summaryrefslogtreecommitdiffstats
path: root/dpd/src/Model.py
blob: 7664dd35c77dfa66ff9747604b2608cf071b0b8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-

import datetime
import os
import logging
logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)

import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge

class Model:
    """Calculates new coefficients using the measurement and the old
    coefficients"""

    def __init__(self, coefs):
        self.coefs = coefs

    def get_next_coefs(self, txframe_aligned, rxframe_aligned):
        rx_abs = np.abs(rxframe_aligned)
        A = np.vstack([rx_abs,
                       rx_abs**3,
                       rx_abs**5,
                       rx_abs**7,
                       rx_abs**9,
                       ]).T
        y = np.abs(txframe_aligned)

        clf = Ridge(alpha=10)
        clf.fit(A, y)
        sol = clf.coef_

        rx_range = np.linspace(0,1,50)
        A_range = np.vstack([
                       rx_range,
                       rx_range**3,
                       rx_range**5,
                       rx_range**7,
                       rx_range**9,
                       ]).T
        y_est = np.sum(A_range * sol, axis=1)

        logging.debug("New coefficents {}".format(sol))

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
            logging.debug("txframe: min %f, max %f, median %f" %
                          (np.min(np.abs(txframe_aligned)),
                           np.max(np.abs(txframe_aligned)),
                           np.median(np.abs(txframe_aligned))
                           ))

            logging.debug("rxframe: min %f, max %f, median %f" %
                          (np.min(np.abs(rxframe_aligned)),
                           np.max(np.abs(rxframe_aligned)),
                           np.median(np.abs(rxframe_aligned))
                           ))

            dt = datetime.datetime.now().isoformat()
            fig_path = logging_path + "/" + dt + "_Model.pdf"

            fig, axs = plt.subplots(4, figsize=(6,2*6))

            ax = axs[0]
            ax.plot(np.abs(txframe_aligned[:128]), label="TX Frame")
            ax.plot(np.abs(rxframe_aligned[:128]), label="RX Frame")
            ax.set_title("Synchronized Signals")
            ax.set_xlabel("Samples")
            ax.set_ylabel("Amplitude")
            ax.legend(loc=4)

            ax = axs[1]
            ax.plot(np.real(txframe_aligned[:128]), label="TX Frame")
            ax.plot(np.real(rxframe_aligned[:128]), label="RX Frame")
            ax.set_title("Synchronized Signals")
            ax.set_xlabel("Samples")
            ax.set_ylabel("Real Part")
            ax.legend(loc=4)

            ax = axs[2]
            ax.scatter(
                np.abs(txframe_aligned[:1024]),
                np.abs(rxframe_aligned[:1024]),
                s = 0.1
            )
            ax.plot(
                y_est,
                rx_range,
                linewidth=0.25
            )
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("RX Amplitude")

            ax = axs[3]
            angle_diff_rad = ((
                             (np.angle(txframe_aligned[:1024]) -
                              np.angle(rxframe_aligned[:1024]) +
                              np.pi) % (2 * np.pi)) -
                          np.pi
                          )
            ax.scatter(
                np.abs(txframe_aligned[:1024]),
                angle_diff_rad * 180 / np.pi,
                s = 0.1
            )
            ax.set_title("Amplifier Characteristic")
            ax.set_xlabel("TX Amplitude")
            ax.set_ylabel("Phase Difference [deg]")

            fig.tight_layout()
            fig.savefig(fig_path)
            fig.clf()

        mse = np.mean(np.abs(np.square(txframe_aligned[:1024] - rxframe_aligned[:1024])))
        logging.debug("MSE: {}".format(mse))

        sol = sol * 1.7/sol[0]
        return sol

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.