aboutsummaryrefslogtreecommitdiffstats
path: root/dpd/src/Measure.py
blob: 76f17b29cf6770dd15e8d39e4ec83c3c47a4ec34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -*- coding: utf-8 -*-

import sys
import socket
import struct
import numpy as np
import matplotlib.pyplot as pp
from matplotlib.animation import FuncAnimation
import argparse
import os
import time
import logging
import Dab_Util as DU
import datetime

class Measure:
    """Collect Measurement from DabMod"""
    def __init__(self, port, num_samples_to_request):
        """"""
        logging.info("Instantiate Measure object")
        self.sizeof_sample = 8 # complex floats
        self.port = port
        self.num_samples_to_request = num_samples_to_request

    def _recv_exact(self, sock, num_bytes):
        """Interfaces the socket to receive a byte string
        
        Args:
            sock (socket): Socket to receive data from.
            num_bytes (int): Number of bytes that will be returned.
        """
        bufs = []
        while num_bytes > 0:
            b = sock.recv(num_bytes)
            if len(b) == 0:
                break
            num_bytes -= len(b)
            bufs.append(b)
        return b''.join(bufs)

    def get_samples(self):
        """Connect to ODR-DabMod, retrieve TX and RX samples, load
        into numpy arrays, and return a tuple
        (tx_timestamp, tx_samples, rx_timestamp, rx_samples)
        where the timestamps are doubles, and the samples are numpy
        arrays of complex floats, both having the same size
        """
        s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        s.connect(('localhost', self.port))

        logging.debug("Send version")
        s.sendall(b"\x01")

        logging.debug("Send request for {} samples".format(self.num_samples_to_request))
        s.sendall(struct.pack("=I", self.num_samples_to_request))

        logging.debug("Wait for TX metadata")
        num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12))
        tx_ts = tx_second + tx_pps / 16384000.0

        if num_samps > 0:
            logging.debug("Receiving {} TX samples".format(num_samps))
            txframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
            txframe = np.fromstring(txframe_bytes, dtype=np.complex64)
        else:
            txframe = np.array([], dtype=np.complex64)

        logging.debug("Wait for RX metadata")
        rx_second, rx_pps = struct.unpack("=II", self._recv_exact(s, 8))
        rx_ts = rx_second + rx_pps / 16384000.0

        if num_samps > 0:
            logging.debug("Receiving {} RX samples".format(num_samps))
            rxframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
            rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64)
        else:
            rxframe = np.array([], dtype=np.complex64)

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
            import matplotlib.pyplot as plt

            txframe_path = ('/tmp/txframe_fft_' +
                            datetime.datetime.now().isoformat() +
                            '.pdf')
            plt.plot(np.abs(np.fft.fftshift(np.fft.fft(txframe[2048:]))))
            plt.savefig(txframe_path)
            plt.clf()

            rxframe_path = ('/tmp/rxframe_fft_' +
                            datetime.datetime.now().isoformat() +
                            '.pdf')
            plt.plot(np.abs(np.fft.fftshift(np.fft.fft(rxframe[2048:]))))
            plt.savefig(rxframe_path)
            plt.clf()

            logging.debug("txframe: min %f, max %f, median %f, spectrum %s" %
                (np.min(np.abs(txframe)),
                 np.max(np.abs(txframe)),
                 np.median(np.abs(txframe)),
                 txframe_path))

            logging.debug("rxframe: min %f, max %f, median %f, spectrum %s" %
                (np.min(np.abs(rxframe)),
                 np.max(np.abs(rxframe)),
                 np.median(np.abs(rxframe)),
                 rxframe_path))

        logging.debug("Disconnecting")
        s.close()

        du = DU.Dab_Util(8192000)
        txframe_aligned, rxframe_aligned = du.subsample_align(txframe, rxframe)

        logging.info(
            "Measurement done, tx %d %s, rx %d %s, tx aligned %d %s, rx aligned %d %s"
            % (len(txframe), txframe.dtype, len(rxframe), rxframe.dtype,
            len(txframe_aligned), txframe_aligned.dtype, len(rxframe_aligned), rxframe_aligned.dtype) )

        return txframe_aligned, rxframe_aligned

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.