summaryrefslogtreecommitdiffstats
path: root/dpd/src/Model.py
blob: 2aa9febd760352acad0b8261366514268430a835 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# -*- coding: utf-8 -*-
#
# DPD Calculation Engine, model implementation.
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file

import datetime
import os
import logging
logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)

import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge

class Model:
    """Calculates new coefficients using the measurement and the old
    coefficients"""

    def __init__(self, coefs_am, coefs_pm):
        self.coefs_am = coefs_am
        self.coefs_history = [coefs_am, ]
        self.mses = [0, ]
        self.errs = [0, ]

        self.coefs_pm = coefs_pm
        self.coefs_pm_history = [coefs_pm, ]
        self.errs_phase = [0, ]

    def sample_uniformly(self, txframe_aligned, rxframe_aligned, n_bins=4):
        """This function returns tx and rx samples in a way
        that the tx amplitudes have an approximate uniform 
        distribution with respect to the txframe_aligned amplitudes"""
        txframe_aligned_abs = np.abs(txframe_aligned)
        ccdf_min = 0
        ccdf_max = np.max(txframe_aligned_abs)
        tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
                                           bins=n_bins,
                                           range=(ccdf_min, ccdf_max))
        n_choise  = np.min(tx_hist)
        tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
        rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)

        for idx, bin in enumerate(tx_hist):
            indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
                               (txframe_aligned_abs <= ccdf_edges[idx+1]))[0]
            indices_choise = np.random.choice(indices, n_choise, replace=False)
            rx_choice[idx*n_choise:(idx+1)*n_choise] = rxframe_aligned[indices_choise]
            tx_choice[idx*n_choise:(idx+1)*n_choise] = txframe_aligned[indices_choise]
        return tx_choice, rx_choice

    def get_next_coefs(self, txframe_aligned, rxframe_aligned):
        tx_choice, rx_choice = self.sample_uniformly(txframe_aligned, rxframe_aligned)

        # Calculate new coefficients for AM/AM correction
        rx_abs = np.abs(rx_choice)
        rx_A = np.vstack([rx_abs,
                          rx_abs ** 3,
                          rx_abs ** 5,
                          rx_abs ** 7,
                          rx_abs ** 9,
                          ]).T
        rx_dpd = np.sum(rx_A * self.coefs_am, axis=1)
        rx_dpd = rx_dpd * (
            np.median(np.abs(tx_choice)) / np.median(np.abs(rx_dpd)))

        err = rx_dpd - np.abs(tx_choice)
        self.errs.append(np.mean(np.abs(err ** 2)))

        a_delta = np.linalg.lstsq(rx_A, err)[0]
        new_coefs = self.coefs_am - 0.1 * a_delta
        new_coefs = new_coefs * (self.coefs_am[0] / new_coefs[0])
        logging.debug("a_delta {}".format(a_delta))
        logging.debug("new coefs_am {}".format(new_coefs))

        # Calculate new coefficients for AM/PM correction
        phase_diff_rad = ((
                              (np.angle(tx_choice) -
                               np.angle(rx_choice) +
                               np.pi) % (2 * np.pi)) -
                          np.pi
                          )

        tx_abs = np.abs(tx_choice)
        tx_abs_A = np.vstack([tx_abs,
                             tx_abs ** 2,
                             tx_abs ** 3,
                             tx_abs ** 4,
                             tx_abs ** 5,
                             ]).T
        phase_dpd = np.sum(tx_abs_A * self.coefs_pm, axis=1)

        err_phase = phase_dpd - phase_diff_rad
        self.errs_phase.append(np.mean(np.abs(err_phase ** 2)))
        a_delta = np.linalg.lstsq(tx_abs_A, err_phase)[0]
        new_coefs_pm = self.coefs_pm - 0.1 * a_delta
        logging.debug("a_delta {}".format(a_delta))
        logging.debug("new new_coefs_pm {}".format(new_coefs_pm))

