braendli, matthias.braendli@mpb.li
   Andreas Steger, andreas.steger@digris.ch

    http://opendigitalradio.org

   This block implements both a memoryless polynom for digital predistortion,
   and a lookup table predistorter.
   For better performance, multiplying is done in another thread, leading
   to a pipeline delay of two calls to MemlessPoly::process
 */
/*
   This file is part of ODR-DabMod.

   ODR-DabMod is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as
   published by the Free Software Foundation, either version 3 of the
   License, or (at your option) any later version.

   ODR-DabMod is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with ODR-DabMod.  If not, see <http://www.gnu.org/licenses/>.
 */

#pragma GCC optimize ("O3")

#include "MemlessPoly.h"
#include "PcDebug.h"
#include "Utils.h"

#include <stdio.h>
#include <stdexcept>
#include <string>
#include <future>
#include <array>
#include <iostream>
#include <fstream>
#include <memory>
#include <complex>

using namespace std;

// Number of AM/AM coefs, identical to number of AM/PM coefs
#define NUM_COEFS 5

MemlessPoly::MemlessPoly(const std::string& coefs_file, unsigned int num_threads) :
    PipelinedModCodec(),
    RemoteControllable("memlesspoly"),
    m_coefs_am(),
    m_coefs_pm(),
    m_coefs_file(coefs_file),
    m_coefs_mutex()
{
    PDEBUG("MemlessPoly::MemlessPoly(%s) @ %p\n",
            coefs_file.c_str(), this);

    RC_ADD_PARAMETER(ncoefs, "(Read-only) number of coefficients.");
    RC_ADD_PARAMETER(coeffile, "Filename containing coefficients. "
            "When set, the file gets loaded.");

    if (num_threads == 0) {
        const unsigned int hw_concurrency = std::thread::hardware_concurrency();
        etiLog.level(info) << "Digital Predistorter will use " <<
            hw_concurrency << " threads (auto detected)";

        for (size_t i = 0; i < hw_concurrency; i++) {
            m_workers.emplace_back();
        }

        for (auto& worker : m_workers) {
            worker.thread = std::thread(
                    &MemlessPoly::worker_thread, &worker);
        }
    }
    else {
        etiLog.level(info) << "Digital Predistorter will use " <<
            num_threads << " threads (set in config file)";

        for (size_t i = 0; i < num_threads; i++) {
            m_workers.emplace_back();
        }

        for (auto& worker : m_workers) {
            worker.thread = std::thread(
                    &MemlessPoly::worker_thread, &worker);
        }
    }

    load_coefficients(m_coefs_file);

    start_pipeline_thread();
}

MemlessPoly::~MemlessPoly()
{
    stop_pipeline_thread();
}

void MemlessPoly::load_coefficients(const std::string &coefFile)
{
    std::ifstream coef_fstream(coefFile.c_str());
    if (!coef_fstream) {
        throw std::runtime_error("MemlessPoly: Could not open file with coefs!");
    }

    uint32_t file_format_indicator;
    const uint8_t file_format_odd_poly = 1;
    const uint8_t file_format_lut = 2;
    coef_fstream >> file_format_indicator;

    if (file_format_indicator == file_format_odd_poly) {
        int n_coefs;
        coef_fstream >> n_coefs;

        if (n_coefs <= 0) {
            throw std::runtime_error("MemlessPoly: coefs file has invalid format.");
        }
        else if (n_coefs != NUM_COEFS) {
            throw std::runtime_error("MemlessPoly: invalid number of coefs: " +
                    std::to_string(n_coefs) + " expected " + std::to_string(NUM_COEFS));
        }

        const int n_entries = 2 * n_coefs;

        std::vector<float> coefs_am;
        std::vector<float> coefs_pm;
        coefs_am.resize(n_coefs);
        coefs_pm.resize(n_coefs);

        for (int n = 0; n < n_entries; n++) {
            float a;
            coef_fstream >> a;

            if (n < n_coefs) {
                coefs_am[n] = a;
            }
            else {
                coefs_pm[n - n_coefs] = a;
            }

            if (coef_fstream.eof()) {
                etiLog.log(error, "MemlessPoly: file %s should contains %d coefs, "
                        "but EOF reached after %d coefs !",
                        coefFile.c_str(), n_entries, n);
                throw std::runtime_error("MemlessPoly: coefs file invalid !");
            }
        }

