summaryrefslogtreecommitdiffstats
path: root/dpd/src/Model.py
blob: bf52287af9e3ce3df5aa871a341ee7976b4b6747 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# -*- coding: utf-8 -*-
#
# DPD Calculation Engine, model implementation.
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file

import datetime
import os
import logging
logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)

import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge

class Model:
    """Calculates new coefficients using the measurement and the old
    coefficients"""

    def __init__(self, coefs_am, coefs_pm, plot=False):
        self.coefs_am = coefs_am
        self.coefs_history = [coefs_am, ]
        self.mses = [0, ]
        self.errs = [0, ]

        self.coefs_pm = coefs_pm
        self.coefs_pm_history = [coefs_pm, ]
        self.errs_phase = [0, ]

        self.plot=plot

    def sample_uniformly(self, tx_dpd, rx_received, n_bins=4):
        """This function returns tx and rx samples in a way
        that the tx amplitudes have an approximate uniform 
        distribution with respect to the tx_dpd amplitudes"""
        txframe_aligned_abs = np.abs(tx_dpd)
        ccdf_min = 0
        ccdf_max = np.max(txframe_aligned_abs)
        tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
                                           bins=n_bins,
                                           range=(ccdf_min, ccdf_max))
        n_choise  = np.min(tx_hist)
        tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
        rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)

        for idx, bin in enumerate(tx_hist):
            indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
                               (txframe_aligned_abs <= ccdf_edges[idx+1]))[0]
            indices_choise = np.random.choice(indices, n_choise, replace=False)
            rx_choice[idx*n_choise:(idx+1)*n_choise] = rx_received[indices_choise]
            tx_choice[idx*n_choise:(idx+1)*n_choise] = tx_dpd[indices_choise]
        return tx_choice, rx_choice

    def amplitude_predistortion(self, sig):
        sig_abs = np.abs(sig)
        A_sig = np.vstack([np.ones(sig_abs.shape),
                          sig_abs ** 2,
                          sig_abs ** 4,
                          sig_abs ** 6,
                          sig_abs ** 8,
                          ]).T
        sig_dpd = sig * np.sum(A_sig * self.coefs_am, axis=1)
        return sig_dpd, A_sig

    def dpd_phase(self, tx):
        tx_abs = np.abs(tx)
        tx_A_complex = np.vstack([tx,
                                  tx * tx_abs ** 1,
                                  tx * tx_abs ** 2,
                                  tx * tx_abs ** 3,
                                  tx * tx_abs ** 4,
                                  ]).T
        tx_dpd = np.sum(tx_A_complex * self.coefs_pm, axis=1)
        return tx_dpd

    def get_next_coefs(self, tx_dpd, rx_received):
        normalization_error = np.abs(np.median(np.abs(tx_dpd)) - np.median(np.abs(rx_received)))/(np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
        assert normalization_error < 0.01, "Non normalized signals"
        tx_choice, rx_choice = self.sample_uniformly(tx_dpd, rx_received)

        # Calculate new coefficients for AM/AM correction
        rx_dpd, rx_A = self.amplitude_predistortion(rx_choice)
        rx_dpd = rx_dpd * (
            np.median(np.abs(tx_choice)) /
            np.median(np.abs(rx_dpd)))

        err = np.abs(rx_dpd) - np.abs(tx_choice)
        self.errs.append(np.mean(np.abs(err ** 2)))

        mse = np.mean(np.abs((rx_dpd - tx_choice)**2))
        self.mses.append(mse)

        a_delta = np.linalg.lstsq(rx_A, err)[0]
        new_coefs = self.coefs_am - 0.1 * a_delta
        new_coefs = new_coefs * (self.coefs_am[0] / new_coefs[0])
        assert np.abs(self.coefs_am[0] / new_coefs[0] - 1) < 0.1, \
            "Too large change in first " \
            "coefficient. {}, {}".format(self.coefs_am[0], new_coefs[0])
        logging.debug("a_delta {}".format(a_delta))
        logging.debug("new coefs_am {}".format(new_coefs))

