aboutsummaryrefslogtreecommitdiffstats
path: root/lib/asio/coroutine.hpp
blob: cd2d99e536ac1da2fabb837f32f64c66fddf8e1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//
// coroutine.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#ifndef ASIO_COROUTINE_HPP
#define ASIO_COROUTINE_HPP

namespace asio {
namespace detail {

class coroutine_ref;

} // namespace detail

/// Provides support for implementing stackless coroutines.
/**
 * The @c coroutine class may be used to implement stackless coroutines. The
 * class itself is used to store the current state of the coroutine.
 *
 * Coroutines are copy-constructible and assignable, and the space overhead is
 * a single int. They can be used as a base class:
 *
 * @code class session : coroutine
 * {
 *   ...
 * }; @endcode
 *
 * or as a data member:
 *
 * @code class session
 * {
 *   ...
 *   coroutine coro_;
 * }; @endcode
 *
 * or even bound in as a function argument using lambdas or @c bind(). The
 * important thing is that as the application maintains a copy of the object
 * for as long as the coroutine must be kept alive.
 *
 * @par Pseudo-keywords
 *
 * A coroutine is used in conjunction with certain "pseudo-keywords", which
 * are implemented as macros. These macros are defined by a header file:
 *
 * @code #include <asio/yield.hpp>@endcode
 *
 * and may conversely be undefined as follows:
 *
 * @code #include <asio/unyield.hpp>@endcode
 *
 * <b>reenter</b>
 *
 * The @c reenter macro is used to define the body of a coroutine. It takes a
 * single argument: a pointer or reference to a coroutine object. For example,
 * if the base class is a coroutine object you may write:
 *
 * @code reenter (this)
 * {
 *   ... coroutine body ...
 * } @endcode
 *
 * and if a data member or other variable you can write:
 *
 * @code reenter (coro_)
 * {
 *   ... coroutine body ...
 * } @endcode
 *
 * When @c reenter is executed at runtime, control jumps to the location of the
 * last @c yield or @c fork.
 *
 * The coroutine body may also be a single statement, such as:
 *
 * @code reenter (this) for (;;)
 * {
 *   ...
 * } @endcode
 *
 * @b Limitation: The @c reenter macro is implemented using a switch. This
 * means that you must take care when using local variables within the
 * coroutine body. The local variable is not allowed in a position where
 * reentering the coroutine could bypass the variable definition.
 *
 * <b>yield <em>statement</em></b>
 *
 * This form of the @c yield keyword is often used with asynchronous operations:
 *
 * @code yield socket_->async_read_some(buffer(*buffer_), *this); @endcode
 *
 * This divides into four logical steps:
 *
 * @li @c yield saves the current state of the coroutine.
 * @li The statement initiates the asynchronous operation.
 * @li The resume point is defined immediately following the statement.
 * @li Control is transferred to the end of the coroutine body.
 *
 * When the asynchronous operation completes, the function object is invoked
 * and @c reenter causes control to transfer to the resume point. It is
 * important to remember to carry the coroutine state forward with the
 * asynchronous operation. In the above snippet, the current class is a
 * function object object with a coroutine object as base class or data member.
 *
 * The statement may also be a compound statement, and this permits us to
 * define local variables with limited scope:
 *
 * @code yield
 * {
 *   mutable_buffers_1 b = buffer(*buffer_);
 *   socket_->async_read_some(b, *this);
 * } @endcode
 *
 * <b>yield return <em>expression</em> ;</b>
 *
 * This form of @c yield is often used in generators or coroutine-based parsers.
 * For example, the function object:
 *
 * @code struct interleave : coroutine
 * {
 *   istream& is1;
 *   istream& is2;
 *   char operator()(char c)
 *   {
 *     reenter (this) for (;;)
 *     {
 *       yield return is1.get();
 *       yield return is2.get();
 *     }
 *   }
 * }; @endcode
 *
 * defines a trivial coroutine that interleaves the characters from two input
 * streams.
 *
 * This type of @c yield divides into three logical steps:
 *
 * @li @c yield saves the current state of the coroutine.
 * @li The resume point is defined immediately following the semicolon.
 * @li The value of the expression is returned from the function.
 *
 * <b>yield ;</b>
 *
 * This form of @c yield is equivalent to the following steps:
 *
 * @li @c yield saves the current state of the coroutine.
 * @li The resume point is defined immediately following the semicolon.
 * @li Control is transferred to the end of the coroutine body.
 *
 * This form might be applied when coroutines are used for cooperative
 * threading and scheduling is explicitly managed. For example:
 *
 * @code struct task : coroutine
 * {
 *   ...
 *   void operator()()
 *   {
 *     reenter (this)
 *     {
 *       while (... not finished ...)
 *       {
 *         ... do something ...
 *         yield;
 *         ... do some more ...
 *         yield;
 *       }
 *     }
 *   }
 *   ...
 * };
 * ...
 * task t1, t2;
 * for (;;)
 * {
 *   t1();
 *   t2();
 * } @endcode
 *
 * <b>yield break ;</b>
 *
 * The final form of @c yield is used to explicitly terminate the coroutine.
 * This form is comprised of two steps:
 *
 * @li @c yield sets the coroutine state to indicate termination.
 * @li Control is transferred to the end of the coroutine body.
 *
 * Once terminated, calls to is_complete() return true and the coroutine cannot
 * be reentered.
 *
 * Note that a coroutine may also be implicitly terminated if the coroutine
 * body is exited without a yield, e.g. by return, throw or by running to the
 * end of the body.
 *
 * <b>fork <em>statement</em></b>
 *
 * The @c fork pseudo-keyword is used when "forking" a coroutine, i.e. splitting
 * it into two (or more) copies. One use of @c fork is in a server, where a new
 * coroutine is created to handle each client connection:
 * 
 * @code reenter (this)
 * {
 *   do
 *   {
 *     socket_.reset(new tcp::socket(io_context_));
 *     yield acceptor->async_accept(*socket_, *this);
 *     fork server(*this)();
 *   } while (is_parent());
 *   ... client-specific handling follows ...
 * } @endcode
 * 
 * The logical steps involved in a @c fork are:
 * 
 * @li @c fork saves the current state of the coroutine.
 * @li The statement creates a copy of the coroutine and either executes it
 *     immediately or schedules it for later execution.
 * @li The resume point is defined immediately following the semicolon.
 * @li For the "parent", control immediately continues from the next line.
 *
 * The functions is_parent() and is_child() can be used to differentiate
 * between parent and child. You would use these functions to alter subsequent
 * control flow.
 *
 * Note that @c fork doesn't do the actual forking by itself. It is the
 * application's responsibility to create a clone of the coroutine and call it.
 * The clone can be called immediately, as above, or scheduled for delayed
 * execution using something like io_context::post().
 *
 * @par Alternate macro names
 *
 * If preferred, an application can use macro names that follow a more typical
 * naming convention, rather than the pseudo-keywords. These are:
 *
 * @li @c ASIO_CORO_REENTER instead of @c reenter
 * @li @c ASIO_CORO_YIELD instead of @c yield
 * @li @c ASIO_CORO_FORK instead of @c fork
 */
class coroutine
{
public:
  /// Constructs a coroutine in its initial state.
  coroutine() : value_(0) {}