        def dpd_phase(tx):
            tx_abs = np.abs(tx)
            tx_A_complex = np.vstack([tx,
                                      tx * tx_abs ** 1,
                                      tx * tx_abs ** 2,
                                      tx * tx_abs ** 3,
                                      tx * tx_abs ** 4,
                                      ]).T
            tx_dpd = np.sum(tx_A_complex * self.coefs_pm, axis=1)
            return tx_dpd

        tx_range = np.linspace(0, 2)
        phase_range_dpd = dpd_phase(tx_range)

        rx_A_complex = np.vstack([rx_choice,
                                  rx_choice * rx_abs ** 2,
                                  rx_choice * rx_abs ** 4,
                                  rx_choice * rx_abs ** 6,
                                  rx_choice * rx_abs ** 8,
                                  ]).T
        rx_post_distored = np.sum(rx_A_complex * self.coefs_am, axis=1)
        rx_post_distored = rx_post_distored * (
            np.median(np.abs(tx_choice)) /
            np.median(np.abs(rx_post_distored)))
        mse = np.mean(np.abs((tx_choice - rx_post_distored) ** 2))
        logging.debug("MSE: {}".format(mse))
        self.mses.append(mse)

        def dpd(tx):
            tx_abs = np.abs(tx)
            tx_A_complex = np.vstack([tx,
                                      tx * tx_abs ** 2,
                                      tx * tx_abs ** 4,
                                      tx * tx_abs ** 6,
                                      tx * tx_abs ** 8,
                                      ]).T
            tx_dpd = np.sum(tx_A_complex * self.coefs_am, axis=1)
            return tx_dpd

        rx_range = np.linspace(0, 1, num=100)
        rx_range_dpd = dpd(rx_range)
        rx_range = rx_range[(rx_range_dpd > 0) & (rx_range_dpd < 2)]
        rx_range_dpd = rx_range_dpd[(rx_range_dpd > 0) & (rx_range_dpd < 2)]

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
            logging.debug("txframe: min %f, max %f, median %f" %
                          (np.min(np.abs(txframe_aligned)),
                           np.max(np.abs(txframe_aligned)),
                           np.median(np.abs(txframe_aligned))
                           ))

            logging.debug("rxframe: min %f, max %f, median %f" %
                          (np.min(np.abs(rx_choice)),
                           np.max(np.abs(rx_choice)),
                           np.median(np.abs(rx_choice))
                           ))

            dt = datetime.datetime.now().isoformat()
            fig_path = logging_path + "/" + dt + "_Model.pdf"

            fig = plt.figure(figsize=(3*6, 1.5 * 6))

            ax = plt.subplot(3,3,1)
            ax.plot(np.abs(txframe_aligned[:128]),
                    label="TX sent",
                    linestyle=":")
            ax.plot(np.abs(rxframe_aligned[:128]),
                    label="RX received",
                    color="red")
            ax.set_title("Synchronized Signals of Iteration {}".format(len(self.coefs_history)))
            ax.set_xlabel("Samples")
            ax.set_ylabel("Amplitude")
            ax.text(0, 0, "TX (max {:01.3f}, mean {:01.3f}, median {:01.3f})".format(
                np.max(np.abs(txframe_aligned)),
                np.mean(np.abs(txframe_aligned)),
                np.median(np.abs(txframe_aligned))
            ), size = 8)
            ax.legend(loc=4)

            ax = plt.subplot(3,3,2)
            ax.plot(np.real(txframe_aligned[:128]),
                    label="TX sent",
                    linestyle=":")
            ax.plot(np.real(rxframe_aligned[:128]),
                    label="RX received",
                    color="red")
            ax.set_title("Synchronized Signals")
            ax.set_xlabel("Samples")
            ax.set_ylabel("Real Part")
            ax.legend(loc=4)

            ax = plt.subplot(3,3,3)
            ax.plot(np.abs(txframe_aligned[:128]),
                    label="TX Frame",
                    linestyle=":",
                    linewidth=0.5)
            ax.plot(np.abs(rxframe_aligned[:128]),
                    label="RX Frame",
                    linestyle="--",
                    linewidth=0.5)