        {
            std::lock_guard<std::mutex> lock(m_coefs_mutex);

            m_dpd_type = dpd_type_t::odd_only_poly;
            m_coefs_am = coefs_am;
            m_coefs_pm = coefs_pm;
            m_dpd_settings_valid = true;
        }
        etiLog.log(info, "MemlessPoly loaded %zu poly coefs",
                m_coefs_am.size() + m_coefs_pm.size());
    }
    else if (file_format_indicator == file_format_lut) {
        float scalefactor;
        coef_fstream >> scalefactor;

        std::array<complexf, lut_entries> lut;

        for (size_t n = 0; n < lut_entries; n++) {
            float a;
            coef_fstream >> a;

            lut[n] = a;
        }

        {
            std::lock_guard<std::mutex> lock(m_coefs_mutex);

            m_dpd_type = dpd_type_t::lookup_table;
            m_lut_scalefactor = scalefactor;
            m_lut = lut;
            m_dpd_settings_valid = true;
        }

        etiLog.log(info, "MemlessPoly loaded %zu LUT entries", m_lut.size());
    }
    else {
        etiLog.log(error, "MemlessPoly: coef file has unknown format %d",
                file_format_indicator);
        m_dpd_settings_valid = false;
    }
}

/* The restrict keyword is C99, g++ and clang++ however support __restrict
 * instead, and this allows the compiler to auto-vectorize the loop.
 */
static void apply_coeff(
        const float *__restrict coefs_am, const float *__restrict coefs_pm,
        const complexf *__restrict in, size_t start, size_t stop,
        complexf *__restrict out)
{
    for (size_t i = start; i < stop; i+=1) {

        float in_mag_sq = in[i].real() * in[i].real() + in[i].imag() * in[i].imag();

        float amplitude_correction =
            ( coefs_am[0] + in_mag_sq *
              ( coefs_am[1] + in_mag_sq *
                ( coefs_am[2] + in_mag_sq *
                  ( coefs_am[3] + in_mag_sq *
                    coefs_am[4]))));

        float phase_correction = -1 *
            ( coefs_pm[0] + in_mag_sq *
              ( coefs_pm[1] + in_mag_sq *
                ( coefs_pm[2] + in_mag_sq *
                  ( coefs_pm[3] + in_mag_sq *
                    coefs_pm[4]))));

        float phase_correction_sq = phase_correction * phase_correction;

        // Approximation for Cosinus 1 - 1/2 x^2 + 1/24 x^4 - 1/720 x^6
        float re = (1.0f - phase_correction_sq *
                ( -0.5f + phase_correction_sq *
                    ( 0.486666f  + phase_correction_sq *
                        ( -0.00138888f))));

        // Approximation for Sinus x + 1/6 x^3 + 1/120 x^5
        float im = phase_correction *
                (1.0f + phase_correction_sq *
                    (0.166666f + phase_correction_sq *
                        (0.00833333f)));

        out[i] = in[i] * amplitude_correction * complex<float>(re, im);
    }
}

static void apply_lut(
        const complexf *__restrict lut, const float scalefactor,
        const complexf *__restrict in,
        size_t start, size_t stop, complexf *__restrict out)
{
    for (size_t i = start; i < stop; i++) {
        const float in_mag = std::abs(in[i]);

        // The scalefactor is chosen so as to map the input magnitude
        // to the range of uint32_t
        const uint32_t scaled_in = lrintf(in_mag * scalefactor);

        // lut_ix contains the number of leading 0-bits of the
        // scaled value, starting at the most significant bit position.
        //
        // This partitions the range 0 -- 0xFFFFFFFF into 32 bins.
        //
        // 0x00000000 to 0x07FFFFFF go into bin 0
        // 0x08000000 to 0x0FFFFFFF go into bin 1
        // 0x10000000 to 0x17FFFFFF go into bin 2
        // ...
        // 0xF0000000 to 0xF7FFFFFF go into bin 30
        // 0xF8000000 to 0xFFFFFFFF go into bin 31
        //
        // The high 5 bits are therefore used as index.
        const uint8_t lut_ix = (scaled_in >> 27);

