aboutsummaryrefslogtreecommitdiffstats
path: root/python/dpd/Dab_Util.py
blob: f9ae59f2de050e5d861eff45b0d75c6f2bee6ed6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# -*- coding: utf-8 -*-
#
# DPD Computation Engine, utilities for working with DAB signals.
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file

import datetime
import os
import logging
import numpy as np
import matplotlib

matplotlib.use('agg')
import matplotlib.pyplot as plt
import dpd.subsample_align as sa
import dpd.phase_align as pa
from scipy import signal


def fromfile(filename, offset=0, length=None):
    if length is None:
        return np.memmap(filename, dtype=np.complex64, mode='r', offset=64 / 8 * offset)
    else:
        return np.memmap(filename, dtype=np.complex64, mode='r', offset=64 / 8 * offset, shape=length)


class Dab_Util:
    """Collection of methods that can be applied to an array
     complex IQ samples of a DAB signal
     """

    def __init__(self, config, sample_rate, plot=False):
        """
        :param sample_rate: sample rate [sample/sec] to use for calculations
        """
        self.c = config
        self.sample_rate = sample_rate
        self.dab_bandwidth = 1536000  # Bandwidth of a dab signal
        self.frame_ms = 96  # Duration of a Dab frame

        self.plot = plot

    def lag(self, sig_orig, sig_rec):
        """
        Find lag between two signals
        Args:
            sig_orig: The signal that has been sent
            sig_rec: The signal that has been recored
        """
        off = sig_rec.shape[0]
        c = np.abs(signal.correlate(sig_orig, sig_rec))

        if self.plot and self.c.plot_location is not None:
            dt = datetime.datetime.now().isoformat()
            corr_path = self.c.plot_location + "/" + dt + "_tx_rx_corr.png"
            plt.plot(c, label="corr")
            plt.legend()
            plt.savefig(corr_path)
            plt.close()

        return np.argmax(c) - off + 1

    def lag_upsampling(self, sig_orig, sig_rec, n_up):
        if n_up != 1:
            sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
            sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
        else:
            sig_orig_up = sig_orig
            sig_rec_up = sig_rec
        l = self.lag(sig_orig_up, sig_rec_up)
        l_orig = float(l) / n_up
        return l_orig

    def subsample_align_upsampling(self, sig_tx, sig_rx, n_up=32):
        """
        Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment
        Using upsampling
        """
        assert (sig_tx.shape[0] == sig_rx.shape[0])

        if sig_tx.shape[0] % 2 == 1:
            sig_tx = sig_tx[:-1]
            sig_rx = sig_rx[:-1]

        sig1_up = signal.resample(sig_tx, sig_tx.shape[0] * n_up)
        sig2_up = signal.resample(sig_rx, sig_rx.shape[0] * n_up)

        off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1)
        off = int(abs(off_meas))

        if off_meas > 0:
            sig1_up = sig1_up[:-off]
            sig2_up = sig2_up[off:]
        elif off_meas < 0:
            sig1_up = sig1_up[off:]
        sig2_up = sig2_up[:-off]

        sig_tx = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64)
        sig_rx = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64)
        return sig_tx, sig_rx

    def subsample_align(self, sig_tx, sig_rx):
        """
        Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment
        """

        if self.plot and self.c.plot_location is not None:
            dt = datetime.datetime.now().isoformat()
            fig_path = self.c.plot_location + "/" + dt + "_sync_raw.png"

            fig, axs = plt.subplots(2)
            axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
            axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
            axs[0].set_title("Raw Data")
            axs[0].set_ylabel("Amplitude")
            axs[0].set_xlabel("Samples")
            axs[0].legend(loc=4)

            axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
            axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
            axs[1].set_title("Raw Data")
            axs[1].set_ylabel("Real Part")
            axs[1].set_xlabel("Samples")
            axs[1].legend(loc=4)

            fig.tight_layout()
            fig.savefig(fig_path)
            plt.close(fig)

        off_meas = self.lag_upsampling(sig_rx, sig_tx, n_up=1)
        off = int(abs(off_meas))

        logging.debug("sig_tx_orig: {} {}, sig_rx_orig: {} {}, offset {}".format(
            len(sig_tx),
            sig_tx.dtype,
            len(sig_rx),
            sig_rx.dtype,
            off_meas))

        if off_meas > 0:
            sig_tx = sig_tx[:-off]
            sig_rx = sig_rx[off:]
        elif off_meas < 0:
            sig_tx = sig_tx[off:]
            sig_rx = sig_rx[:-off]

        if off % 2 == 1:
            sig_tx = sig_tx[:-1]
            sig_rx = sig_rx[:-1]

        if self.plot and self.c.plot_location is not None:
            dt = datetime.datetime.now().isoformat()
            fig_path = self.c.plot_location + "/" + dt + "_sync_sample_aligned.png"

            fig, axs = plt.subplots(2)
            axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
            axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
            axs[0].set_title("Sample Aligned Data")
            axs[0].set_ylabel("Amplitude")
            axs[0].set_xlabel("Samples")
            axs[0].legend(loc=4)

            axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
            axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
            axs[1].set_ylabel("Real Part")
            axs[1].set_xlabel("Samples")
            axs[1].legend(loc=4)

            fig.tight_layout()
            fig.savefig(fig_path)
            plt.close(fig)

        sig_rx = sa.subsample_align(sig_rx, sig_tx)

        if self.plot and self.c.plot_location is not None:
            dt = datetime.datetime.now().isoformat()
            fig_path = self.c.plot_location + "/" + dt + "_sync_subsample_aligned.png"

            fig, axs = plt.subplots(2)
            axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
            axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
            axs[0].set_title("Subsample Aligned")
            axs[0].set_ylabel("Amplitude")
            axs[0].set_xlabel("Samples")
            axs[0].legend(loc=4)

            axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
            axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
            axs[1].set_ylabel("Real Part")
            axs[1].set_xlabel("Samples")
            axs[1].legend(loc=4)

            fig.tight_layout()
            fig.savefig(fig_path)
            plt.close(fig)

        sig_rx = pa.phase_align(sig_rx, sig_tx)

        if self.plot and self.c.plot_location is not None:
            dt = datetime.datetime.now().isoformat()
            fig_path = self.c.plot_location + "/" + dt + "_sync_phase_aligned.png"

            fig, axs = plt.subplots(2)
            axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
            axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
            axs[0].set_title("Phase Aligned")
            axs[0].set_ylabel("Amplitude")
            axs[0].set_xlabel("Samples")
            axs[0].legend(loc=4)

            axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
            axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
            axs[1].set_ylabel("Real Part")
            axs[1].set_xlabel("Samples")
            axs[1].legend(loc=4)

            fig.tight_layout()
            fig.savefig(fig_path)
            plt.close(fig)

        logging.debug(
            "Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig_tx), sig_tx.dtype, len(sig_rx), sig_rx.dtype, off))
        return sig_tx, sig_rx

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.