summaryrefslogtreecommitdiffstats
path: root/dpd/src/Model.py
blob: 4ccf0be02f9af5a40959633be78d45d11dbd1635 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# -*- coding: utf-8 -*-
#
# DPD Calculation Engine, model implementation.
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file

import datetime
import os
import logging

logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)

import numpy as np
import matplotlib.pyplot as plt


class Model:
    """Calculates new coefficients using the measurement and the old
    coefficients"""

    def __init__(self,
                 c,
                 SA,
                 MER,
                 coefs_am,
                 coefs_pm,
                 learning_rate_am=0.1,
                 learning_rate_pm=0.1,
                 plot=False):
        self.c = c
        self.SA = SA
        self.MER = MER

        self.learning_rate_am = learning_rate_am
        self.learning_rate_pm = learning_rate_pm

        self.coefs_am = coefs_am
        self.coefs_am_history = [coefs_am, ]
        self.mses_am = []
        self.errs_am = []

        self.tx_mers = []
        self.rx_mers = []

        self.coefs_pm = coefs_pm
        self.coefs_pm_history = [coefs_pm, ]
        self.errs_pm = []

        self.plot = plot

    def sample_uniformly(self, tx_dpd, rx_received, n_bins=5):
        """This function returns tx and rx samples in a way
        that the tx amplitudes have an approximate uniform 
        distribution with respect to the tx_dpd amplitudes"""
        mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01))
        tx_dpd = tx_dpd[mask]
        rx_received = rx_received[mask]

        txframe_aligned_abs = np.abs(tx_dpd)
        ccdf_min = 0
        ccdf_max = np.max(txframe_aligned_abs)
        tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
                                           bins=n_bins,
                                           range=(ccdf_min, ccdf_max))
        n_choise = np.min(tx_hist)
        tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
        rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)

        for idx, bin in enumerate(tx_hist):
            indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
                               (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0]
            indices_choise = np.random.choice(indices,
                                              n_choise,
                                              replace=False)
            rx_choice[idx * n_choise:(idx + 1) * n_choise] = \
                rx_received[indices_choise]
            tx_choice[idx * n_choise:(idx + 1) * n_choise] = \
                tx_dpd[indices_choise]

        assert isinstance(rx_choice[0], np.complex64), \
            "rx_choice is not complex64 but {}".format(rx_choice[0].dtype)
        assert isinstance(tx_choice[0], np.complex64), \
            "tx_choice is not complex64 but {}".format(tx_choice[0].dtype)

        return tx_choice, rx_choice

    def dpd_amplitude(self, sig, coefs=None):
        if coefs is None:
            coefs = self.coefs_am
        assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
        sig_abs = np.abs(sig)
        A_sig = np.vstack([np.ones(sig_abs.shape),
                           sig_abs ** 1,
                           sig_abs ** 2,
                           sig_abs ** 3,
                           sig_abs ** 4,
                           ]).T
        sig_dpd = sig * np.sum(A_sig * coefs, axis=1)
        return sig_dpd, A_sig

    def dpd_phase(self, sig, coefs=None):
        if coefs is None:
            coefs = self.coefs_pm
        assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
        sig_abs = np.abs(sig)
        A_phase = np.vstack([np.ones(sig_abs.shape),
                             sig_abs ** 1,
                             sig_abs ** 2,
                             sig_abs ** 3,
                             sig_abs ** 4,
                             ]).T
        phase_diff_est = np.sum(A_phase * coefs, axis=1)
        return phase_diff_est, A_phase

    def _next_am_coefficent(self, tx_choice, rx_choice):
        """Calculate new coefficients for AM/AM correction"""
        rx_dpd, rx_A = self.dpd_amplitude(rx_choice)
        rx_dpd = rx_dpd * (
            np.median(np.abs(tx_choice)) /
            np.median(np.abs(rx_dpd)))
        err = np.abs(rx_dpd) - np.abs(tx_choice)
        mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2))
        self.mses_am.append(mse)
        self.errs_am.append(np.mean(err**2))

        a_delta = np.linalg.lstsq(rx_A, err)[0]
        new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta
        new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0])
        return new_coefs_am

    def _next_pm_coefficent(self, tx_choice, rx_choice):
        """Calculate new coefficients for AM/PM correction
        Assuming deviations smaller than pi/2"""
        phase_diff_choice = np.angle(
            (rx_choice * tx_choice.conjugate()) /
            (np.abs(rx_choice) * np.abs(tx_choice))
        )
        plt.hist(phase_diff_choice)
        plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg')
        plt.clf()
        phase_diff_est, phase_A = self.dpd_phase(rx_choice)
        err_phase = phase_diff_est - phase_diff_choice
        self.errs_pm.append(np.mean(np.abs(err_phase ** 2)))

        p_delta = np.linalg.lstsq(phase_A, err_phase)[0]
        new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta

        return new_coefs_pm, phase_diff_choice

    def get_next_coefs(self, tx_dpd, rx_received):
        # Check data type
        assert tx_dpd[0].dtype == np.complex64, \
            "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
        assert rx_received[0].dtype == np.complex64, \
            "rx_received is not complex64 but {}".format(rx_received[0].dtype)
        # Check if signals have same normalization
        normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
                                     np.median(np.abs(rx_received))) / (
                                  np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
        assert normalization_error < 0.01, "Non normalized signals"

        tx_choice, rx_choice = self.sample_uniformly(tx_dpd, rx_received)
        new_coefs_am = self._next_am_coefficent(tx_choice, rx_choice)
        new_coefs_pm, phase_diff_choice = self._next_pm_coefficent(tx_choice, rx_choice)

        logging.debug('txframe: min {:.2f}, max {:.2f}, ' \
                      'median {:.2f}; rxframe: min {:.2f}, max {:.2f}, ' \
                      'median {:.2f}; new coefs_am {};' \
                      'new_coefs_pm {}'.format(
            np.min(np.abs(tx_dpd)),
            np.max(np.abs(tx_dpd)),
            np.median(np.abs(tx_dpd)),
            np.min(np.abs(rx_choice)),
            np.max(np.abs(rx_choice)),
            np.median(np.abs(rx_choice)),
            new_coefs_am,
            new_coefs_pm))