        // The LUT contains a complex correction factor that is close to
        // 1 + 0j
        out[i] = in[i] * lut[lut_ix];
    }
}

void MemlessPoly::worker_thread(MemlessPoly::worker_t *workerdata)
{
    set_realtime_prio(1);
    set_thread_name("MemlessPoly");

    while (true) {
        worker_t::input_data_t in_data;
        workerdata->in_queue.wait_and_pop(in_data);

        if (in_data.terminate) {
            break;
        }

        switch (in_data.dpd_type) {
            case dpd_type_t::odd_only_poly:
                apply_coeff(in_data.coefs_am, in_data.coefs_pm,
                        in_data.in, in_data.start, in_data.stop,
                        in_data.out);
                break;
            case dpd_type_t::lookup_table:
                apply_lut(in_data.lut, in_data.lut_scalefactor,
                        in_data.in, in_data.start, in_data.stop,
                        in_data.out);
                break;
        }

        workerdata->out_queue.push(1);
    }
}

int MemlessPoly::internal_process(Buffer* const dataIn, Buffer* dataOut)
{
    dataOut->setLength(dataIn->getLength());

    const complexf* in = reinterpret_cast<const complexf*>(dataIn->getData());
    complexf* out = reinterpret_cast<complexf*>(dataOut->getData());
    size_t sizeOut = dataOut->getLength() / sizeof(complexf);

    if (m_dpd_settings_valid)
    {
        std::lock_guard<std::mutex> lock(m_coefs_mutex);
        const size_t num_threads = m_workers.size();

        if (num_threads > 0) {
            const size_t step = sizeOut / num_threads;

            size_t start = 0;
            for (auto& worker : m_workers) {
                worker_t::input_data_t dat;
                dat.terminate = false;
                dat.dpd_type = m_dpd_type;
                dat.lut_scalefactor = m_lut_scalefactor;
                dat.lut = m_lut.data();
                dat.coefs_am = m_coefs_am.data();
                dat.coefs_pm = m_coefs_pm.data();
                dat.in = in;
                dat.start = start;
                dat.stop = start + step;
                dat.out = out;

                worker.in_queue.push(dat);

                start += step;
            }

            // Do the last in this thread
            switch (m_dpd_type) {
                case dpd_type_t::odd_only_poly:
                    apply_coeff(m_coefs_am.data(), m_coefs_pm.data(),
                            in, start, sizeOut, out);
                    break;
                case dpd_type_t::lookup_table:
                    apply_lut(m_lut.data(), m_lut_scalefactor,
                            in, start, sizeOut, out);
                    break;
            }

            // Wait for completion of the tasks
            for (auto& worker : m_workers) {
                int ret;
                worker.out_queue.wait_and_pop(ret);
            }
        }
        else {
            switch (m_dpd_type) {
                case dpd_type_t::odd_only_poly:
                    apply_coeff(m_coefs_am.data(), m_coefs_pm.data(),
                            in, 0, sizeOut, out);
                    break;
                case dpd_type_t::lookup_table:
                    apply_lut(m_lut.data(), m_lut_scalefactor,
                            in, 0, sizeOut, out);
                    break;
            }
        }
    }
    else {
        memcpy(dataOut->getData(), dataIn->getData(), sizeOut);
    }

    return dataOut->getLength();
}

void MemlessPoly::set_parameter(const string& parameter, const string& value)
{
    if (parameter == "ncoefs") {
        throw ParameterError("Parameter 'ncoefs' is read-only");
    }
    else if (parameter == "coeffile") {
        try {
            load_coefficients(value);
            m_coefs_file = value;
        }
        catch (std::runtime_error &e) {
            throw ParameterError(e.what());
        }
    }
    else {
        stringstream ss;
        ss << "Parameter '" << parameter <<
            "' is not exported by controllable " << get_rc_name();
        throw ParameterError(ss.str());
    }
}

const string MemlessPoly::get_parameter(const string& parameter) const
{
    stringstream ss;
    if (parameter == "ncoefs") {
        ss << m_coefs_am.size();
    }
    else if (parameter == "coeffile") {
        ss << m_coefs_file;
    }
    else {
        ss << "Parameter '" << parameter <<
            "' is not exported by controllable " << get_rc_name();
        throw ParameterError(ss.str());
    }
    return ss.str();
}