1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
//
// detail/impl/descriptor_ops.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_DESCRIPTOR_OPS_IPP
#define ASIO_DETAIL_IMPL_DESCRIPTOR_OPS_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cerrno>
#include "asio/detail/descriptor_ops.hpp"
#include "asio/error.hpp"
#if !defined(ASIO_WINDOWS) \
&& !defined(ASIO_WINDOWS_RUNTIME) \
&& !defined(__CYGWIN__)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
namespace descriptor_ops {
int open(const char* path, int flags, asio::error_code& ec)
{
errno = 0;
int result = error_wrapper(::open(path, flags), ec);
if (result >= 0)
ec = asio::error_code();
return result;
}
int close(int d, state_type& state, asio::error_code& ec)
{
int result = 0;
if (d != -1)
{
errno = 0;
result = error_wrapper(::close(d), ec);
if (result != 0
&& (ec == asio::error::would_block
|| ec == asio::error::try_again))
{
// According to UNIX Network Programming Vol. 1, it is possible for
// close() to fail with EWOULDBLOCK under certain circumstances. What
// isn't clear is the state of the descriptor after this error. The one
// current OS where this behaviour is seen, Windows, says that the socket
// remains open. Therefore we'll put the descriptor back into blocking
// mode and have another attempt at closing it.
#if defined(__SYMBIAN32__)
int flags = ::fcntl(d, F_GETFL, 0);
if (flags >= 0)
::fcntl(d, F_SETFL, flags & ~O_NONBLOCK);
#else // defined(__SYMBIAN32__)
ioctl_arg_type arg = 0;
::ioctl(d, FIONBIO, &arg);
#endif // defined(__SYMBIAN32__)
state &= ~non_blocking;
errno = 0;
result = error_wrapper(::close(d), ec);
}
}
if (result == 0)
ec = asio::error_code();
return result;
}
bool set_user_non_blocking(int d, state_type& state,
bool value, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return false;
}
errno = 0;
#if defined(__SYMBIAN32__)
int result = error_wrapper(::fcntl(d, F_GETFL, 0), ec);
if (result >= 0)
{
errno = 0;
int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK));
result = error_wrapper(::fcntl(d, F_SETFL, flag), ec);
}
#else // defined(__SYMBIAN32__)
ioctl_arg_type arg = (value ? 1 : 0);
int result = error_wrapper(::ioctl(d, FIONBIO, &arg), ec);
#endif // defined(__SYMBIAN32__)
if (result >= 0)
{
ec = asio::error_code();
if (value)
state |= user_set_non_blocking;
else
{
// Clearing the user-set non-blocking mode always overrides any
// internally-set non-blocking flag. Any subsequent asynchronous
// operations will need to re-enable non-blocking I/O.
state &= ~(user_set_non_blocking | internal_non_blocking);
}
return true;
}
return false;
}
bool set_internal_non_blocking(int d, state_type& state,
bool value, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return false;
}
if (!value && (state & user_set_non_blocking))
{
// It does not make sense to clear the internal non-blocking flag if the
// user still wants non-blocking behaviour. Return an error and let the
// caller figure out whether to update the user-set non-blocking flag.
ec = asio::error::invalid_argument;
return false;
}
errno = 0;
#if defined(__SYMBIAN32__)
int result = error_wrapper(::fcntl(d, F_GETFL, 0), ec);
if (result >= 0)
{
errno = 0;
int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK));
result = error_wrapper(::fcntl(d, F_SETFL, flag), ec);
}
#else // defined(__SYMBIAN32__)
ioctl_arg_type arg = (value ? 1 : 0);
int result = error_wrapper(::ioctl(d, FIONBIO, &arg), ec);
#endif // defined(__SYMBIAN32__)
if (result >= 0)
{
ec = asio::error_code();
if (value)
state |= internal_non_blocking;
else
state &= ~internal_non_blocking;
return true;
}
return false;
}
std::size_t sync_read(int d, state_type state, buf* bufs,
std::size_t count, bool all_empty, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to read 0 bytes on a stream is a no-op.
if (all_empty)
{
ec = asio::error_code();
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
errno = 0;
signed_size_type bytes = error_wrapper(::readv(
d, bufs, static_cast<int>(count)), ec);
// Check if operation succeeded.
if (bytes > 0)
return bytes;
// Check for EOF.