        rx_range = np.linspace(0, 1, num=100)
        rx_range_dpd = self.amplitude_predistortion(rx_range)[0]
        rx_range = rx_range[(rx_range_dpd > 0) & (rx_range_dpd < 2)]
        rx_range_dpd = rx_range_dpd[(rx_range_dpd > 0) & (rx_range_dpd < 2)]

        logging.debug('txframe: min {:.2f}, max {:.2f}, ' \
                      'median {:.2f}; rxframe: min {:.2f}, max {:.2f}, ' \
                      'median {:.2f}; a_delta {}; new coefs_am {}'.format(
            np.min(np.abs(tx_dpd)),
            np.max(np.abs(tx_dpd)),
            np.median(np.abs(tx_dpd)),
            np.min(np.abs(rx_choice)),
            np.max(np.abs(rx_choice)),
            np.median(np.abs(rx_choice)),
            a_delta,
            new_coefs))

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
            dt = datetime.datetime.now().isoformat()
            fig_path = logging_path + "/" + dt + "_Model.svg"

            fig = plt.figure(figsize=(3*6, 6))

            ax = plt.subplot(2,3,1)
            ax.plot(np.abs(tx_dpd[:128]),
                    label="TX sent",
                    linestyle=":")
            ax.plot(np.abs(rx_received[:128]),
                    label="RX received",
                    color="red")
            ax.set_title("Synchronized Signals of Iteration {}".format(len(self.coefs_history)))
            ax.set_xlabel("Samples")
            ax.set_ylabel("Amplitude")
            ax.text(0, 0, "TX (max {:01.3f}, mean {:01.3f}, median {:01.3f})".format(
                np.max(np.abs(tx_dpd)),
                np.mean(np.abs(tx_dpd)),
                np.median(np.abs(tx_dpd))
            ), size = 8)
            ax.legend(loc=4)

            ax = plt.subplot(2,3,2)
            ax.scatter(
                np.abs(tx_choice),
                np.abs(rx_choice),
                s=0.1)
            ax.plot(rx_range_dpd / self.coefs_am[0], rx_range, linewidth=0.25)
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("RX Amplitude")

            ax = plt.subplot(2,3,3)
            ccdf_min, ccdf_max = 0, 1
            tx_hist, ccdf_edges = np.histogram(np.abs(tx_dpd),
                                      bins=60,
                                      range=(ccdf_min, ccdf_max))
            tx_hist_normalized = tx_hist.astype(float)/np.sum(tx_hist)
            ccdf = 1.0 - np.cumsum(tx_hist_normalized)
            ax.semilogy(ccdf_edges[:-1], ccdf, label="CCDF")
            ax.semilogy(ccdf_edges[:-1],
                        tx_hist_normalized,
                        label="Histogram",
                        drawstyle='steps')
            ax.legend(loc=4)
            ax.set_ylim(1e-5,2)
            ax.set_title("Complementary Cumulative Distribution Function")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("Ratio of Samples larger than x")

            ax = plt.subplot(2,3,4)
            coefs_history = np.array(self.coefs_history)
            for idx, coef_hist in enumerate(coefs_history.T):
                ax.plot(coef_hist,
                        label="Coef {}".format(idx),
                        linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("AM/AM Coefficient History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("Coefficient Value")

            ax = plt.subplot(2,3,5)
            coefs_history = np.array(self.coefs_pm_history)
            for idx, coef_hist in enumerate(coefs_history.T):
                ax.plot(coef_hist,
                        label="Coef {}".format(idx),
                        linewidth=0.5)
            ax.legend(loc=4)
            ax.set_title("AM/PM Coefficient History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("Coefficient Value")

            ax = plt.subplot(2,3,6)
            ax.plot(self.mses, label="MSE")
            ax.plot(self.errs, label="ERR")
            ax.legend(loc=4)
            ax.set_title("MSE History")
            ax.set_xlabel("Iterations")
            ax.set_ylabel("MSE")

            fig.tight_layout()
            fig.savefig(fig_path)
            fig.clf()

        self.coefs_am = new_coefs
        self.coefs_history.append(self.coefs_am)
        return self.coefs_am, self.coefs_pm

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.