            rx_abs = np.abs(rxframe_aligned)
            rx_A = np.vstack([rx_abs,
                              rx_abs ** 3,
                              rx_abs ** 5,
                              rx_abs ** 7,
                              rx_abs ** 9,
                              ]).T
            rx_dpd = np.sum(rx_A * self.coefs_am, axis=1)
            rx_dpd = rx_dpd * (
                np.median(np.abs(tx_choice)) / np.median(np.abs(rx_dpd)))

            ax.plot(np.abs(rx_dpd[:128]),
                    label="RX DPD Frame",
                    linestyle="-.",
                    linewidth=0.5)

            tx_abs = np.abs(np.abs(txframe_aligned[:128]))
            tx_A = np.vstack([tx_abs,
                              tx_abs ** 3,
                              tx_abs ** 5,
                              tx_abs ** 7,
                              tx_abs ** 9,
                              ]).T
            tx_dpd = np.sum(tx_A * new_coefs, axis=1)
            tx_dpd_norm = tx_dpd * (
                np.median(np.abs(tx_choice)) / np.median(np.abs(tx_dpd)))

            ax.plot(np.abs(tx_dpd_norm[:128]),
                    label="TX DPD Frame Norm",
                    linestyle="-.",
                    linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("RX DPD")
            ax.set_xlabel("Samples")
            ax.set_ylabel("Amplitude")

            ax = plt.subplot(3,3,4)
            ax.scatter(
                np.abs(tx_choice[:1024]),
                np.abs(rx_choice[:1024]),
                s=0.1)
            ax.plot(rx_range_dpd / self.coefs_am[0], rx_range, linewidth=0.25)
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("RX Amplitude")

            ax = plt.subplot(3,3,5)
            ax.scatter(
                np.abs(tx_choice[:1024]),
                phase_diff_rad[:1024] * 180 / np.pi,
                s=0.1
            )
            ax.plot(tx_range, phase_range_dpd * 180 / np.pi, linewidth=0.25)
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("Phase Difference [deg]")

            ax = plt.subplot(3,3,6)
            ccdf_min, ccdf_max = 0, 1
            tx_hist, ccdf_edges = np.histogram(np.abs(txframe_aligned),
                                      bins=60,
                                      range=(ccdf_min, ccdf_max))
            tx_hist_normalized = tx_hist.astype(float)/np.sum(tx_hist)
            ccdf = 1.0 - np.cumsum(tx_hist_normalized)
            ax.semilogy(ccdf_edges[:-1], ccdf, label="CCDF")
            ax.semilogy(ccdf_edges[:-1],
                        tx_hist_normalized,
                        label="Histogram",
                        drawstyle='steps')
            ax.legend(loc=4)
            ax.set_ylim(1e-5,2)
            ax.set_title("Complementary Cumulative Distribution Function")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("Ratio of Samples larger than x")

            ax = plt.subplot(3,3,7)
            coefs_history = np.array(self.coefs_history)
            for idx, coef_hist in enumerate(coefs_history.T):
                ax.plot(coef_hist,
                        label="Coef {}".format(idx),
                        linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("AM/AM Coefficient History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("Coefficient Value")

            ax = plt.subplot(3,3,8)
            coefs_history = np.array(self.coefs_pm_history)
            for idx, coef_hist in enumerate(coefs_history.T):
                ax.plot(coef_hist,
                        label="Coef {}".format(idx),
                        linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("AM/PM Coefficient History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("Coefficient Value")

            ax = plt.subplot(3,3,9)
            coefs_history = np.array(self.coefs_history)
            ax.plot(self.mses, label="MSE")
            ax.plot(self.errs, label="ERR")
            ax.legend(loc=4)
            ax.set_title("MSE History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("MSE")

            fig.tight_layout()
            fig.savefig(fig_path)
            fig.clf()

        self.coefs_am = new_coefs
        self.coefs_history.append(self.coefs_am)
        self.coefs_pm = new_coefs_pm
        self.coefs_pm_history.append(self.coefs_pm)
        return self.coefs_am, self.coefs_pm

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.