if (bytes == 0)
{
ec = asio::error::eof;
return 0;
}
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_read(d, 0, ec) < 0)
return 0;
}
}
bool non_blocking_read(int d, buf* bufs, std::size_t count,
asio::error_code& ec, std::size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
errno = 0;
signed_size_type bytes = error_wrapper(::readv(
d, bufs, static_cast<int>(count)), ec);
// Check for end of stream.
if (bytes == 0)
{
ec = asio::error::eof;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation is complete.
if (bytes > 0)
{
ec = asio::error_code();
bytes_transferred = bytes;
}
else
bytes_transferred = 0;
return true;
}
}
std::size_t sync_write(int d, state_type state, const buf* bufs,
std::size_t count, bool all_empty, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to write 0 bytes on a stream is a no-op.
if (all_empty)
{
ec = asio::error_code();
return 0;
}
// Write some data.
for (;;)
{
// Try to complete the operation without blocking.
errno = 0;
signed_size_type bytes = error_wrapper(::writev(
d, bufs, static_cast<int>(count)), ec);
// Check if operation succeeded.
if (bytes > 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_write(d, 0, ec) < 0)
return 0;
}
}
bool non_blocking_write(int d, const buf* bufs, std::size_t count,
asio::error_code& ec, std::size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
errno = 0;
signed_size_type bytes = error_wrapper(::writev(
d, bufs, static_cast<int>(count)), ec);
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation is complete.
if (bytes >= 0)
{
ec = asio::error_code();
bytes_transferred = bytes;
}
else
bytes_transferred = 0;
return true;
}
}
int ioctl(int d, state_type& state, long cmd,
ioctl_arg_type* arg, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
errno = 0;
int result = error_wrapper(::ioctl(d, cmd, arg), ec);
if (result >= 0)
{
ec = asio::error_code();
// When updating the non-blocking mode we always perform the ioctl syscall,
// even if the flags would otherwise indicate that the descriptor is
// already in the correct state. This ensures that the underlying
// descriptor is put into the state that has been requested by the user. If
// the ioctl syscall was successful then we need to update the flags to
// match.
if (cmd == static_cast<long>(FIONBIO))
{
if (*arg)
{
state |= user_set_non_blocking;
}
else
{
// Clearing the non-blocking mode always overrides any internally-set
// non-blocking flag. Any subsequent asynchronous operations will need
// to re-enable non-blocking I/O.
state &= ~(user_set_non_blocking | internal_non_blocking);
}
}
}
return result;
}
int fcntl(int d, int cmd, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
errno = 0;
int result = error_wrapper(::fcntl(d, cmd), ec);
if (result != -1)
ec = asio::error_code();
return result;
}
int fcntl(int d, int cmd, long arg, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
errno = 0;
int result = error_wrapper(::fcntl(d, cmd, arg), ec);
if (result != -1)
ec = asio::error_code();
return result;
}
int poll_read(int d, state_type state, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
pollfd fds;
fds.fd = d;
fds.events = POLLIN;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : -1;
errno = 0;
int result = error_wrapper(::poll(&fds, 1, timeout), ec);
if (result == 0)
ec = (state & user_set_non_blocking)
? asio::error::would_block : asio::error_code();
else if (result > 0)
ec = asio::error_code();
return result;
}
int poll_write(int d, state_type state, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
pollfd fds;
fds.fd = d;
fds.events = POLLOUT;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : -1;
errno = 0;
int result = error_wrapper(::poll(&fds, 1, timeout), ec);
if (result == 0)
ec = (state & user_set_non_blocking)
? asio::error::would_block : asio::error_code();
else if (result > 0)
ec = asio::error_code();
return result;
}
int poll_error(int d, state_type state, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
pollfd fds;
fds.fd = d;
fds.events = POLLPRI | POLLERR | POLLHUP;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : -1;
errno = 0;
int result = error_wrapper(::poll(&fds, 1, timeout), ec);
if (result == 0)
ec = (state & user_set_non_blocking)
? asio::error::would_block : asio::error_code();
else if (result > 0)
ec = asio::error_code();
return result;
}
} // namespace descriptor_ops
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_WINDOWS)
// && !defined(ASIO_WINDOWS_RUNTIME)
// && !defined(__CYGWIN__)
#endif // ASIO_DETAIL_IMPL_DESCRIPTOR_OPS_IPP
|