  /// Returns true if the coroutine is the child of a fork.
  bool is_child() const { return value_ < 0; }

  /// Returns true if the coroutine is the parent of a fork.
  bool is_parent() const { return !is_child(); }

  /// Returns true if the coroutine has reached its terminal state.
  bool is_complete() const { return value_ == -1; }

private:
  friend class detail::coroutine_ref;
  int value_;
};


namespace detail {

class coroutine_ref
{
public:
  coroutine_ref(coroutine& c) : value_(c.value_), modified_(false) {}
  coroutine_ref(coroutine* c) : value_(c->value_), modified_(false) {}
  ~coroutine_ref() { if (!modified_) value_ = -1; }
  operator int() const { return value_; }
  int& operator=(int v) { modified_ = true; return value_ = v; }
private:
  void operator=(const coroutine_ref&);
  int& value_;
  bool modified_;
};

} // namespace detail
} // namespace asio

#define ASIO_CORO_REENTER(c) \
  switch (::asio::detail::coroutine_ref _coro_value = c) \
    case -1: if (_coro_value) \
    { \
      goto terminate_coroutine; \
      terminate_coroutine: \
      _coro_value = -1; \
      goto bail_out_of_coroutine; \
      bail_out_of_coroutine: \
      break; \
    } \
    else /* fall-through */ case 0:

#define ASIO_CORO_YIELD_IMPL(n) \
  for (_coro_value = (n);;) \
    if (_coro_value == 0) \
    { \
      case (n): ; \
      break; \
    } \
    else \
      switch (_coro_value ? 0 : 1) \
        for (;;) \
          /* fall-through */ case -1: if (_coro_value) \
            goto terminate_coroutine; \
          else for (;;) \
            /* fall-through */ case 1: if (_coro_value) \
              goto bail_out_of_coroutine; \
            else /* fall-through */ case 0:

#define ASIO_CORO_FORK_IMPL(n) \
  for (_coro_value = -(n);; _coro_value = (n)) \
    if (_coro_value == (n)) \
    { \
      case -(n): ; \
      break; \
    } \
    else

#if defined(_MSC_VER)
# define ASIO_CORO_YIELD ASIO_CORO_YIELD_IMPL(__COUNTER__ + 1)
# define ASIO_CORO_FORK ASIO_CORO_FORK_IMPL(__COUNTER__ + 1)
#else // defined(_MSC_VER)
# define ASIO_CORO_YIELD ASIO_CORO_YIELD_IMPL(__LINE__)
# define ASIO_CORO_FORK ASIO_CORO_FORK_IMPL(__LINE__)
#endif // defined(_MSC_VER)

#endif // ASIO_COROUTINE_HPP