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
            off = self.SA.calc_offset(tx_dpd)
            tx_mer = self.MER.calc_mer(tx_dpd[off:off + self.c.T_U])
            rx_mer = self.MER.calc_mer(rx_received[off:off + self.c.T_U], debug=True)
            self.tx_mers.append(tx_mer)
            self.rx_mers.append(rx_mer)

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
            dt = datetime.datetime.now().isoformat()
            fig_path = logging_path + "/" + dt + "_Model.svg"

            fig = plt.figure(figsize=(2 * 6, 2 * 6))

            i_sub = 1

            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            ax.plot(np.abs(tx_dpd[:128]),
                    label="TX sent",
                    linestyle=":")
            ax.plot(np.abs(rx_received[:128]),
                    label="RX received",
                    color="red")
            ax.set_title("Synchronized Signals of Iteration {}"
                         .format(len(self.coefs_am_history)))
            ax.set_xlabel("Samples")
            ax.set_ylabel("Amplitude")
            ax.text(0, 0, "TX (max {:01.3f}, mean {:01.3f}, " \
                          "median {:01.3f})".format(
                np.max(np.abs(tx_dpd)),
                np.mean(np.abs(tx_dpd)),
                np.median(np.abs(tx_dpd))
            ), size=8)
            ax.legend(loc=4)

            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            ccdf_min, ccdf_max = 0, 1
            tx_hist, ccdf_edges = np.histogram(np.abs(tx_dpd),
                                               bins=60,
                                               range=(ccdf_min, ccdf_max))
            tx_hist_normalized = tx_hist.astype(float) / np.sum(tx_hist)
            ccdf = 1.0 - np.cumsum(tx_hist_normalized)
            ax.semilogy(ccdf_edges[:-1], ccdf, label="CCDF")
            ax.semilogy(ccdf_edges[:-1],
                        tx_hist_normalized,
                        label="Histogram",
                        drawstyle='steps')
            ax.legend(loc=4)
            ax.set_ylim(1e-5, 2)
            ax.set_title("Complementary Cumulative Distribution Function")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("Ratio of Samples larger than x")

            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            ax.semilogy(np.array(self.mses_am) + 1e-10, label="log(MSE)")
            ax.semilogy(np.array(self.errs_am) + 1e-10, label="log(ERR)")
            ax.legend(loc=4)
            ax.set_title("MSE History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("MSE")

            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            ax.plot(self.tx_mers, label="TX MER")
            ax.plot(self.rx_mers, label="RX MER")
            ax.legend(loc=4)
            ax.set_title("MER History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("MER")

            ax = plt.subplot(4, 2, i_sub)
            rx_range = np.linspace(0, 1, num=100, dtype=np.complex64)
            rx_range_dpd = self.dpd_amplitude(rx_range)[0]
            rx_range_dpd_new = self.dpd_amplitude(rx_range, new_coefs_am)[0]
            i_sub += 1
            ax.scatter(
                np.abs(tx_choice),
                np.abs(rx_choice),
                s=0.1)
            ax.plot(rx_range_dpd / self.coefs_am[0], rx_range, linewidth=0.25, label="current")
            ax.plot(rx_range_dpd_new / self.coefs_am[0], rx_range, linewidth=0.25, label="next")
            ax.set_ylim(0, 1)
            ax.set_xlim(0, 1)
            ax.legend()
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("RX Amplitude")

            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            coefs_am_history = np.array(self.coefs_am_history)
            for idx, coef_hist in enumerate(coefs_am_history.T):
                ax.plot(coef_hist,
                        label="Coef {}".format(idx),
                        linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("AM/AM Coefficient History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("Coefficient Value")

            phase_range = np.linspace(0, 1, num=100, dtype=np.complex64)
            phase_range_dpd = self.dpd_phase(phase_range)[0]
            phase_range_dpd_new = self.dpd_phase(phase_range,
                                                 coefs=new_coefs_pm)[0]
            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            ax.scatter(
                np.abs(tx_choice),
                np.rad2deg(phase_diff_choice),
                s=0.1)
            ax.plot(
                np.abs(phase_range),
                np.rad2deg(phase_range_dpd),
                linewidth=0.25,
                label="current")
            ax.plot(
                np.abs(phase_range),
                np.rad2deg(phase_range_dpd_new),
                linewidth=0.25,
                label="next")
            ax.set_ylim(-60, 60)
            ax.set_xlim(0, 1)
            ax.legend()
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("Phase Difference")

            ax = plt.subplot(4, 2, i_sub)
            i_sub += 1
            coefs_pm_history = np.array(self.coefs_pm_history)
            for idx, coef_phase_hist in enumerate(coefs_pm_history.T):
                ax.plot(coef_phase_hist,
                        label="Coef {}".format(idx),
                        linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("AM/PM Coefficient History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("Coefficient Value")

            fig.tight_layout()
            fig.savefig(fig_path)
            fig.clf()

        self.coefs_am = new_coefs_am
        self.coefs_am_history.append(self.coefs_am)
        self.coefs_pm = new_coefs_pm
        self.coefs_pm_history.append(self.coefs_pm)
        return self.coefs_am, self.coefs_pm

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.